第三章--动量和角动量--作业答案
06动量与角动量二解答

F ex = ∑ maC = M aC ∑
(
2
)
4 θ = arctan = 45 4
4N l C
θ
y
O
x
l
4N
动量与角动量二
第三章 动量守Байду номын сангаас和能量守恒
质量为0.05kg的小块物体,置于一光滑水平桌面 的小块物体, △2.质量为 质量为 的小块物体 有一绳一端连接此物, 上.有一绳一端连接此物,另一端穿过桌面中心的小孔 如图所示).该物体原以3rad/s的角速度在距孔 ).该物体原以 的角速度在距孔0.2m (如图所示).该物体原以 的角速度在距孔 的圆周上转动.今将绳从小孔缓慢往下拉, 的圆周上转动.今将绳从小孔缓慢往下拉,使该物体之 转动半径减为0.1m.则物体的角速度ω=___. 转动半径减为 . . 物体在有心力作用下,对力心的角动量守恒 物体在有心力作用下 对力心的角动量守恒: 对力心的角动量守恒
T 2
(2mυ ) + (mgπR υ )
2
2
0
m
I=
∫ Fdt
0
y
I G = m g T 2 = mg j πR υ
动量与角动量二
第三章 动量守恒和能量守恒
4.一质量为M的斜面原来静止于水平光滑平面上,将 .一质量为 的斜面原来静止于水平光滑平面上 的斜面原来静止于水平光滑平面上, 一质量为m的木块轻轻放于斜面上 如图. 的木块轻轻放于斜面上, 一质量为 的木块轻轻放于斜面上,如图.如果此后 木块能静止于斜面上, 木块能静止于斜面上,则斜面将 (A) 保持静止. 保持静止. (B) 向右加速运动. 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动. 向右匀速运动. 向左加速运动. 对于木块-斜面系统 水平方向不受外力作用 动量守恒 对于木块 斜面系统,水平方向不受外力作用 动量守恒: 斜面系统 水平方向不受外力作用,动量守恒
《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案

《大学物理I 》作业 No.03 角动量 角动量守恒定律 (A 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题[ ]1、一质点沿直线做匀速率运动时,(A) 其动量一定守恒,角动量一定为零。
(B) 其动量一定守恒,角动量不一定为零。
(C) 其动量不一定守恒,角动量一定为零。
(D) 其动量不一定守恒,角动量不一定为零。
答案:B答案解析:质点作匀速直线运动,很显然运动过程中其速度不变,动量不变,即动量守恒;根据角动量的定义v m r L⨯=,质点的角动量因参考点(轴)而异。
本题中,只要参考点(轴)位于质点运动轨迹上,质点对其的角动量即为零,其余位置均不会为零。
故(B)是正确答案。
[ ]2. 两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,两圆盘质量与厚度相同,如两盘对通过盘心且垂直于盘面的轴的转动惯量各为A J 和B J ,则 (A) A J >B J(B) B J >A J(C) A J =B J(D) A J 、B J 哪个大,不能确定答案:B答案解析:设A 、B 联盘厚度为d ,半径分别为A R 和B R ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>,所以22B A R R <,由转动惯量221mR J =,则B A J J <。
[ ]3.对于绕定轴转动的刚体,如果它的角速度很大,则 (A) 作用在刚体上的力一定很大 (B) 作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大 (D) 难以判断外力和力矩的大小答案:D 答案解析:由刚体质心运动定律和刚体定轴转动定律知:物体所受的合外力和合外力矩只影响物体运动的加速度和角加速度,因此无法通过刚体运动的角速度来判断外力矩的大小,正如无法通过速度来判断物体所受外力的大小一样。
大学物理第三章-部分课后习题答案

大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。
分析:用补偿法〔负质量法〕求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。
注意对同一轴而言。
解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。
分析:取微元,由转动惯量的定义求积分可得 解:〔1〕对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ 〔2〕对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰〔3〕对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 到达额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。
分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。
解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。
大物习题答案第3章连续物体的运动分析

第3章连续物体的运动基本要求1 理解描写刚体定轴转动的物理量,并掌握角量与线量的关系。
2 理解力矩和转动惯量概念,掌握刚体绕定轴转动的转动定律。
3 理解角动量概念,掌握质点在平面内运动以及刚体绕定轴转动情况下的角动量守恒定律。
4 理解刚体定轴转动的转动动能概念,能载有刚体绕定轴转动的问题中正确的应用机械能守恒定律。
5 了解流体的特点,掌握理想流体的概念。
6 掌握理想流体的连续性方程和伯努利方程。
7了解伯努利方程的应用。
二基本概念1连续介质在宏观力学的范围内如果能忽视物体内部的不连续性,把物体看作质量连续分布的质点系。
2刚体大小和形状的变化可以忽略的连续介质。
3F对定轴Z的力矩:力F的大小与0点到力F的作用线的垂直距离的d (力臂)乘积。
M Fd Fr sin 或M =r x F4 转动惯量转动惯量是描述刚体在转动中惯性大小的物理量。
对于质点系的转n动惯量J m i r i 。
如果物体的质量是连续分布的,上式可写为J r2dm i15质点的角动量质点m对固定点0的位矢为r,质点m对原点O的角动量为L r p r m ut26 冲量矩力矩和作用时间的乘积,记作Mdt 。
t17刚体定轴转动的角动量n2L m i r i3 J 3i 18力矩的功W Md9力矩的功率P型Mdt dt10刚体的转动动能E k= - J 2211流体处于液态和气态的物体的统称。
特点是物体各部分之间很容易发生相对运动,即流动性。
12理想流体绝对不可压缩和完全没有黏性的流体。
13定常流动流体流经空间任一给定点的速度是确定的,并且不随时间变化。
在流速较低时定常流动的条件是能够得到满足的。
14流线为了形象地描述流体的运动,在流体中画出一系列曲线,使曲线上每一点的切线方向与流经该点流体质点的速度方向相同,这种曲线称为流线。
15流管在定常流动中,通过流体中的每一点都可以画一条流线。
由流线围成的管状区域,就称为流管。
16流量单位时间内流过某一截面的流体体积,称为流体流过该截面的体积。
第03章(刚体力学)习题答案

轮子的角速度由w =0 增大到w =10 rad/s,求摩擦力矩 Mr. [5.0 N·m]
解:摩擦力矩与外力矩均为恒力矩,所以刚体作匀角加速转动。其角加速度为:
b = w - w0 = 10 - 0 = 1rad / s2
Dt
10
合外力矩为: M合 = Jb = 15 ´1 = 15(N × m) = M - M r Þ M r = 5.0(N × m)
所以机械能也不守恒。
3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度w按图示方向转动.若如图
所示的情况那样,将两个大小相等方向相反但不在同一条直线的力
F 沿盘面同时作用到圆盘上,则圆盘的角速度w 如何变化?
w
答:左边力的力矩比右边的大,所以刚体会被加速,其角加速
F
F
度增大。 3-4 刚体角动量守恒的充分而必要的条件是什么? 答:刚体所受的合外力矩为零。
解:此过程角动量守恒
Jw0
=
1 3
Jw
Þ
w
=
3w0
3-10 一轴承光滑的定滑轮,质量为 M=2.00 kg,半径为 R=0.100 m,
一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m=5.00
kg 的物体,如图所示.已知定滑轮的转动惯量为 J= 1 MR 2 ,其初角速 2
w 0
R M
度w0 =10.0 rad/s,方向垂直纸面向里.求:
(1) 定滑轮的角加速度的大小和方向; (2) 定滑轮的角速度变化到w=0 时,物体上升的高度;
m
习题 310 图
(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.
[ 81.7 rad/s2 ,垂直纸面向外; 6.12×10-2 m; w = 10.0 rad/s,垂直纸面向外]
动量与角动量习题解答

动量与角动量习题解答(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章 动量与动量守恒定律习题一选择题1. 一辆洒水车正在马路上工作,要使车匀速直线行驶,则车受到的合外力:( )A. 必为零;B. 必不为零,合力方向与行进方向相同;C. 必不为零,合力方向与行进方向相反;D. 必不为零,合力方向是任意的。
解:答案是C 。
简要提示:根据动量定理,合力F 的冲量F d t = d p = d (m v )=md v +v d m =v d m 。
因d m <0,所以F 的方向与车行进速度v 的方向相反。
2. 两大小和质量均相同的小球,一为弹性球,另一为非弹性球,它们从同一高度落下与地面碰撞时,则有:()A. 地面给予两球的冲量相同;B. 地面给予弹性球的冲量较大;C. 地面给予非弹性球的冲量较大; A. 无法确定反冲量谁大谁小。
解:答案是B 。
简要提示:)(12v v -=m I3. 质量为m 的铁锤竖直向下打在桩上而静止,设打击时间为∆t ,打击前锤的速率为v ,则打击时铁锤受到的合外力大小应为:()A .mg tm +∆vB .mgC .mg tm -∆vD .tm ∆v解:答案是D 。
简要提示:v m t F =∆⋅4. 将一长木板安上轮子放在光滑平面上,两质量不同的人从板的两端以相同速率相向行走,则板的运动状况是:()选择题4图3A. 静止不动;B. 朝质量大的人行走的方向移动;C. 朝质量小的人行走的方向移动;D.无法确定。
解:答案是B 。
简要提示:取m 1的运动方向为正方向,由动量守恒:02211='+-v v v M m m ,得:M m m /)(21v v --='如果m 1> m 2,则v ′< 0。
5. 一只猴子用绳子拉着一个和它质量相同的石头,在一水平的无摩擦的地面上运动,开始时猴子和石头都保持静止,然后猴子以相对绳子的速度u 拉绳,则石头的速率为:() A. u B. u /2 C. u /4 D. 0解:答案是B 。
《大学物理AI》作业 No.03 角动量、角动量守恒(参考解答)

为为零零。;((bc))不不正正确确; ;角当动参量考还点与不参在考运点动的直选线择上有时关,,质只点要相参对考于点参不考选点在的运位动矢直r 是线在上变,化角动的量,就因可此能角不动
量
L
r
mv
也是会变化的;(d)不正确;作匀速率圆周运动的物体,其合外力指向圆心,属于有心
力,以圆心为参考点,质点的角动量守恒,角动量大小和方向都不改变。
端的水平轴在竖直平面内自由摆动,现将棒由水平位置静止释放,求:
(1)细棒和小球绕 A 端的水平轴的转动惯量,
A
B
(2)当下摆至 角时,细棒的角速度。
m
解:(1) J
J1
J2
ml 2
1 ml 2 3
4 ml 2 3
(2)根据转动定理: M
J
d dt
J
d d
d dt
J
d d
1、理解质点、质点系、定轴转动刚体的角动量的定义及其物理意义; 2、理解转动惯量、力矩的概念,会进行相关计算; 3、熟练掌握刚体定轴转动定律,会计算涉及转动的力学问题; 4、理解角冲量(冲量矩)概念,掌握质点、质点系、定轴转动刚体的角动量定理,熟练进行有关计算; 5、掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。
第3章动量角动量

(4)动量守恒定律是物理学中最普遍、最基本的定律之一。 在微观高速范围同样适用。
例3-3 如图,在光滑的水平面上,有一质量为M、长为l 的小车, 车上一端站有质量为m的人,起初m、M均静止,若人从车 的一端走到另一端,则人和车相对地面走过的距离为多少?
为ω,杆长均为l 。(2)如系统作加速转
动,系统的动量和角动量变化吗?
三、质点的角动量(动量矩)定理
Lrp
求
dL
导
d (r
p)
dr
p
r
dp
F
dt
dt
M
dL
dt
dt
dt
质点的角动量定理(微分形式)
质点所受合力对点O 的力矩, 等于质点对点O的角 动量的时间变化率。
M
dL
dt
改写
Mdt dL
t2 t1
F dt
p2
p1
(1)定理中的冲量指的是质点所受合力的冲量,或者质点所
受冲量的矢量和。
I
t2 t1
F合
dt
= =
t2 t1
(
F1+F2++Fn
)
d
t
t2 t1
F1dt
t2 t1
F2dt+
+
t2 t1
Fndt =
i 1
Ii
(2)冲量是过程量,动量是状态量,冲量的方向可用动量变化的
由动量定理 I p2 得 p1
(3) 2.7 m/s
(2)3s末质点的加速度
a(3) F (3) 1.5 m/s2 m
3.1.2 质点系的动量定理 动量守恒定律
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 动量和角动量一. 选择题:[ C ]1、[基础训练3] 如图3-12所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A) 2mv . (B) 22)/()2(v v R mg m π+(C) v /Rmg π.(D) 0.【提示】重力为恒力,故:I=νπνπR mg Rmg T mg dt T⋅=⋅=⋅=⋅⎰222mg 20[ C ]2、[基础训练4] 机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率为800 m/s ,则射击时的平均反冲力大小为 (A) 0.267 N . (B) 16 N .(C)240 N . (D) 14400 N . 【提示】N s s P F 240600/m 800kg 02.0900t =-⨯⨯=∆∆=)([ B ]3、[自测提高2] 质量为20 g 的子弹,以400 m/s 的速率沿图3-17射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s .【提示】对摆线顶部所在点角动量守恒。
2sin 30()mv l M m lV ︒=+;其中m 为子弹质量,M 为摆球质量,l 为摆线长度。
[ C ]4、(自测提高3)体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是 (A)甲先到达. (B)乙先到达.︒30v ϖ2图3-17 mv ϖR(C)同时到达. (D)谁先到达不能确定.【提示】取甲乙两人作为系统。
该系统对滑轮中心点角动量守恒,故甲乙两人相对地面速度大小在任意时刻均相等。
从而两人同时到达顶点。
[ D ] 5、[自测提高5] 一竖直向上发射之火箭,原来静止时的初质量为m 0经时间t 燃料耗尽时的末质量为m ,喷气相对火箭的速率恒定为u ,不计空气阻力,重力加速度g 恒定.则燃料耗尽时火箭速率为(A) 2/lnv 0gt m m u -=. (B) gt m m u -=0ln v . (C) gtm m u +=0ln v . (D) gt mmu -=0ln v .【提示】取竖直向上为正方向,由冲量定理得(dm<0)mv dm d dm m P dt ---++⋅+=∆=⋅)])(()()[(mg -μνννμ⋅++⋅=⇒m dmdv dt g 0gt mm v m mv t g m dm dv dt g tvm m -⋅=⇒⋅++⋅=⋅++⋅=⇒⎰⎰⎰lnln 00μμμ二. 填空题6、[基础训练6] 质量为m 的物体,初速极小,在外力作用下从原点起沿x 轴正向运动.所受外力方向沿x 轴正向,大小为F kx .物体从原点运动到坐标为x 0的点的过程中所受外力冲量的大小为 mkx ⋅0 .【提示】7、[基础训练7] 设作用在质量为1kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=18N s ⋅. 【提示】2222(63)(33)18I Fdt t dt t t N s ==+=+=⋅⎰⎰8、[基础训练9] 湖面上有一小船静止不动,船上有一打渔人质量为60 kg .如果他在船上向船头走了 4.0米,但相对于湖底只移动了 3.0米,(水对船的阻力略去不计),则小船的质量为 180kg. 【提示】质心不动。
13S S 0.10.30.4,0.3===-==船地人地人船船地人地故,m m mS m S9、[自测提高8] 两球质量分别为m 1=2.0 g ,m 2=5.0 g ,在光滑的水平桌面上运动.用直角坐标OXY 描述其运动,两者速度分别为i ϖϖ101=v cm/s ,)0.50.3(2j i ϖϖϖ+=v cm/s .若碰撞后两球合为一体,则碰撞后两球速度v ϖ的大小v = 6.14 m/s ,v ϖ与x 轴的夹角=35.5︒.【提示】用动量守恒定律计算。
112212()m v m v m m v +=+v v v ,得255(/)7v i j m s =+v v v22255 6.14(/)7v m s ⎛⎫=+= ⎪⎝⎭,535.57arctg α︒⎛⎫== ⎪⎝⎭。
10、[自测提高10] 一块木料质量为45 kg ,以 8 km/h 的恒速向下游漂动,一只10 kg 的天鹅以 8 km/h 的速率向上游飞动,它企图降落在这块木料上面.但在立足尚未稳时,它就又以相对于木料为2 km/h 的速率离开木料,向上游飞去.忽略水的摩擦,木料的末速度为5.45km/h .【提示】水平方向动量守恒,取“向下游”为正方向。
)/2(1045/810/km 8kg 45h km v kg v kg h km kg h -⋅+⋅=⋅-⋅h /km 45.5h /km 1160v ==⇒11、[自测提高11] 一质量为m 的质点沿着一条曲线运动,其位置矢量在空间直角坐标系中的表达式为j t b i t a r ϖϖϖωωsin cos +=,其中a 、b 、 皆为常量,则此质点对原点的角动量L =km abw ⋅;此质点所受对原点的力矩M = 0.【提示】jwt bw i wt aw dtr d v ⋅⋅+⋅⋅-==cos sinmabw k wtmbw wtmaw wt b wt a kj ip r L ⋅=⋅⋅-⋅=⨯=0cos sin 0sin cos0==dt Ld M .三.计算题12、[基础训练13 ] 一质点的运动轨迹如图3-12所示.已知质点的质量为20 g ,在A 、B 二位置处的速率都为20 m/s ,A v ϖ与x 轴成45°角,B v ϖ垂直于y 轴,求质点由A 点到B 点这段时间内,作用在质点上外力的总冲量. 解:由冲量定理知,)221()45cos ()(0+-=⋅--=∆=mv mv mv P I x x22)45sin (00⋅-=⋅-=∆=mv mv P I y y分量分量,分别为外力冲量的,其中y x y x I I代入m=20g=0.02kg ,v=20m/s 得s -0.283N s 224.0-s 683.0-s 2214.0-y x ⋅=⋅⋅=⋅=⋅+=N I N N I ,)(xyO BA Bv ϖAv ϖ图3-11s.739.02y 2N I I I X =+=总轴的正方向的夹角)(与,得,则,x 5.202tan 0xy ==θθI I13、[基础训练15 ] 如图所示,在中间有一小孔O 的水平光滑桌面上放置一个用绳子连结的、质量m = 4 kg 的小块物体.绳的另一端穿过小孔下垂且用手拉住.开始时物体以半径R 0 = 0.5 m 在桌面上转动,其线速度是4 m/s .现将绳缓慢地匀速下拉以缩短物体的转动半径.而绳最多只能承受 600 N 的拉力.求绳刚被拉断时,物体的转动半径R 等于多少?解 :物体因受合外力矩为零,故角动量守恒.设开始时和绳被拉断时物体的切向速度、半径分别为v 0、R 0和v 、R .则m v 0 R 0 = m v R整理后得: v v /00R R =物体作圆周运动的向心力由绳的张力提供R m F /2v =所以: 3/12020)/(F mR R v =当F = 600 N 时,绳刚好被拉断,此时物体的转动半径为R = 0.3 m14、[自测提高12 ]如图3-21示,有两个长方形的物体A 和B 紧靠着静止放在光滑的水平桌面上,已知m A =2 kg ,m B =3 kg .现有一质量m =100 g 的子弹以速率v 0=800 m/s 水平射入长方体A ,经t = 0.01 s ,又射入长方体B ,最后停留在长方体B 内未射出.设子弹射入A 时所受的摩擦力为F= 3×103 N ,求: (1) 子弹在射入A 的过程中,B 受到A 的作用力的大小.(2) 当子弹留在B 中时,A 和B 的速度大小.图3-21解:(1)取A 和B 作为一个系统,水平方向上受外力F ,故加速度为BA m m F a +=取B 作受力分析,其受到A 的作用力为Nm m m F a m F B A B B BA 18003231033=+⨯⨯=+⋅=⋅=(2)A 的速度为sm t m m F t a v B A A /601.0321033=⨯+⨯=⋅+=⋅=取A ,B 和子弹作为一个系统,水平方向上动量守恒B B A A v m m v m v m ⋅++⋅=⋅)(0sm m m v m v m v B A A B /9.211.03628001.00=+⨯-⨯=+-⋅=⇒15、[自测提高15 ] (自测提高15) 如图3-24所示,水平地面上一辆静止的炮车发射炮弹.炮车质量为M ,炮身仰角为 ,炮弹质量为m ,炮弹刚出口时,相对于炮身的速度为u ,不计地面摩擦:(1) 求炮弹刚出口时,炮车的反冲速度大小; (2) 若炮筒长为l ,求发炮过程中炮车移动的距离.解:(1) 以炮弹与炮车为系统,以地面为参考系,水平方向动量守恒.设炮车相对于地面的速率为V x ,则有0)cos (=++x x V u m MV α)/(cos m M mu V x +-=α即炮车向后退.(2) 以u (t )表示发炮过程中任一时刻炮弹相对于炮身的速度,则该瞬时炮车的速度应为)/(cos )()(m M t mu t V x +-=α积分求炮车后退距离 ⎰=∆tx t t V x 0d )(⎰+-=tt t u m M m 0d cos )()/(α图3-24αm)/(cos m M ml x +-=∆α即向后退了)/(cos m M ml +α的距离附加题:16、[自测提高14] 一质量为m 的匀质链条,长为L ,手持其上端,使下端离桌面的高度为h 。
现使链条自静止释放落于桌面,试计算链条落到桌面上的长度为l 时,桌面对链条的作用力。
解:取x 轴向下为正,设t 时刻,落在桌面上的部分链条长为l , 质量为l m ,则有l m m l l Lλ==(mL λ=为链条的质量线密度)此时在空中的链条的速度大小v =在dt 时间内,有dm vdt λ=链条元落在桌面上。
根据动量定理()()0l m g f dt vdt v λ-=-()232l m l h g vdtmf mg v lg v dtL Lλλ+=+=+= 方向向上。