固体矿产资源储量计算基本公式

合集下载

固体矿产资源储量估算方法

固体矿产资源储量估算方法
之间的矿产资源量称为: • 预可采储量:Provable Extractable Reserve • 基础储量:Basic Reserve
一、资源储量估算的一般概念
• 3、矿石类型与矿石品级边界线 • 4、储量级别边界线 • 据不同储量级别条件所圈定的界线 • 5、内边界线 • 由见矿工程联接的矿体边缘线 • 6、外边界线 • 没有工程控制,外推的矿体边界线 • 7、零点边界线 • 矿体厚度趋近零的各点的连线,即矿体尖灭点的
提纲
一、资源储量估算的一般概念 二、资源储量估算方法的选择 三、工业指标 四、资源储量估算参数的确定 五、矿体圈定 六、资源储量类型和块段划分 七、伴生组分的资源储量估算
一、资源储量估算的一般概念
• (一) 在地壳内或地表由地质作用形成具有经 济意义的固体自然富集物,根据产出形式、数量 和质量可以预期最终开采是技术上可行、经济上 合理的。其位置、数量、品位/质量、地质特征 是根据特定的地质依据和地质知识计算和估算的。 按照地质可靠程度,可分为已发现的矿产资源和 未发现的矿产资源。修订标准采用经济轴二分、 可行性轴三分、地质轴四分方案,共定义了7 个 基本类型,在结构上更简单明晰,在定义上更科 学合理,更具有与国际标准的互融互通性。
三、工业指标
• (1)边界品位 ➢ 边界品位是在圈定矿体时对单个样品的最低质量
要求,是划分矿石与废石的标准。对一般需要选 矿的有色或稀有金属矿产而言,其边界品位一般 是尾矿品位的1.5至2倍以上,以便有利于最大限 度的利用国家资源。 ➢ 用边界品位圈定的矿体达不到最低工业指标时, 即为低品位矿(即老规范中的表外矿)。 ➢ 边界品位也是划分低品位矿石与工业矿石不同矿 石品级的界线。
对矿石质量的要求;是圈定矿体、估算资源储量的基准参数,也是评估矿床工业价值 的依据。 ➢ 矿产普查阶段的工业指标,可根据矿床情况采用规范中一般工业指标;详查—勘探阶 段的工业指标 一般由地勘单位提出工业指标建议书,经设计部门进行技术经济论证, 由矿山企业确定。 ➢ 生产矿山资源储量核实工业指标,可采用矿山设计中确定的指标,矿山生产一定阶段 后,随着市场价格、采矿规模、选、冶工艺指标等生产实际条件的变化,原工业指标 己不符合生产情况,应调整工业指标使其符合实际。 ➢ 国务院[2002]24号文撤销“矿床工业指标审批”管理规定后。关于矿床工业指标 的管 理或使用的规定有: 1、《固体矿产地质勘查规范总则》中规定:“预查、普查时,可用一般工业指标进行 圈定和估算。详查、勘探所用指标通常应结合预可行性研究或可行性研究,依据当时 的市场价格论证、确定的工业指标圈定和估算。” 2、国土资发[2007] 26号文规定:“选取不同于规范推荐的一般工业指标或改变工业指 标应提供由具有设计资质单位编写的工业指标推荐书或论证报告。涉及向国家交纳价 款的资源储量核实,按一般工业指标估算资源量。”

固体矿产资源储量计算基本公式

固体矿产资源储量计算基本公式

固体矿产资源/储量计算基本公式一、矿体厚度计算1、单工程矿体厚度a 、真厚度m :m =L(sinα·sinβ·cosγ±cosα·cos β)或 m =L(cosθsinβcos γ±sinθcosβ)式中:m ——矿体真厚度;L ——在工程中测量的矿体假厚度; β——矿体倾角;α——切穿矿体时工程的天顶角(工程与铅垂线的夹角);θ——工程切穿矿体时的倾角或坡度(工程与水平线的夹角)。

γ——工程方位角与矿体倾斜方向的夹角。

注:上列两式中,凡工程倾斜方向与矿体倾斜方向相反时,此处用“+”号,反之用“-”号。

b 、水平厚度m s : m s =m/sinβ c 、铅垂厚度m v : m v = m/cosβ2、平均厚度a 、算术平均法如果揭露矿体的勘探工程分布均匀、或者勘探工程分布不均匀,但其厚度变化无一定规律时,块段或矿体的平均厚度可用算术平均法计算:nm nm m m n∑=++=21cp M式中:M cp ——平均厚度;m 1、m 2……m n ——各工程控制的矿体厚度。

n ——控制工程数目。

b 、加权平均法当厚度变化稳定并有规律的情况下,如果勘探工程不均匀时,平均厚度应用各工程控制的长度对厚度进行加权平均:nm l l l l m l m l m nn n ∑=++++= 212211cpM式中L 1、L 2……L n ——各工程控制长度(相邻工程间距离各一半之和)。

二、平均品位的确定1、单项工程平均品位计算a 、算术平均法在坑道、探槽或钻孔中连续取样的情况下,若样品长度相等,或不相等,但参予计算的样品较多,且样品分割长度与品位间无一定的依存关系时,应尽可能的使用算术平均法计算平均品位:nn∑=+++=C C C C C n21cp式中:C cp ——平均品位;C 1、C 2……C n ——各样品的品位; n ——样品数目。

b 、长度对品位进行加权平均在坑道、探槽或钻孔中连续采样的情况下,若样品分割长度不等,且样品数量不多或分割长度与品位之间呈一定的依存关系时,应以取样长度对品位进行加权平均:∑∑=++++++=LCL L L L L C L C L C C 212211cp nnn 式中:C 1、C 2、……C n ——各个样品的品位;L 1、L 2、……L n ——各个样品的分割长度。

矿产资源储量计算表 平行断面法适用

矿产资源储量计算表 平行断面法适用

平均值s
h
15025.5
10
6724
25
块段体积(m3)
v
150255.00 168100.00
662664.46
溶洞率(%) f
0 0
原始数据
318355.00 计算结果
原始数据
实际矿体体积(万立 方米) V 15.29 1.31 46.10 134.10
矿石体重(吨/ 立方米) d 2.6 2.6 2.6 2.6
16.6727
原始数据
42.4056 计算结果
溶洞裂隙率(%)
f
8 8 0
矿体体积(万 m3)
V1
60.71 0.15 0.12
矿石体重 (t/m3)
d
2.6 2.6 1.97
资源储量(万t)
Q
157.84 0.38 0.24
60.97
158.46
块段矿体体积(m3) 矿石体重(t/m3)
V-1
d
150255.00
溶洞裂隙率 (%) f 0.00 0.00 0.00 0.00
始数据
1968024 计算结果
断面相对面积误差<40%时的块段体积、矿石量计算式
断面积(2)(平方 米)
面积之和
S2
S1+S2
32348.00
58405.00
1246.32
2301.60
611.40
1537.56
10954.00
22443.00
原始数据
剖面法-斜楔形尖灭块段体积、矿石量计算式
尖灭端边长(米) 有矿端边长(米)
h1 197.40 315.80
h2 150.17 296.63

固体矿产地质勘查资源/储量估算的几种方法

固体矿产地质勘查资源/储量估算的几种方法
2 几 何 法 2 1 断 面法 .
式 中 : —— 各块 段矿 石 资源量 。 Q
全 矿 区 共 统 计 + 3 m、 5 m、 8 m、 1 0 0 +水平断面进行资源/ 储量估 算, 断面标高 的选择参照 了地表宕 口分布、 地形起伏情 况 和 估算高 级别 资源/ 量的规 范要 求 间距 。水 平 断 面 储 法 估算 对应 断 面如 图 2 示 。 所
1 4 36
l8 l
西 部探 矿工 程
21 0 2年第 5 期
H— — 块段 平均 厚 度 , m。 块段 资源 量 :
Q—V× D
呈线 尖 灭时 , 采用 锲形 体体 积 、一12 / /S×L。 r . 块段 中一 断 面有 面积 , 另一 面根据 地形 等高 线形 态 构成 近 似锥体 , 采用 锥 体公式 计算 一13 /S×L。 2 12 块段 矿石 资源 量计算 ..
延到 断 面面积 和块 段体 积 上 去 , 因而 有 外 延误 差 , 是 这 难 以克服 的缺点 , 对此 有相 当 的认识 。 应 ( 下转 第 1 1 ) 2页
式 中 : —— 断 面间距 。 L 块段 中一 断 面有 面 积 , 一 断 面无 面 积 ( 尖 灭 ) 另 点
相邻 断 面上矿 层能 对应 , 积相对 差 : 面 () ( z/ 4 时 , 用 截 锥 体 体 积 公 1 当 S 一S )S > 0/ 采 9 6
式 :

只要 勘查 工程 是 大致 沿 直 线 或水 平 面有 系统 的布 置 , 编出一 系列 断面 图 ( 面 图) , 能 剖 时 均可 采用 断 面 ( 剖 面) , 法 因而 断面 法几 乎 适 用 于任 何 类 型 矿 床 。勘 查 断 面 图 即可用来 作 为资源 / 量估算 图 。不必 编 制更 多 的 储

资源、储量估算、统计、管理细则

资源、储量估算、统计、管理细则

资源/储量估算、统计、管理细则一、矿产资源/储量估算的意义㈠、矿产资源/储量是反映矿床中有用矿产的数量和级别,它是矿山生产的重要依据,矿产资源/储量估算的目的是对勘查阶段、矿量增减变化提出计算资料,提供计划、开采部门,合理的开采利用矿产资源。

㈡、储量估算方法的选择是依据矿体产状、形态变化的特点,以及勘查程度而定。

倾角大于45°的陡倾矿体采用垂直纵投影法,小于45°的缓倾矿体采用水平投影法进行估算。

二、矿产资源/储量分类及分级的规定㈠、根据DZ/T0205—2002《岩金矿地质勘查规范》,划分矿产资源/储量类别和级别。

㈡、矿产资源/储量分级的条件及工业用途由于本矿床多数矿体规模小、脉岩切割破坏严重,因此将矿床勘查类型确定为Ⅲ—Ⅳ类(原Ⅳ—Ⅴ类型)。

1、111b、121b级——矿块回采设计的依据。

其条件:⑴、对矿体进行了全面勘查,按规定的勘查程度用坑探工程进行了四面控制圈定的。

⑵、对矿体的厚度、形态、品位、体重进行了全面分析、测定。

⑶、对构造特点基本了解清楚。

⑷、对夹石、破坏矿体的岩体(穿插矿体的后期岩脉)、岩性、产状、分布情况已基本确定。

2、122b级——作为进一步生产探矿计划的依据,配合一定比例的111b、121b级储量可做为矿山总体设计的依据,若矿脉规模小,可做为开拓和矿块回采设计的依据。

其条件是:⑴、虽四面圈定尚有原因仍不能达111b、121b级储量的,降为122b级。

⑵、用坑道结合钻探按40~50×40~50m(走向×斜深)勘查网度对矿块进行三边或两边圈定。

⑶、对破坏和影响矿体的较大断层、褶皱、破碎带的性质和产状已基本控制。

对夹石和后期岩脉的岩性、产状、分布已大致了解。

3、333级——可为探矿设计、计划及矿山生产远景计划的依据。

其条件是:⑴、矿块用80~100×80~100m(走向×斜深)勘查网度进行控制,或111b、121b、122b级储量的外推部分。

矿产资源储量估算方法

矿产资源储量估算方法

几种常见的矿产资源储量估算方法固体储量估算方法主要是几何法和统计分析法。

一、几何法(一)断面法(剖面法)原理就是当矿体被一系列勘查断面横切为若干块段,就可以以这些断面图为基础,估算相邻两断面间的矿块储量乃至整个矿床储量。

分为垂直断面法和水平断面法。

第一步:计算体积1、当相邻两断面的矿体形状相似,且其相对面积差(S1-S2)÷S1小于40%时,用梯形体积公式V=(S1+S2)×L÷2。

其中V为两断面间的矿体体积;L为相邻两剖面间的距离;S1、S2为相邻两端面上的矿体面积。

2、当相邻两断面的矿体形状相似,且其相对面积差(S1-S2)/S1大于40%时,选用截锥体积公式,即V=(S1+S2+√S1×S2)×L÷3。

其中V为两断面间的矿体体积;L为相邻两剖面间的距离;S1、S2为相邻两端面上的矿体面积。

3、当相邻两断面的矿体形状不同,不论面积相差多少,除油一对应边相等时,可用梯形体积公式外,其余均应选用似角柱体(辛浦生)公式,即V=[(S1+S2)÷2+2S m]×L÷3 =(S1+S2+4S m)×L÷6。

其中V为两断面间的矿体体积;L为相邻两剖面间的距离;S1、S2为相邻两端面上的矿体面积。

S m为似角柱体的平均断面面积。

4、当在相邻的两剖面中只有一个剖面有面积,而另一剖面上矿体已尖灭,或矿体两段边缘部分的块段只有一个断面控制时,其体积计算可根据剖面上的矿体面积形状或矿体尖灭特点不同选择不同公式。

(1)当矿体作楔尖灭时,块段体积用楔形公式计算。

V=L×S÷2(2)当矿体作锥形尖灭时,块段体积可用锥形公式计算。

V=L×S÷3第二步,计算两剖面间块段的矿石储量Q=V×d。

其中Q为块段矿石储量,V为块段的矿体体积,d为块段矿石平均体重。

第三步,计算出两剖面间块段的金属储量P=Q×C。

矿产资源储量计算表(平行断面法适用)

矿产资源储量计算表(平行断面法适用)

16.6727
原始数据
42.4056 计算结果
溶洞裂隙率(%)
f
8 8 0
矿体体积(万 m3)
V1
60.71 0.15 0.12
矿石体重 (t/m3)
d
2.6 2.6 1.97
资源储量(万t)
Q
157.84 0.38 0.24
60.97
158.46
块段矿体体积(m3) 矿石体重(t/m3)
V-1
d
150255.00
溶洞裂隙率 (%) f 0.00 0.00 0.00 0.00
始数据
1968024 计算结果
断面相对面积误差<40%时的块段体积、矿石量计算式
断面积(2)(平方 米)
面积之和
S2
S1+S2
32348.00
58405.00
1246.32
2301.60
611.40
1537.56
10954.00
22443.00
块段体积(立方米)
V 292025.0000 192759.0000 128770.6500 1879601.2500
溶洞裂隙率 (%) f 0.0000 5.0000 5.0000 5.0000
始数据
2493155.9000 计算结果
法-锥体(点状尖灭)块段体积、矿石量计算式
块段体积(立方 米)
溶洞裂隙率(%)
合 计
原始数据
断面相对面积误差≥40%时的块段体积、矿石量计算式
断面积(2)(平方 米)
面积乘积平方根值
S2
√S1×S2
11192.00
14883.6573
1981.00
1214.8436

2_矿山常用的传统的储量计算方法

2_矿山常用的传统的储量计算方法

V = L⋅a⋅m
⑤开采块段 法
= L ⋅ h ⋅ m'
Q =V ⋅D
方法名称
计算公式
V = S ⋅m = L⋅a⋅m
简要说明
Q:矿石储量 V:块段体积 S:块段矿体的面积 m:块段矿体平均真厚度 a:块段宽度 b:两等高线的水平平均间距 h:两等高线的高程差 D:矿石体重
④等高线法
= L ⋅ m ⋅ b2 + h2 Q =V ⋅D
方法名称
计算公式
简要说明
L:块段长度 h :块段垂直方向宽度 a:块段倾向面的宽度 m :块段矿体真厚度 m' :块段平均水平厚度 Q:矿石储量 V:块段体积 D:矿石体重
方法名称
计算公式
简要说明
用于面积差>40%时 Q:矿石储量 1 V:矿体体积 V = (S1 + S 2 + S1 ⋅ S 2 )L ②截锥公式法 3 S1、S2:断面上矿体的面积 Q =V ⋅D L:两断面之间的距离 D:矿石体重
方法名称
计算公式
简要说明
用于相邻剖面形状不相似, 面积相差悬殊情况下 Q:矿石储量 1 V = ( S 1 + S 2 + 4 Sm) L V:矿体体积 ③似柱体公式 6 S1、S2:断面上矿体的面积 法a Q =V ⋅D Sm:断面之间的断面积,由 内插法求得 L:两断面之间的距离 D:矿石体重
计算公式
简要说明
用于矿体呈楔形尖灭的情 况 Q:矿石储量 V:矿体体积 S:矿体底面积 L:矿体沿走向长度 D:矿石体重

⑤楔形公式法
1 V = S⋅L 2 Q =V ⋅D
方法名称
计算公式
简要说明
用于矿体呈圆锥形尖灭时 Q:矿石储量 V:矿体体积 S:矿体底面积 L:矿体沿走向长度 D:矿石体重
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体矿产资源/储量计算基本公式一、矿体厚度计算1、单工程矿体厚度a 、真厚度m :m =L(sinα·sinβ·cosγ±cosα·cos β)或 m =L(cosθsinβcos γ±sinθcosβ)式中:m ——矿体真厚度;L ——在工程中测量的矿体假厚度; β——矿体倾角;α——切穿矿体时工程的天顶角(工程与铅垂线的夹角);θ——工程切穿矿体时的倾角或坡度(工程与水平线的夹角)。

γ——工程方位角与矿体倾斜方向的夹角。

注:上列两式中,凡工程倾斜方向与矿体倾斜方向相反时,此处用“+”号,反之用“-”号。

b 、水平厚度m s : m s =m/sinβ c 、铅垂厚度m v : m v = m/cosβ2、平均厚度a 、算术平均法如果揭露矿体的勘探工程分布均匀、或者勘探工程分布不均匀,但其厚度变化无一定规律时,块段或矿体的平均厚度可用算术平均法计算:nm nm m m n∑=++=21cp M式中:M cp ——平均厚度;m 1、m 2……m n ——各工程控制的矿体厚度。

n ——控制工程数目。

b 、加权平均法当厚度变化稳定并有规律的情况下,如果勘探工程不均匀时,平均厚度应用各工程控制的长度对厚度进行加权平均:nm l l l l m l m l m nn n ∑=++++= 212211cpM式中L 1、L 2……L n ——各工程控制长度(相邻工程间距离各一半之和)。

二、平均品位的确定1、单项工程平均品位计算a 、算术平均法在坑道、探槽或钻孔中连续取样的情况下,若样品长度相等,或不相等,但参予计算的样品较多,且样品分割长度与品位间无一定的依存关系时,应尽可能的使用算术平均法计算平均品位:nn∑=+++=C C C C C n21cp式中:C cp ——平均品位;C 1、C 2……C n ——各样品的品位; n ——样品数目。

b 、长度对品位进行加权平均在坑道、探槽或钻孔中连续采样的情况下,若样品分割长度不等,且样品数量不多或分割长度与品位之间呈一定的依存关系时,应以取样长度对品位进行加权平均:∑∑=++++++=LCL L L L L C L C L C C 212211cp nnn 式中:C 1、C 2、……C n ——各个样品的品位;L 1、L 2、……L n ——各个样品的分割长度。

c 、取样点矿体厚度对品位进行加权平均在沿脉工程中,当样品的平均品位与矿体厚度有一定的依存关系,但取样间距相等时,应用取样点矿体厚度对品位进行加权平均:∑∑=++++++=mm m m m m m m nnn C C C C C 212211cp 式中:C 1、C 2、……C n ——各取样点的平均品位;m 1、m 2、……m n ——各取样点的矿体厚度。

d 、取样点的控制长度对品位进行加权平均在沿脉工程中,当矿体厚度变化很小,如果取样间距不等且品位变化较大时, 应用取样点的控制长度对品位进行加权(参照公式9-12): 式中:C 1、C 2、……C n ——各取样点的平均品位;L 1、L 2、……L n ——各取样点的矿体控制长度(相邻工程取样点间距各一半之和)。

e 、取样点控制面积对品位进行加权在沿脉工程中,如果取样间距不等,且品位与厚度有一定的依存关系时,则应 用取样点矿体控制长度及矿体厚度之乘积即控制面积对品位进行加权:∑∑=++++++=LL C L L L L C L C L C C 2211222111cp m m m m m m m m nn nn n 式中:C 1、C 2、……C n ——各取样点样品的平均品位;m 1、m 2、……m n ——各取样点的矿体厚度; L 1、L 2、……L n ——各取样点的矿体控制长度。

2.面积平均品位计算面积平均品位计算是由控制该面积的勘探工程平均品位求得。

当有下列情况之一时,均应用加权平均计算平均品位:(1)当矿体厚度与组分含量有相关关系,其相关系数r >0.5时; (2)当各工程中的矿体厚度相差悬殊或组分含量变化很大时; (3)当参加平均的工程数量较少,且组分含量变化甚大时。

∑∑=++++++=mm m m m m m m nnn C C C C C 212211cp 式中:C cp ——面积平均品位;C 1、C 2、……C n ——各工程的平均品位;m 1、m 2、……m n ——各工程截穿的矿体厚度。

在计算面积上的加权平均品位时,一般采用取样长度与品位加权。

有时也用影响面积进行加权,特别是当勘探工程分布不均匀时,但不能用影响长度进行加权。

3.体积或块段平均品位的计算体积或块段平均品位的计算,则是由构成该体积的面积平均品位求得,有时(如用地质块段法计算储量时)也可以不经过面积平均品位计算而直接由控制该体积的各单项工程平均品位求得,其计算方法及原则与面积平均品位相同。

无论面积或体积的平均品位计算,在使用加权平均法计算平均品位时,必须处于上述三种情况之一时,才比较精确,否则,加权平均法计算的误差将比算术平均法更大。

如果一个矿床内只有部份面积或块段属于上述情况之一。

需要加权平均,其余面积或块段仍用算术平均。

4.全矿体或全矿床的平均品位通常使用加权平均。

5.平均品位计算的一般步骤(1)按各勘探工程进行品位加权(或算术)平均;(2)按各面积进行品位加权(或算术)平均;(3)按各块段的体积进行品位加权(或算术)平均;(4)按矿体及全矿床的平均品位计算。

6.耐火粘土矿不计算平均品位。

7.特高品位处理在某些情况下,遇到一些样品品位高出一般样品品位很多倍时,称为特富样品。

这种样品多半是在分布不均匀或很不均匀的矿床中出现。

若将它和其他样品用同样的方法计算,可能引起平均品位的剧烈增高,特别是在样品较少的情况下,对平均品位的精确性有很大的影响,因此处理时必须慎重。

区分特富样品的标准,对于不同类型的矿床是不一样的,因为它是由所计算的组分在矿床上分布的性质来决定。

一般认为,当样品品位大于工程或块段平均品位的下表所列倍数时,应视为特高品位并加以处理:(1)重新检查采样质量,是否有人为的误差。

(2)根据需要和可能重新取样。

如第二次取样证明为非特高品位时,以第二次分析结果为准。

(3)进行现场观察,详细研究取样点是否符合于该地段组分含量的高度集中程度,再考虑其应用或废弃。

如确系巨大富矿巢,应参予平均品位计算;如系特富的小矿脉造成,此样品不参予平均品位计算。

(4)当重新取样已不可能,又没有任何资料证实特高品位具有代表性的情况下,此样品应当废弃。

(5)如查明确系特高品位样品,应以包括特富样品在内的工程或块段平均品位来代替特富样品的品位;也可用该矿床一般品位的高值代替;有时用特高品位样品两侧相邻样品的平均品位来代替。

然后再计算工程或块段的正常平均品位。

(6)如特高品位出现的频率很高,表现为矿床的地质特征之一时,可不以特高品位论处。

三、面积测定1.解析法即利用平面直角座标计算矿体或矿块的几何面积,这种计算方法适用于用水平投影图计算储量的矿床,也可用于垂直投影图计算储量的矿床。

计算面积的矿块折点座标是在矿体投影图上直接测量的。

用解析法求面积值的计算必须依据折点座标按逆时针或顺时针方向一个 接着一个的计算(如图Ⅸ-4)。

在运算过程中一律以代数和相加,最终取面积的绝对值。

计算公式如下:)]()()[(21S 1123321221n n y x y x y x y x y x y x -++-+-=将上式转变为行列式则得: ⎥⎥⎦⎤⎢⎢⎣⎡+++=1144333322221121S y x y x y x y x y x y x y x y x n n 依据上式,其运算过程举例如下表:S =21(603405-375897)=113754 在垂直投影图上用解析法计算面积,其折点座标取自该图的某一点的假定座标为基点,此基点最好设在图幅的左下角。

列入储量计算表格的面积值,其有效数一般采用整数值。

2、计算机自动处理利用MAPGIS 、AUTOCAD 等图形处理软件计算投影面积。

四、常用的公式:各种方法的储量计算,均应通过以下公式计算其矿石量和金属量:1.矿石量计算公式:Q =V ×D式中:Q ——矿石量V ——体积 D ——体重2.金属量或氧化物的储量计算公式:P=Q ×C式中:P ——金属量或氧化物量C ——金属品位或氧化物品位五、储量计算方法—地质块段法适用范围很广泛,但在下列矿床上应用时,各有不同程度的局限性;1.构造复杂,特别是因构造破坏而矿体局部重叠或缺失的情况较多,或成褶曲构造的矿床(舒缓波状或成开阔盆形构造者,例外);2.形态复杂的矿床,特别是筒状、囊状、巢状、等轴状、串珠状及其他形态复杂的矿床;3.斑岩铜(钼)矿床或构造复杂的网脉状矿床、分带构造明显的岩株状或柱状及伟晶岩矿床。

4.岩溶地形沉积矿床,古河道沉积矿床、岩溶矿床、一部分漂砾矿床、品位变化很附表Ⅸ-7(正页)储量计算综合表 单位⎪⎪⎭⎫⎝⎛矿石量:万吨金属量:吨第 页矿体号 矿石 种类 储量 品位(%)备 注B C B+C D B+C+D B C B+C D B+C+D 1234567891O111213合计合计总计合计大的砂矿。

5.矿体厚度大,或矿体厚度较大同时厚度变化亦大的矿床,因厚度大或厚度变化愈大,则换算厚度时的误差或然率也愈大,但勘探工程垂直于储量计算平面图、矿体厚度不需换算者例外。

本法的优缺点与剖面法适得其反。

此外,此法还有计算方法较简便,能确定出设计开采层的储量而不需另制图纸等优点。

地质块段法实际上是算术平均法的一种,其不同之处在于将矿体划分成数个块段,其划分的主要原则是:矿体的厚度变化、矿石的品级、矿体的产状变化、勘探研究程度、储量级别及工程种类、矿床的开采顺序。

根据矿体的产状和勘探工程,可选择不同性质的投影图,垂直投影与水平投影圈定矿体的面积,划分各个块段。

对于地质构造及勘探的如下特点,必需加以考虑:1.当矿体的品位与矿体厚度之间存在相关关系时,平均品位不应按照算术平均法计算,而应该以各工程切穿矿体的厚度按加权平均计算。

各种加权平均品位的计算的表格式见附表(Ⅸ-8)附表Ⅸ-8(封面)___________地质队___________分队___________矿区第______号各工程各面积加权平均品位计算表各块段(页数自________至________计________页)编表人_____________检查人_____________区段地质技术负责人_____________分队地质技术负责人_____________分队长_____________20____年_____月于_______各探矿工程加权平均品位计算表附表Ⅸ-8-1第页顺序号剖面号工程名称及编号样品号样品长度(m)样品品位(%)品位乘长度(5×6)平均品位(%)矿体号备注1 2 3 4 5 6 7 8 9 10注:1.第一栏之顺序号是按各计算单位顺序排列的。

相关文档
最新文档