7实验七 单相桥式半控整流电路接续流二极管作用

合集下载

单相半控桥式整流电路实验

单相半控桥式整流电路实验

单位: ***职业技术教育中心姓名: ***学科: 机电题目: 浅析单相桥式半控整流电路实验电话: ***********浅析单相桥式半控整流电路实验摘要:《电力电子技术》是一门实践性很强的课程,该文总结了本人在单相可控整流实验教学中的心得体会,对《电力电子技术》教学有一定的指导作用。

关键词:半控整流、晶闸管、触发电路、单结晶体管实验一、引言整流电路将交流电变为直流电, 是电力电子电路中出现最早的一种电路, 与人类生产生活实际联系密切, 应用十分广泛。

单相半波可控整流电路虽然具有电路简单、调整方便、使用元件少的优点, 但却有整流电压脉动大、输出整流电流小的缺点。

较常用的是半控桥式整流电路, 简称半控桥。

二、实验说明整流电路中, 采用晶闸管来控制导通的时间和路径。

作为一个传统电力电子技术实验, 采用相控方式。

单相半控桥式整流电路中有两个晶闸管控制导通时间, 另两个不可控的硅整流管作为限定电流的路径。

其直流输出电压平均值的表达式为Ud =0.9U2(1+cosα/2)为保证触发的晶闸管可靠导通, 触发脉冲信号应有一定的宽度。

一般晶闸管的导通时间为6μs,因此触发脉冲宽度应在此值之上, 最好在20~50μs之间。

本次实验使用单结晶体管触发电路。

三、实验器材1.示波器一台2.变压器(220V/12V)一台3.万用表一只4.触发电路板一块及电路元件5.整流主电路板一块及电路元件四、实验线路五、实验步骤1.万用表对晶闸管进行检测(1)电极判别万用表置R×1K挡, 将可控硅其中一端假定为控制极, 与黑表笔相接, 然后用红表笔分别接另外两个脚。

若有一次出现正向导通, 则假定的控制极是对的, 而导通那次红表笔所接的脚是阴极K, 另一极则是阳极A。

如果两次均不导通, 则说明假定的不是控制极, 可重新设定一端为控制极。

(2)好坏判别在正常情况下, 可控硅的GK是一个PN结, 具有PN结特性, 而GA和AK之间存在反向串联的PN结, 故其间电阻值均为无穷大。

单相桥式半控整流电路实验

单相桥式半控整流电路实验

实验二单相桥式半控整流电路实验一.实验目的1.研究单相桥式半控整流电路在电阻负载,电阻—电感性负载及反电势负载时的工作。

2.熟悉MCL—05组件锯齿波触发电路的工作。

3.进一步掌握双踪示波器在电力电子线路实验中的使用特点与方法。

二.实验线路及原理见图4-6。

三.实验内容1.单相桥式半控整流电路供电给电阻性负载。

2.单相桥式半控整流电路供电给电阻—电感性负载(带续流二极管)。

3.单相桥式半控整流电路供电给反电势负载(带续流二极管)。

4.单相桥式半控整流电路供电给电阻—电感性负载(断开续流二极管)。

四.实验设备及仪器1.MCL系列教学实验台主控制屏。

2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。

3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)4.MCL—05组件或MCL—05A组件5.MEL—03三相可调电阻器或自配滑线变阻器。

6.MEL—02三相芯式变压器。

7.二踪示波器8.万用电表五.注意事项1.实验前必须先了解晶闸管的电流额定值(本装置为5A),并根据额定值与整流电路形式计算出负载电阻的最小允许值。

2.为保护整流元件不受损坏,晶闸管整流电路的正确操作步骤(1)在主电路不接通电源时,调试触发电路,使之正常工作。

(2)在控制电压U ct =0时,接通主电源。

然后逐渐增大U ct ,使整流电路投入工作。

(3)断开整流电路时,应先把U ct 降到零,使整流电路无输出,然后切断总电源。

3.注意示波器的使用。

4.MCL —33(或MCL —53组件)的内部脉冲需断开。

5.接反电势负载时,需要注意直流电动机必须先加励磁六.实验方法1.将MCL —05(或MCL —05A ,以下均同)面板左上角的同步电压输入接MCL —18的U 、V 输出端(如您选购的产品为MCL —Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U 、V 输出端相连), “触发电路选择”拨向“锯齿波”。

典型习题解答

典型习题解答

1、在题图所示的单相半波整流电路中,R=10Q, L=50niH, E=100V, Rr=I Q , u=(100v2 S m 3t) V, &50Hz,当纯电阻负载,纯电感与电阻串联负载以及反电动势负载三种情况下,直流输出电压的平均值Ud 。

直流输出电流的平均值Ido 加在二极管上的反向峰值电压。

题图电阻性负载时输出波形如上图a 所示。

Ud = 2/rJo suwtd (3t) = 7t x 100V=45A454W= R = 10 =4.5 AX1OOV=141.4V题图感性负载时输出波形如上图b 所示。

二极管一导通,下面电压方程式成立。

L dt +Rj “ = V2 Usui 31当 31=0 时,id=0■Rt/则i d =Inisin ( 3 ) -rliiisinv ① e L①②③①②③客忑UZ (coL\其中叶7F 育妇"叫下J图b 中在三种时间常数时电流波形曲线P 角随%Q 的减小而增人。

负载为纯电感时,lim 幺一胁/(乩)=1lim Q W (常)=yR —>0/?—>0R4iu (、 . ------- (l-cos 曲)coL 即必=2兀4龙,时,,d =°,即二极管在此时刻才截止。

U d: ^^(1 一cos 曲>/(曲)=^^ = 9A_02於 Q coLcoLURV -U题图c 反电动势负载时输出波形如图c 所示。

设二极管导通时的角度为a 截止时的角度为则—[f 1(V2 x lOOsni cot - E\l(cot)= Ud=E+2/rJ 1 卜譽卜 gsA-cos%)= 106.8V±(U d -E )=6.SA K )U RV =E + 42U = 241AV2、晶闸管单相半波可控整流,设交流电压有效值为U ,频率为f,负载为电感性负载,延迟角为S 如图所示。

绘出输出电压叫的波形以及输出电流,d 的波形,并求出心及匚来。

单相半波可控整流电路阻感性负载加续流二极管

单相半波可控整流电路阻感性负载加续流二极管

晶闸管和续流二极管承受的最大正反向电压均为电 源电压的峰值。
U TM 2U 2

单相半波可控整流器的优点是电路简单,调整方 便,容易实现。但整流电压脉动大,每周期脉动 一次。变压器二次侧流过单方向的电流,存在直 流磁化、利用率低的问题,为使变压器不饱和, 必须增大铁心截面,这样就导致设备容量增大。
2.1.3 单相半波可控整流电路 (阻感性负载加续流二极管) 1、电路结构


电感性负载加 续流二极管的 电路如图所示。
图2-5
2、工作原理

1)在电源电压正半波,电压u2>0,晶闸管uAK>0。在 ωt=α处触发晶闸管,使其导通,形成负载电流id,负载上 有输出电压和电流,此间续流二极管VD承受反向阳极电 压而关断。 2)在电源电压负半波,电感感应电压使续流二极管VD导 通续流,此时电压u2 <0, u2通过续流二极管VD使晶闸 管承受反向电压而关断,负载两端的输出电压为续流二极 管的管压降,如果电感足够大,续流二极管一直导通到下 一周期晶闸管导通,使id连续,且id波形近似为一条直线。

4、基本数量关系
1)输出电压平均值Ud
1 Ud 2π



2U 2 sin tdt
2U 2 1 cos 1 cos 0.45U 2 π 2 2
2)输出电流平均值Id
Ud U 2 1 cos Id 0.45 R R 2
3)晶闸管的电流平均值IdT
I dT π - I 2π d

3、波形
30
0
图2-6
600
1200
900
图2-6
1500

电感性负载加续流二极管后,输出电压波形与电 阻性负载波形相同,续流二极管可起到提高输出 电压的作用。在大电感负载时负载电流波形连续 且近似一条直线,流过晶闸管的电流波形和流过 续流二极管的电流波形是矩形波。 对于电感性负载加续流二极管的单相半波可控整 流器移相范围与单相半波可控整流器电阻性负载 相同,为0~180º ,且有α+θ=180º 。

单相桥式半控整流电路实验报告

单相桥式半控整流电路实验报告

单相桥式半控整流电路实验报告单相桥式半控整流电路实验报告引言:在电力系统中,整流电路是一种常见的电力转换器,用于将交流电转换为直流电。

单相桥式半控整流电路是一种常用的整流电路,具有简单、高效、可靠等特点。

本实验旨在通过搭建和测试单相桥式半控整流电路,深入了解其原理和性能。

实验装置和原理:实验中使用的装置包括变压器、整流电路、电阻、电感、电容、开关管等。

变压器用于将交流电源的电压变换为适合整流电路的电压。

整流电路由四个二极管和一个可控硅组成,其中二极管用于实现整流功能,可控硅用于实现半控功能。

电阻、电感和电容用于实现电路的滤波功能,使输出电压更加稳定。

实验步骤和结果:1. 搭建电路:按照实验指导书的要求,将变压器、整流电路、电阻、电容等元件连接起来,并接上交流电源。

确保电路连接正确无误。

2. 测试输出电压:将示波器连接到输出端,调节可控硅触发角度,观察输出电压的变化。

记录不同触发角度下的输出电压值。

3. 测试输出电流:将电流表连接到输出端,调节可控硅触发角度,观察输出电流的变化。

记录不同触发角度下的输出电流值。

4. 测试电路的滤波效果:将示波器连接到滤波电容的两端,观察输出电压的波形变化。

记录不同滤波电容下的输出电压波形。

根据实验结果,我们可以得到以下结论:1. 随着可控硅触发角度的增大,输出电压呈线性增长。

这是因为可控硅的导通时间增加,导致整流电路的导通时间增加,从而输出电压增大。

2. 随着可控硅触发角度的增大,输出电流呈非线性增长。

这是因为可控硅的导通时间增加,导致整流电路的导通时间增加,从而输出电流增大。

但当可控硅触发角度接近90度时,输出电流基本保持不变,因为此时整流电路的导通时间接近整个交流周期,无法进一步增大。

3. 增加滤波电容可以有效减小输出电压的波动,提高输出电压的稳定性。

这是因为滤波电容能够储存电荷,在整流电路导通时间短暂中释放电荷,从而平滑输出电压。

实验总结:通过本次实验,我们深入了解了单相桥式半控整流电路的原理和性能。

单相桥式半控整流电路

单相桥式半控整流电路

五、实验报告
实验目的
单击此处添加正文。
原始记录数据
单击此处添加正文。
实验内容
单击此处添加正文。
绘制曲线
单击此处添加正文。
电路图
单击此处添加正文。
思考题:
简述续流二极管的作用及电感量大小对负载电流的影响?
u2
uo
u2
D4
D2
D1
D3
RL
uo
A
B
+
_
四、实验原理
四、实验原理
01
电阻负载单相半波可控整流电路及其波形
四、实验原理
电阻负载单相桥式半控整流电路的波形
01
五、实验步骤1——操作规范
.在主电路不接通电源时,调试触发电路,使之正常工作。 .在控制电压Uct=0时,接通主电源。然后逐渐增大Uct,使整流电路投入工作。 .断开整流电路时,应先把Uct降到零,使整流电路无输出,然后切断总电源。 MCL—33的内部脉冲需断开。 接反电势负载时,需要注意直流电动机必须先加励磁
四、实验步骤2——电阻性负载
调节偏移电压,使当Uct=0时,α=0°或90°; 调节给定电压Ug ,记录五组α, UL , Ui, 观测UL的波形 断开续流二极管,观测UL的波形
Ui
α
UL
1
2
3
4
5
四、实验步骤3——电阻电感性负载

α
UL
1
2
3
4
5
调节偏移电压,使当Uct=0时,α=0°或90°; 调节给定电压Ug ,记录五组α, UL , Ui, 观测UL的波形 断开续流二极管,观测UL的波形
T
RL
u2负半周时电流通路

(完整版)电力电子技术简答题

(完整版)电力电子技术简答题

2、什么叫逆变失败?逆变失败的原因是什么?答:晶闸管变流器在逆变运行时,一旦不能正常换相,外接的直流电源就会通过晶闸管电路形成短路,或者使变流器输出的平均电压和直流电动势变成顺向串联,形成很大的短路电流,这种情况叫逆变失败,或叫逆变颠覆。

造成逆变失败的原因主要有:(2分)触发电路工作不可靠。

例如脉冲丢失、脉冲延迟等。

晶闸管本身性能不好。

在应该阻断期间管子失去阻断能力,或在应该导通时不能导通。

交流电源故障。

例如突然断电、缺相或电压过低等。

估计不足,使换相的裕量时间小于晶闸管的换相的裕量角过小。

主要是对换相重叠角关断时间。

逆变失败后果会在逆变桥与逆变电源之间产生强大的环流,损坏开关器件(4分)防止逆变失败采用最小逆变角βmin防止逆变失败、晶闸管实现导通的条件是什么?关断的条件及如何实现关断?答:在晶闸管阳极——阴极之间加正向电压,门极也加正向电压,产生足够的门极电流Ig,则晶闸管导通,其导通过程叫触发。

关断条件:使流过晶闸管的阳极电流小于维持电流。

(3分)实现关断的方式:1>减小阳极电压。

2>增大负载阻抗。

3>加反向电压。

3、为什么半控桥的负载侧并有续流管的电路不能实现有源逆变?(5分)答:由逆变可知,晶闸管半控桥式电路及具有续流二极管电路,它们不能输出负电压Ud固不能实现有源逆变。

(5分)2、电压型逆变电路的主要特点是什么?(8分)(1) 直流侧为电压源或并联大电容,直流侧电压基本无脉动;(2分)(2) 输出电压为矩形波,输出电流因负载阻抗不同而不同;(3分)(3) 阻感负载时需提供无功。

为了给交流侧向直流侧反馈的无功提供通道,逆变桥各臂并联反馈二极管。

(3分)3、逆变电路必须具备什么条件才能进行逆变工作?答:逆变电路必须同时具备下述两个条件才能产生有源逆变:(1)变流电路直流侧应具有能提供逆变能量的直流电源电势Ed,其极性应与晶闸管的导电电流方向一致。

(3分)(2)变流电路输出的直流平均电压Ud的极性必须为负(相对于整流时定义的极性),以保证与直流电源电势Ed构成同极性相连,且满足Ud<Ed。

续流二极管作用及工作原理

续流二极管作用及工作原理

续流二极管作用及工作原理续流二极管都是并联在线圈的两端,线圈在通过电流时,会在其两端产生感应电动势。

当电流消失时,其感应电动势会对电路中的原件产生反向电压。

当反向电压高于原件的反向击穿电压时,会把原件如三极管,等造成损坏。

续流二极管并联在线两端,当流过线圈中的电流消失时,线圈产生的感应电动势通过二极管和线圈构成的回路做功而消耗掉。

丛而保护了电路中的其它原件的安全。

在电路中反向并联在继电器或电感线圈的两端,当电感线圈断电时其两端的电动势并不立即消失,此时残余电动势通过一个二极管释放,起这种作用的二极管叫续流二极管。

其实还是个二极管只不过它在这起续流作用而以,例如在继电器线圈两端反向接的那个二极管或单向可控硅两端反向接的也都是为什么要反向接个二极管呢?因为继电器的线圈是一个很大的电感,它能以磁场的形式储存电能,所以当他吸合的时候存储大量的磁场当控制继电器的三极管由导通变为截至时线圈断电但是线圈里有磁场这时将产生反向电动势电压可高达1000V以上很容易击穿推动三极管或其他电路元件,这是由于二极管的接入正好和反向电动势方向一致把反向电势通过续流二极管以电流的形式中和掉从而保护了其他电路元器件,因此它一般是开关速度比较快的二极管,象可控硅电路一样因可控硅一般当成一个触点开关来用,如果控制的是大电感负载一样会产生高压反电动势原理和继电器一样的。

在显示器上也用到一般用在消磁继电器的线圈上。

经常和储能元件一起使用,防止电压电流突变,提供通路。

电感可以经过它给负载提供持续的电流,以免负载电流突变,起到平滑电流的作用!在开关电源中,就能见到一个由二极管和电阻串连起来构成的的续流电路。

这个电路与变压器原边并联。

当开关管关断时,续流电路可以释放掉变压器线圈中储存的能量,防止感应电压过高,击穿开关管。

一般选择快速恢复二极管或者肖特基二极管就可以了,用来把线圈产生的反向电势释放掉!在图3中KR在VT导通时,上面电压为上正下负,电流方向由上向下。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档