单相桥式半控整流电路
3.2单相桥式半空整流电路

需要隔离。
3/131
2/131
3.1.4 单相桥式半控整流电路
■单相桥式半控整流电路的另一种接法
图3-4 (a)单相全控桥式电路
图2-11 单相桥式半控整流电路 的另一接法
◆这相样当可于以把省图去3-续5(流a)二中极的管VTV3D和RV,T续4换流为由二V极D3管和VVDD34和来V实D现4,。 ◆这种接法的两个晶闸管阴极电位不同,二者的触发电路
3.1.4 单相桥式半控整流电路
■与全控电路在电阻负载时的 工作情况相同。
■带电感负载
◆电路分析(先不考虑VDR )
u2
☞每一个导电回路由1个晶闸管 b) O
wt
和1个二极管构成。
ud
☞在uVD4向负载供电。
id
Id
☞u2过零变负时,因电感作用使
iiVVDTO41
Id
wt
电流连续,VT1继续导通,但因a点 电位低于b点电位,电流是由VT1和 VD2续流 ,ud=0。
iiVVDT3O2
i
O
VDR
O i2 O
p-
Id
Id
p-
Id
wt wt wt wt
☞在u2负半周,处触发触发VT3,
向VT1加反压使之关断,u2经VT3和
I
图3-11 单相桥式半控整流电路,有续流 二极管,阻感负载时的电路及波形
VD2向负载供电。
1/131
☞ u2 过 零 变 正 时 , VD4 导 通 ,
3.1.4 单相桥式半控整流电路
◆续流二极管VDR
☞若无续流二极管,则当突然增大至180或触发脉冲丢
失时,会发生一个晶闸管持续导通而两个二极管轮流导通 的情况,这使ud成为正弦半波,即半周期ud为正弦,另外 半周期ud为零,其平均值保持恒定,相当于单相半波不可 控整流电路时的波形,称为失控。 ☞有续流二极管VDR时,续流过程由VDR完成,避免了失 控的现象。 ☞续流期间导电回路中只有一个管压降,少了一个管压降, 有利于降低损耗。
单相半控桥式整流电路

一、实验基本内容1.实验名称:单相半控桥整流电路实验2.已知条件:a)工作电路原理图图1 工作原理图b)理想工作波形c)产生失控现象的原因及理论结果对于单相桥式半控整流电路,在正常运行的情况下,如果突然把触发脉冲切断或者将触发延迟角α增大到180°,电路将产生“失控”现象。
失控原因:正在导通的晶闸管的关断必须依赖后续晶闸管的开通,如果后续晶闸管不能导通,则已经导通的晶闸管就无法关断。
失控结果:失控后,一个晶闸管持续导通,两个二极管轮流导通,整流输出电压波形为正弦半波,即半周期为正弦波,另外半周期为零,输出电压平均值恒定。
d)各物理量基本数量关系(感性负载)Ⅰ.输出直流电压平均值U dU d=1π2παsinwtd(wt)=0.9U21+cosα2Ⅱ.负载电流平均值I d=U dR =0.45U2R1+cosα2Ⅲ.流过晶闸管的电流有效值I VTI VT=I VD=π−α2πI dⅣ.流过晶闸管的电流平均值I dVTI dVT=I dVD=π−α2πI dⅤ.变压器二次电流有效值I2I2=1πI d2d(ωt)π+αα=I d=2I VTⅥ.续流二极管电流有效值I VD RI VTR =απI dⅦ.续流二极管电流平均值I dVT RI dVTR =απI d3.实验目标:a)实现控制触发脉冲与晶闸管同步;b)观测单相半控桥在纯阻性负载时的移相控制特点,测量最大移相范围及输入-输出特性;c)观测单相半控桥在阻-感性负载时的输出状态,制造失控现象并讨论解决方案。
二、实验条件1.主要设备仪器a)电力电子及电气传动教学实验台i.型号MCL-Ⅲ型ii.生产厂商浙江大学求是公司b)Tektronix示波器i.型号TDS2012ii.主要参数带宽:100MHz最高采样频率:1GS/sc)数字万用表i.型号GDM-81452.小组人员分工u 2abVT1VT2VD2VD4Ru da)实验主要操作人辅助操作人电流表监控影像记录数据记录b)报告实验基本内容描述实验图片整理实验图片处理实验条件阐述实验过程叙述数据处理电路仿真讨论思考题讨论结果整理实验综合评估报告整合排版三、实验原理1.阻性负载如图所示为带阻性负载时单相桥式半控整流电路。
单相半控桥式整流电路

➢ 负载输出电压的平均值为
VT1 VT2
u1
u2
Rd
VD3 VD
4
ud
ωt ug
i2
ωt
ωt
阻感性负载单相桥式半控整流电路
假设负载中电感很大 工作原理-无触发〔0,α〕
u2
T i2
VT1 VT2
+
u1
u2
-
VD3 VD4
id L ud R
Thank you! Bye
单相可控整流电路的分析方法
• 1.可假设第一个触发脉冲前管子均关断。 • 2.确定触发脉冲时相应的SCR A-K两端电压是否正
偏,若是则导通; • 3.电压过零点时注意负载性质(阻性则电流同时
过零SCR关断;大电感性则电流量连续可继续导通 到另一组SCR触发导通时换相)。 • 4.负载端带续流二极管情况:输出电压不可能小 于零。
0α π
2π ωt
阻感性负载单相桥式半控整流电路
工作原理-有触发〔π +α,2 π 〕
T i2
VT1 VT2
-
u1
u2
u2
+
VHale Waihona Puke 3 VD4id L ud R
0α π ud
0α π id
0α π i2
2π ωt
• ωt= π+ α 时,给VT2加触发信号:
2π
ωt
• •
VT2、VD3导通 iVT2 = iVD3 = id =- i2
阻感性负载单相桥式半控整流电路
u2
O ud u
u1
wt
T i2 u2
VT1
第3章 整流电路3-2 单相桥式半控整流电路

• 器件:uVT3 = uVD4 = 0,iVT3 = iVD4 = 0
o
ωt
12:27
第3章 整流电路
6
3.1.4 单相桥式半控整流电路
VT3
VT1
带阻性负载时的工作情况
小结
• 输出电压平均值为
1π
������d
=
π
න
������
2������2sin(������������)������(������������൯
oα π
2π
ωt
• 无门极触发
ug
ug1
ug3
– VD4阴极电位低,导通,两端电压为0
o ud
ωt
– VT3经VD4和负载短接,两端电压为0
id o
ωt
– VT1承受正压u2,VD2承受反压–u2
α uVT1
• 负载:ud = 0,id = 0,i2 = 0
o
ωt
• 器件:uVT1 = –uVD2 = u2,iVT1 = iVD2 = 0 uVD2
第3章 整流电路
VD2
a b 2π
Id Id
VD4
id
L
ud R
ωt
ωt Id
ωt Id
ωt Id
ωt
ωt
ωt Id
ωt
13
3.1.4 单相桥式半控整流电路
带阻感负载时的工作情况—失控现象
实际中,当突然增大至180或触发脉冲丢
失时,会导致正在导通的晶闸管一直导通 ,两个二极管轮导通,此时触发信号对输
VT3
VT1
带续流二极管的阻感负载的工作情况
i2
T
+a
单相桥式半控整流电路

单相桥式半控整流电路一.单相桥式半控整流电路手册1.单相桥式半控整流电路原理图如图1-1所示图1-1二.工作原理单相桥式半控整流电路在电阻性负载时的工作情况与全控电路完全相同。
当在阻感性负载工作时,当电源电压u2在正半周期,控制角为a 时触发晶闸管VT1使其导通,电源经VT1和VD4向负载供电。
当u2过零变负时,由于电感的作用使VT1继续导通。
因a点电位低于b点电位,使得电流从VD4转移至VD2,电流不再流经变压器二次绕组,而是由VT1和VD2续流。
此阶段忽略器件的通态压降,则ud=0,不像全控电路那样出现ud为负的情况。
在u2负半周控制角为a时触发VT3使其导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。
u2过零变正时,VD4导通。
VT3和VD4续流,ud又为零。
此后重复以上过程。
若无续流二极管,则当a突然增大至180°或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使lid成为正弦半波,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,称为失控。
有续流二极管VD时,续流过程由VD完成,在续流阶段晶闸管关断,避免了某一个晶闸管持续导通从而导致失控的现象。
三.波形分析利用matlab仿真,能够直观地观察整流电路波形的变化(注:从上至下,第一个为电源电压波形,第二个为品闸管VT1两端电压波形,第三个为VT2两端电压波形,第四个为负载电流,第五个为负载两端电压波形,第六个为触发脉冲。
)1.单相桥式半控整流电路电阻性负载。
仿真原理图如图波形图如图3T-2(Q=30)RUEdeMrwO(apUy^muUtionCodeBohHelp比”—卜的❶•图3@■,M。
I图3-1-1图3-1-22.单相桥式半控整流电路阻感性负载仿真原理图如图3-2-1,波形图如图3-2-2(Q=30)RUEde M E OhpUrCugr«mitmuhtionAni>/aiiCedeBobH«lp3.单相桥式半控整流电路反电势负载仿真原理图如图3-3-1,波形图如图3-3-20dt4%图3-2-1 图3-2-2fita(dieMewOiaplayCUgMm^muiatcnAna^atCodebchHelp图3-3-1 :臼z-八1A图3-3-2四.电路参数晶闸管承受的最大正向电压和反向电压分别为七/2U 和&U 。
单相桥式半控整流电路的设计

2.2主要元器件的选择
1)晶闸管的选取
图2晶闸管的结构及符号
晶闸管是在晶体管基础上发展起来的一种大功率半导体器件。它的出现使半导体器件由弱电领域扩展到强电领域。晶闸管也像半导体二极管那样具有单向导电性,但它的导通时间是可控的,主要用于整流、逆变、调压及开关等方面。
晶闸管是具有三个PN结的四层结构, 其结构及符号如图2所示。由于单相桥式半控整流带电感性负载主电路主要元件是晶闸管,所以选取元件时主要考虑晶闸管的参数及其选取原则。
单结晶体管触发电路输出的脉冲电压的宽度,主要决定于电容器放大电的时间常数。R1或C太小,放电快,触发脉冲的宽度小,不能使晶闸管触发。因为晶闸管从阻断状态到完全导通需要一定时间,一般在10uf以下,所以触发脉冲的宽度必须在10uf以上。但是,若C值太大,由于充电时间常数(RP+R)C的最小值决定于最小控制角,则(RP+R)就必须很小,如上所述,这将引起单结晶体管的直通现象。如果R1太大,当单结晶体管尚未导通时,其漏电流就可能在R1上产生较大的电压,这个电压加在晶闸管的控制极上而导致误触发。一般规定,晶闸管的不触发电压为0.15~0.3V,所以上述电压不应大于这个数值。
3)晶闸管 提取路径:Simulink\SimpowerSystem\Power Electronics\Thyristor
(3)随着发射极电流ie不断上升,Ve不断下降,降到V点后,Ve不在降了,这点V称为谷点,与其对应的发射极电压和电流,称为谷点电压,Vv和谷点电流Iv。
(4)过了V点后,发射极与第一基极间半导体内的载流子达到了饱和状态,所以uc继续增加时,ie便缓慢地上升,显然Vv是维持单结晶体管导通的最小发射极电压,如果Ve<Vv,管子重新截止。
单相桥式半控整流电路实验报告

单相桥式半控整流电路实验报告单相桥式半控整流电路实验报告引言:在电力系统中,整流电路是一种常见的电力转换器,用于将交流电转换为直流电。
单相桥式半控整流电路是一种常用的整流电路,具有简单、高效、可靠等特点。
本实验旨在通过搭建和测试单相桥式半控整流电路,深入了解其原理和性能。
实验装置和原理:实验中使用的装置包括变压器、整流电路、电阻、电感、电容、开关管等。
变压器用于将交流电源的电压变换为适合整流电路的电压。
整流电路由四个二极管和一个可控硅组成,其中二极管用于实现整流功能,可控硅用于实现半控功能。
电阻、电感和电容用于实现电路的滤波功能,使输出电压更加稳定。
实验步骤和结果:1. 搭建电路:按照实验指导书的要求,将变压器、整流电路、电阻、电容等元件连接起来,并接上交流电源。
确保电路连接正确无误。
2. 测试输出电压:将示波器连接到输出端,调节可控硅触发角度,观察输出电压的变化。
记录不同触发角度下的输出电压值。
3. 测试输出电流:将电流表连接到输出端,调节可控硅触发角度,观察输出电流的变化。
记录不同触发角度下的输出电流值。
4. 测试电路的滤波效果:将示波器连接到滤波电容的两端,观察输出电压的波形变化。
记录不同滤波电容下的输出电压波形。
根据实验结果,我们可以得到以下结论:1. 随着可控硅触发角度的增大,输出电压呈线性增长。
这是因为可控硅的导通时间增加,导致整流电路的导通时间增加,从而输出电压增大。
2. 随着可控硅触发角度的增大,输出电流呈非线性增长。
这是因为可控硅的导通时间增加,导致整流电路的导通时间增加,从而输出电流增大。
但当可控硅触发角度接近90度时,输出电流基本保持不变,因为此时整流电路的导通时间接近整个交流周期,无法进一步增大。
3. 增加滤波电容可以有效减小输出电压的波动,提高输出电压的稳定性。
这是因为滤波电容能够储存电荷,在整流电路导通时间短暂中释放电荷,从而平滑输出电压。
实验总结:通过本次实验,我们深入了解了单相桥式半控整流电路的原理和性能。
单相桥式半控整流电路阻感负载移相范围

单相桥式半控整流电路是一种常见的电子电路,用于将交流电转换为直流电。
在许多电力电子应用中,这种电路被广泛应用。
在这篇文章中,我们将重点讨论单相桥式半控整流电路在阻感负载移相范围内的应用和特性。
1. 半控整流电路的基本原理单相桥式半控整流电路由四个功率晶闸管和四个二极管组成,其基本原理是通过控制晶闸管的导通角度来控制整流电路的输出电压和电流。
在半控整流电路中,晶闸管在每个交流周期内只进行一次导通,通过改变晶闸管的导通角,可以实现电压和电流的控制。
2. 阻感负载移相范围在实际应用中,半控整流电路通常用于驱动感性负载,如电感、变压器等。
在这种情况下,负载的电流和电压波形将出现移相现象,这是由于感性负载的特性所导致的。
在移相范围内,整流电路的性能和稳定性会发生改变,需要进行合适的设计和控制。
3. 移相现象的原因当桥式半控整流电路驱动感性负载时,感性负载将导致电流和电压波形的移相现象。
这是由于感性负载的特性,即在感性元件中通过的电流滞后于电压。
在整流电路中,感性负载的移相现象将导致输出电流的波形发生变化,对电路的稳定性和性能产生影响。
4. 整流电路的适应性在阻感负载移相范围内,整流电路需要具有良好的适应性,能够稳定地驱动感性负载并保持整流电流的稳定性。
这需要对整流电路进行合理的设计和参数选择,以确保在移相范围内仍能保持较好的性能和稳定性。
5. 控制策略在阻感负载移相范围内,需要采取合适的控制策略来实现整流电路对感性负载的稳定驱动。
常见的控制策略包括改变晶闸管的触发脉冲相位、调整晶闸管的触发角度等。
通过合理的控制策略,可以实现整流电路在移相范围内的稳定运行。
6. 参数设计在设计阻感负载移相范围内的半控整流电路时,需要进行合理的参数设计。
这包括选择合适的晶闸管类型和参数、确定适当的触发脉冲相位、优化感性负载参数等。
合理的参数设计可以提高整流电路的性能和稳定性。
7. 应用案例针对阻感负载移相范围内的半控整流电路,在实际应用中存在着大量的案例和经验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息工程学院电力电子学课程设计报告书题目: 单相桥式半控整流电路专业:班级:学号:学生姓名:指导教师:2012 年 5 月9 日信息工程学院课程设计任务书目录摘要 (3)设计要求 (5)方案选择 (5)元器件的选择 (7)晶闸管 (7)晶闸管的结构 (7)晶闸管的工作原理图 (7)晶闸管触发条件 (8)电路组成 (9)保护电路的设计 (10)过电压保护 (10)过电流保护 (11)结果分析 (12)电路原理图及其工作波形 (12)分析 (15)参数计算 (16)元件选择 (17)实验结果 (18)元器件清单 (18)实验结果 (21)心得与体会 (21)摘要随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。
但是晶杂管相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因素很低。
把逆变电路中的SPWM控制技术用于整流电路,就构成了PWM整流电路。
通过对PWM整流电路的适当控制,可以使其输入电流非常接近正弦波,且和输入电压同相位,功率因素近似为1。
这种整流电路称为高功率因素整流器,它具有广泛的应用前景。
由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。
故其学习方法与电子技术和控制技术有很多相似之处,因此要学好这门课就必须做好实验和课程设计,因而我们进行了此次课程设计。
又因为整流电路应用非常广泛,而锯齿波移相触发单相晶闸管半控整流电路又有利于夯实基础,故我们单结晶体管触发的单相晶闸管半控整流电路这一课题作为这一课程的课程设计的课题。
关键字:逆变电路单相晶闸管PWM 电力电子一、设计要求:1、电源电压:交流220V/50Hz2、输出电压范围:20V-50V3、最大输出电流:10A4、具有过流保护功能,动作电流:12A5、具有稳压功能6、电源效率不低于70%二、方案选择:方案1:单相桥式半控整流电路电路简图如下:图1.4对每个导电回路进行控制,相对于半控桥而言少了一个控制器件,用二极管代替,有利于降低损耗!如果不加续流二极管,当α突然增大至180°或出发脉冲丢失时,由于电感储能不经变压器二次绕组释放,只是消耗在负载电阻上,会发生一个晶闸管导通而两个二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud为正弦,另外半周期为ud为零,其平均值保持稳定,相当于单相半波不可控整流电路时的波形,即为失控。
所以必须加续流二极管,以免发生失控现象。
方案2:单相桥式全控整流电路电路简图如下:图1.5此电路对每个导电回路进行控制,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。
变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。
方案3:单相半波可控整流电路:电路简图如下:图1.6此电路只需要一个可控器件,电路比较简单,VT的a 移相范围为180 。
但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。
为使变压器铁心不饱和,需增大铁心截面积,增大了设备的容量。
实际上很少应用此种电路。
方案4:单相全波可控整流电路:电路简图如下:图1.7此电路变压器是带中心抽头的,结构比较复杂,只要用2个可控器件,单相全波只用2个晶闸管,比单相全控桥少2个,因此少了一个管压降,相应地,门极驱动电路也少2个,但是晶闸管承受的最大电压是单相全控桥的2倍。
不存在直流磁化的问题,适用于输出低压的场合作电流脉冲大(电阻性负载时),,且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。
而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。
相同的负载下流过晶闸管的平单相全控式整流电路其输出平均电压是半波整流电路2倍,在均电流减小一半;且功率因数提高了一半。
根据以上的比较分析因此选择的方案为单相全控桥式整流电路(负载为阻感性负载)。
综上所述,针对他们的优缺点,我们采用方案一,即单相桥式半控整流电路。
三、元器件的选择晶闸管晶管又称为晶体闸流管,可控硅整流(Silicon Controlled Rectifier-- SCR),开辟了电力电子技术迅速发展和广泛应用的崭新时代; 20世纪80年代以来,开始被性能更好的半控型器件取代。
能承受的电压和电流容量最高,工作可靠,以被广泛应用于相控整流、逆变、交流调压、直流变换等领域,成为功率低频(200Hz以下)装置中的主要器件。
晶闸管往往专指晶闸管的一种基本类型--普通晶闸管。
广义上讲,晶闸管还包括其许多类型的派生器件。
1)、晶闸管的结构晶闸管是大功率器件,工作时产生大量的热,因此必须安装散热器。
引出阳极A、阴极K和门极(或称栅极)G三个联接端。
内部结构:四层三个结如图2.22)、晶闸管的工作原理图晶闸管由四层半导体(P1、N1、P2、N2)组成,形成三个结J1(P1N1)、J2(N1P2)、J3(P2N2),并分别从P1、P2、N2引入A、G、K三个电极,如图1.2(左)所示。
由于具有扩散工艺,具有三结四层结构的普通晶闸管可以等效成如图1.2(右)所示的两个晶闸管T1(P1-N1-P2)和(N1-P2-N2)组成的等效电路。
图1.2 晶闸管的内部结构和等效电路晶闸管的驱动过程更多的是称为触发,产生注入门极的触发电流IG的电路称为门极触发电路。
也正是由于能过门极只能控制其开通,不能控制其关断,晶闸管才被称为半控型器件。
其他几种可能导通的情况:①阳极电压升高至相当高的数值造成雪崩效应②阳极电压上升率du/dt过高③结温较高④光直接照射硅片,即光触发:光控晶闸管只有门极触发是最精确、迅速而可靠的控制手段。
3)晶闸管的门极触发条件(1): 晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通;(2):晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通;(3):晶闸管一旦导通门极就失去控制作用;(4):要使晶闸管关断,只能使其电流小到零一下。
晶闸管的驱动过程更多的是称为触发,产生注入门极的触发电流IG的电路称为门极触发电路。
也正是由于能过门极只能控制其开通,不能控制其关断,晶闸管才被称为半控型器件。
只有门极触发是最精确、迅速而可靠的控制手段。
可关断晶闸管可关断晶闸管简称GTO。
可关断晶闸管的结构GTO的内部结构与普通晶闸管相同,都是PNPN四层结构,外部引出阳极A、阴极K和门极G如图1.3。
和普通晶闸管不同,GTO是一种多元胞的功率集成器件,内部包含十个甚至数百个共阳极的小GTO元胞,这些GTO元胞的阴极和门极在器件内部并联在一起,使器件的功率可以到达相当大的数值。
单相半控桥式整流电路带大电感负载时的工作特点是:晶闸管在触发时刻换流,二极管则在电源电压过零时换流;由于自然续流的作用,整流输出电压ud的波形与半控桥式整流电路带电阻性负载时相同,α的移相范围为0~180°,ud 、Id的计算公式和半控桥带电阻性负载时相同;流过晶闸管和二极管的电流都是宽度为180°的方波且与α无关,交流侧电流为正、负对称的交变方波。
单相半控桥式整流电路带大电感性负载时,虽本身有自然续流的能力,似乎不需要另接续流二极管。
但在实际运行中,当突然把控制角α增大到180°以上或突然切断触发电路时,会发生正在导通的晶闸管一直导通,两个二极管轮流导通的现象。
此时触发信号对输出电压失去了控制作用,我们把这种现象称为失控。
失控现象在使用中是不允许的,为消除失控,带电感性负载的半控桥式整流电路还需另接续流二极管VD。
电路组成单相半控桥式整流电路由一组共阴极接法的单相半波可控整流电路和一组共阳极接法的单相半波可控整流电路串联而成。
因此,整流输出电压的平均值Ud为单相半波整流时的两倍,在大电感负载时为式中U2l为变压器次级线电压有效值。
与单相半波电路相比,若要求输出电压相同,则单相桥式整流电路对晶闸管最大正反向电压的要求降低一半;若输入电压相同,则输出电压Ud比单相半波可控整流时高一倍。
另外,由于共阴极组在电源电压正半周时导通,流经变压器次级绕组的电流为正;共阳极组在电压负半周时导通,流经变压器次级绕组的电流为负,因此在一个周期中变压器绕组不但提高了导电时间,而且也无直流流过,克服了单相半波可控整流电路存在直流磁化和变压器利用率低的缺点。
为分析方便,把一个周期分为6段,每段相隔60°。
在第(1)段期间,a相电位ua最高,共阴极组的V1被触发导通,b相电位ub最低,共阳极组的V6被触发导通,电流路径为ua→V1→R(L)→V6→ub。
变压器a、b两相工作,共阴极组的a相电流ia为正,共阳极组的b相电流ib为负,输出电压为线电压ud=uab。
在第(2)段期间,ua仍最高,V1继续导通,而uc变为最负,电源过自然换流点时触发V2导通,c相电压低于b相电压,V6因承受反压而关断,电流即从b相换到c相。
这时电流路径为ua→V1→R(L)→V2→uc。
变压器a、c两相工作,共阴极组的a相电流i为正,共阳极组的c相电流ic为负,输出电压为线电压ud=uac在第(3)段期间,ub为最高,共阴极组在经过自然换流点时触发V3导通,由于b相电压高于a相电压,V1管因承受反压而关断,电流从a相换相到b 相。
V2因为uc仍为最低而继续导通。
这时电流路径为ub→V3→R(L)→V2→uc。
变压器b、c两相工作,共阴极组的b相电流ib为正,共阳极组的c相电流ic 为负,输出电压为线电压ud=ubc。
以下各段依此类推,可得到在第(4)段时输出电压ud=uba;在第(5)段时输出电压ud=uca;在第(6)段时输出电压ud =ucb。
以后则重复上述过程。
由以上分析可知,单相半控桥式整流电路晶闸管的导通换流顺序是:V6→V1→V2→V3→V4→V5→V6。
电路输出电压ud的波形如图2-13(d)所示。
四、保护电路的设计保护电路的设计在电力电子电路中,除了电力电子器件参数选择合适、驱动电路设计采用合适的过电压、过电流、du/dt保护和di/dt 保护也是必要的。
4.1 过电压保护电力电子装置中可能发生的过电压分为外因过电压和内应过电压两类。
外因过电压主要来自雷击和系统中的操作过程等外部原因,包括:(1)操作过电压:由分闸、合闸等开关操作引起的过电压,快速直流开关的切断等经常性操作中的电磁过程引起的过压。