光学_郭永康_3.波函数的复数表示复振幅

合集下载

光学_郭永康_3.狭缝和矩孔的夫琅禾费衍射

光学_郭永康_3.狭缝和矩孔的夫琅禾费衍射

~ ~ E ( P) A0 sin c P点振幅 A( P) A0 sin c
P点光强
~ ~ I ( P) E ( P) E ( P) I 0
sin 2
2
I 0 sin c 2
3. 光强分布公式的讨论
I ( P) I 0
sin 2
当 0 时, 0, sin / 1中央明条纹中心 O 处的光强: I 0 N 2 A12 I sin 2 2 ) 则屏幕上 P 点的光强 I A 为: ( I0 给出单缝衍射图样相对光强分布情况
R
l A0

a sin

A Ai
N i 1
o
R
N
A p
Ai
C

L
N
NA1 R N
将AB波面等分成N份,相邻两波面的 光程差: a sin / N 相位差: (2 / )
N N N A 2 R sin( ) NA1 sin( ) /( ) 2 2 2 N a sin 引入: u A NA1 sin u / u 2
~ ~ E ( P ) abC sin csinc a a x sin 1 f b b y sin 2 f
I P I 0 sin c 2 sin c 2
1. 每一方向的相对光强分布相当于等于 分 析 此方向孔径宽度的单缝衍射图样; 2. 能量主要分布于中心衍射斑,随距中 心点距离增大而迅速减小; 3. 衍射图样被两族 x, y 轴平行的消光暗线网所分割。 傍轴近似下角度表示
思考:若将缝向上平 移 如图 衍射花样怎 么分布?
思考
r0
x

波函数的复数表示

波函数的复数表示

§3.3 波函数的复数表示 复振幅一.波函数的复数表示简谐函数和复指数函数之间存在着对应关系,可用复指数函数来表示简谐函数。

不论复指数函数的实部或虚部都可以用来描写简谐波,习惯上都选用其实部,即余弦函数 平面波波函数为图3.3-1 复数的图示)cos(0),(ϕω+⋅−r k t =A t p E)]}(exp[{0ϕω+⋅−−=r k t i A R e 平面波复数表示:)}(exp{),(0ϕω+⋅−−=r k t i A t p E球面波复数表示:0(,)()exp{()}E p t A r i t k r ωϕ=−−⋅+注意:1.复数表示是对应关系,不是相等关系。

2.作简谐波函数的线性运算(加、减、乘常数、微分、积分)时,可用复指数函数来表示波函数,并通过复数运算后,从计算的最后结果取相应的实部即为所求。

二.复振幅复指数函数表示波函数t i i e Ae t p E ωϕ−−⋅⋅=)(0),(r k 某点在 t 时刻的振动完全由该点的振幅和初相所决定。

平面波场中任一点 P 的复振幅0()()()()()i k r i p Ep A p e A p e φφ•−−== 沿x 方向传播的一维平面波的复振幅为)(0)(~φ−=kz i Ae p E球面波的复振幅为0()()i kr A E p e rφ±−= 强调:相位因子的表示会聚与发散±高斯波束的复振幅为)]())(2(exp[))(exp()()(~0222220z i z r y x z ik z w y x t w A p E φ+++−⋅+−=小结:复振幅是一个复量,其模量表示波场中某点的振幅,其辐角表示该点初相位的负值。

复振幅包含了我们所关心的振幅和相位两个空间分布,所以可以用它来描写单色光波场。

三.共轭波设某一波的复振幅为 r k ⋅=i e p A p E )()(~复共轭函数 ()()i Ep A p e −⋅= k r ——共轭波 意义:共轭波与原波是互为共轭的,它们的实振幅空间分布相同,只是其波矢量由k 变为-k ,即传播方向反转。

光学课件:2a波动、复振幅的基本概念

光学课件:2a波动、复振幅的基本概念
在考察单色简谐波的波函数时,各场点复函数中 的时间相因子 exp(it) 都是相同的,故可以将它分离 出来。 故复波函数 U (P, t) A(P) ei(P) eit
复振幅 U (P) A(P) ei(P)
引入复振幅的意义:
考虑单色波迭加时,exp(it) 相同,故可以提出来;
复波函数满足与波函数相同的波动方程,复、实描述是等价的; 复振幅运算简单; 由复振幅容易得到实波函数。
U *(P) A(P)e-i(P)
作业:
P147~148:第1、2、3、4、5题
平面波的复振幅
振幅 A(P) A(常数)
判断依据: 1、振幅为常数; 2、具有线性位相因子
位相 (P) k r 0 kx x ky y kz z 0 复振幅 U (P) Aexp[i(k r 0 )]
沿z轴正向传播的平面波的复振幅
U (P) Aexp[i(kz 0 )]
沿z轴负向传播的平面波的复振幅
1.2 定态光波的概念
定态波:光源持续且稳定地发光,波场中各点都以同一 频率作稳定的振荡。
定态波场的性质: 1)空间各点的扰动是同频率的简谐振动。 2)波场中各点扰动的振幅不随时间变化,
在空间形成一个稳定的振幅分布。 频率单一,振幅稳定。
满足上述要求的光波是无限长的单色波列。 当波列的持续时间比其扰动周期 长得多时,即可将其当作无限长波列处理。
(1 ,2 ,3 )
平面波矢的数学表述
波矢 k k(cosi cos j cos k ) 0 方向余弦 k k(sin1i sin2 j sin3k ) 0 余角表示
位相 (x, y, z) k(x sin1 y sin2 z sin3) 0
定态球面波
A(P) a r

PPT定态光波及其复振幅描述

PPT定态光波及其复振幅描述
k ( x cos y cos z cos ) 0
i[ ( P )]
k x x k y y k z z 0
特点:振幅是常数,相位因子是坐标的线性函数
2) 球面波的复振幅表达式
a i[ ( P )] U ( P) e r
( P) k r 0 kr 0
y
S E H E
O
z
H
x
S
•对光波的描述:
波线
波面 (等相面) 球面波 --同心光束 点光源 平面波 --平行光
现代光学的思想就是要在复杂的波场中分 离出简单的成分—球面波和平面波。
3、定态光波
1)定态光波定义: 空间各点扰动均为同频率的简谐振动, (频率与振源相同) 空间各点振动的振幅不随时间变化。 在空间形成一个稳定的振幅分布。
--定态光波的复振幅
2)引入定态光波复振幅的意义: 为了运算的方便 3)注意: (1)两种关系式只是对应关系, 不是相等关系 (2)复振幅只用于运算 (3)对应成相应的简谐式后, 再讨论其物理意义
10、平面波和球面波的复振幅表达式
1)平面波的复振幅表达式
U ( P) Ae ( P) k r 0
2 2 2
r ( x x0 ) ( y y 0 ) ( z z 0 )
振在波源上,形式会简单些。
3)复振幅与波形具有 一一对应的关系
已知波形可以写出其 复振幅表达式, 给出复振幅表达式能够 画出具体波形
11、光强度的复振幅表示式
A( P) cos[t (kr 0 )] A( P) cos[t ( P)]
5、平面波的具体表达式
1)选坐标原点为计算起点 X

光学_郭永康_解答

光学_郭永康_解答

光学_郭永康_解答摘要:本文将解答关于光学的一些常见问题,包括光的特性、光的传播、光的折射等内容。

通过对这些问题的解答,将帮助读者更好地理解光学领域的知识。

1. 光的特性光是一种电磁波,具有波动性和粒子性。

其波动性表现在光可以产生干涉、衍射等现象,而其粒子性表现在光具有能量和动量。

光的波长决定了其颜色,不同波长的光被人眼感知为不同的颜色,我们将其称为光谱。

光谱包括可见光谱、紫外线、红外线等等。

2. 光的传播光的传播遵循直线传播原理,也就是说光在真空中直线传播,但在其他介质中会发生折射。

光线从一种介质进入另一种介质时会发生折射现象,其折射角和入射角之间遵循折射定律。

折射现象是为什么水中的物体看起来“折断”了的原因。

除了折射,光还可以发生反射。

反射分为漫反射和镜面反射,漫反射是指光在粗糙表面上发生的反射,而镜面反射则是光在光滑表面上发生的反射。

3. 光的折射光的折射现象是由光从一种介质进入另一种介质时发生的。

当光从光疏介质进入光密介质时,折射角大于入射角;当光从光密介质进入光疏介质时,折射角小于入射角。

这是因为光在不同介质中传播速度不同,根据斯涅尔定律我们可以通过折射角和入射角的正弦比来计算出两种介质的折射率之比。

4. 光的干涉光的干涉是光的波动性在特定条件下的表现。

干涉分为相长干涉和相消干涉两种情况。

相长干涉指的是两束相干光叠加时,光强增强的现象;相消干涉则是两束相干光叠加时,光强减弱或完全消失的现象。

干涉现象在我们的日常生活中有很多应用,比如光的薄膜干涉可以用于制作反光镜、彩色滤光片等光学元件。

5. 光的衍射光的衍射是光通过一个物体或者一个缝隙时发生的现象。

衍射是由于光波传播过程中被物体或缝隙遮挡而发生的波前的弯曲或扩散现象。

比如光通过一个狭缝时会发生单缝衍射,这种现象也是夫琅禾费衍射的基础。

光的衍射也是我们在实验室和工程中经常遇到的现象,比如在天文学中,利用衍射现象可以观测到遥远的星系和行星。

光波场的复振幅描述 PPT课件

光波场的复振幅描述 PPT课件

球面波的等位相面: kr=c 为球面
源点S
z
0 x k: 传播矢量
§1-1光波场的复振幅描述
会聚球面波
会聚球面波 U (P) a0 e jkr r
(P(x,y,z)) y (r
k
会聚点S z 0 x
§1-1光波场的复振幅描述
球面波 : 空间分布
P点处的复振幅:U (P) a0 e jkr r
练习 3
对于传播方向与z轴夹角为-30的情况,再 解上题.
光波场的复振幅描区分开
空间比时间更具体,更直观,是有形的 空间频率的单位: cm-1, mm-1, 周/mm, 条数/mm 等
空间频率的正负:表示传播方向与x(或y)轴的夹角小于或大于90 在给定的座标系, 任意单色平面波有一组对应的fx和fy, 它仅决定于光波的波长和传播方向.
U (P) U (x, y)
a0 z
exp(
jk z)
exp
j
k 2z
(x x0 )2
(y
y0 )2
对给定平面 是常量
随x, y变化的二次位相因子 球面波特征位相
已将球面波中心取在 z = 0的平面, 且光波沿 z 轴正方向传播. 如果 z > 0, 上式代表从 S 发散的球面波. 如果 z < 0, 上式代表向 S 会聚的球面波.
sinq l
光波场的复振幅描述
平面波的空间频率-信息光学中最基本的概念
练习 2
振幅为1, 波长为l 5nm 的单色平面波,
传播方向在xz平面内, 并与z轴夹角为30. 写出其复振幅表达siln式q , 并求出z = z1平面 上复振幅在x方向和y方向的空间周期Tx 和Ty, 以及相应的空间频率 fx 和 fy.

高等物理光学课件平面波资料.

高等物理光学课件平面波资料.
exp jkx cos y cos
信息科学与工程学院
3、球面波的数学描述、球面波的近轴近似表示
波动方程: 2 r 2
rU
1 v2
2 t 2
rU 0
单色球面波:U r, t
A exp
r
jkr 0 exp
j 2v t
其中,+相应于发散球面波,-相应于会聚球面波。在t一定的时候,位 相为常数的面为一个球面。 球面波与平面波都是波动方程的解,一般的光波可以是球面波与平面 波的叠加。
1
2
z z
信息科学与工程学院
3、球面波的数学描述、球面波的近轴近似表示
我们在计算直角坐标系中的球面波时,通常选择近轴近似,不仅仅是因 为可以方便计算,而且在直角坐标系球面波公式中所表示的等相位面是用抛 物面代替了球面,显然也只能在近轴区域才能成立。
近轴条件: z x x0,z y y0
r
z 1
1
x
x0
2
1
y
y0
2
2 z 2 z
U x, y, z
A0
exp z
jkz
exp
j
k 2z
x x0 2
y
y0 2
信息科学与工程学院
4、柱面波的数学描述
在柱坐标下的波动方程为: 1 r
r
r
U r
1 v2
2U t 2
经过计算其解为: U r,t A exp ikr ikt
expexp信息科学与工程学院3球面波的数学描述球面波的近轴近似表示我们在计算直角坐标系中的球面波时通常选择近轴近似不仅仅是因为可以方便计算而且在直角坐标系球面波公式中所表示的等相位面是用抛物面代替了球面显然也只能在近轴区域才能பைடு நூலகம்立

光学教程详细标准答案郭永康

光学教程详细标准答案郭永康

1.4 在充满水地容器底部放一平面反射镜,人在水面上正视镜子看自己地像.若眼睛高出水面h 1=5.00cm ,水深h 2=8.00cm ,求眼睛地像和眼睛相距多远?像地大小如何?设水地折射率n =1.33.解:如图,人见水中镜离自己地距离为nh h h h 2121'+=+ 所以眼睛地像和眼睛地距离为)(03.22)33.100.800.5(2)(221cm n h h =+=+1.8 一个顶角为60º之冕玻璃棱镜,对钠黄光地折射率为1.62.已知光线在棱镜第一面上地入射角i 1=70º,求:(1)在第一面上地偏向角;(2)在第二面上地偏向角;(3)总地偏向角.解:由图可知'2835)70sin 62.11(sin )sin 1(sin 001112===--i n i00012'603528'2432'i i α=-=-=110021'sin (sin ')sin (1.62sin 2432')4227'i n i --===A习题图1.8习题图1.4因此,在第一、第二面上地偏向角分别为011202213432'''1755'i i i i δδ=-==-=总偏向角为0125217'δδδ=+=1.11 一根长玻璃棒地折射率为 1.6350,将它地左端研磨并抛光成半径为2.50cm 地凸球面.在空气中有一小物体位于光轴上距球面顶点9.0cm 处.求: (1)球面地物方焦距和像方焦距;(2)光焦度;(3)像距; (4)横向放大率;(5)用作图法求像. 解:已知1,' 1.6350, 2.50,9.0n n r cm s cm ====- (1) 2.503.94' 1.63501n f r n n =-=-=---(㎝) ' 1.6350 2.50' 6.44' 1.63501n f r n n ⨯===--(㎝)(2)2' 1.635025.4(D)' 6.4410n f -Φ===⨯(3)由'''n n n n s s r --=得 ' 1.653011''/() 1.6530/()11.402.509.0n n n s n r s --=+=+=-(㎝)(4)由'11.400.777' 1.6350(9.0)ns n s β===-⨯-,是一倒立地缩小地实像.’(5)作图,如图.1.12 将一根40cm 长地透明棒地一端切平,另一端磨成半径为12cm 地半球面.有一小物体沿棒轴嵌在棒内,并与棒地两端等距.当从棒地平端看去时,物地表观深度为12.5cm.问从半球端看去时,它地表观深度为多少?解:已知1120,'12.5s cm s cm ==,由平面折射11'12.5s s cm n==, 得 1.60n =而对于球面,220,12s cm r cm =-=-,由球面折射公式2211'n n s s r--= 代入数据,得2'33.33s =-(㎝)表观深度为33.33cm1.19 一双凸透镜地球面半径为20cm ,透镜材抖地折射率为1.5,一面浸在水中,另一面置于空气中.试求透镜地物方焦距和像方焦距.解:由 )'/(''2010r n n r n n n f -+-=及)'/(210r n n r n n n f -+--= 并将120420,20, 1.5,,'13r cm r cm n n n ==-===代入,得1.54/31 1.5'1/()302020f cm --=+=-4 1.54/31 1.5/()4032020f cm --=-+=--1.21 两薄透镜地焦距为f 1’=5.0cm ,f 2’=10.0cm ,相距5.0cm ,若一高为2.50cm 地物体位于第一透镜前15.0cm 处,求最后所成像地位置和大小,并作出成像地光路图.解:首先物体经L 1成像.已知1115,' 5.0s cm f cm =-=,由由薄透镜地成像公式111''s s f -=及's sβ= 得11111''7.5'f s s cm f s ==+ 1111'7.515 , '1524s y s β===-=--2.2 两个薄透镜L 1和L 2地口径分别是6cm 和4cm ,它们地焦距是f 1’=9cm 和f 2’=5cm ,相距5cm ,在L 1和L 2之间距离L 2为2cm 处放入一个带有直径为6cm 地小孔地光阑AB .物点位于L 1前方12cm 处,求孔径光阑,入射光瞳和出射光瞳.解:(1).求孔径光阑:(a)L 1对其前面地光学系统成像是本身,对物点地张角为130.2512tgu == (b )光阑AB 对L 1成像为A 'B '.已知13,''9,3s cm f f cm y cm =-===,由高斯公式111''s s f -= 及''s y y s=,得 '(3)9' 4.5'(3)9f s s cm f s -⨯===-+-+ ' 4.5'3 4.53s y y cm s -=⋅=⨯=- A ’B ’对物点地张角为习题图1.21L2 4.50.2712 4.5tgu ==+(c )L 2对L 1成像为L 2’已知15,''9,2s cm f f cm y cm =-===,由高斯公式111''s s f -= 及''s y y s=,得 '(5)9'11.25'(5)9f s s cm f s -⨯===-+-+ '11.25'2 4.55s y y cm s -=⋅=⨯=- L 2’对物点地张角为3 4.50.191211.25tgu ==+比较u 1、u 2及u 3可知,L 2’对物点地张角u 3最小,故透镜L 2为孔径光阑. (2). 求入瞳:孔径光阑L 2对其前面地光学系统成像为入瞳,所以L 2’为入射光瞳,位于L 1右侧11.25cm 处,口径为9cm.(3).求出瞳:L 2孔径光阑对其后面地光学系统成像为出瞳.所以透镜L 2 又为出瞳.2.5 用一正常调节地开普勒望远镜观察远处地星,设望远镜地物镜和目镜都可看作是单个薄透镜,物镜焦距f 0’=80mm ,相对孔径D/ f 0’=0.5,目镜焦距f e ’=10mm ,位于物镜后焦面上地分划板直径D=10mm ,物镜为孔径光阑,分划板通光孔为视场光阑.试求: (1)出瞳地位置和大小; (2)视角放大率;(3)入窗和出窗地位置;(4)物方视场角及像方视场角地大小.解:(1)求出瞳:物镜为孔径光阑, 物镜对目镜所成地像为出瞳. 已知90,''10e s mm f f mm =-==,由高斯公式111''s s f -=,得 '10(90)'11.25'10(90)f s s mm f s ⨯-===++- '11.252'240590s D y y mm s ==⋅=⨯=- 即 出瞳位于目镜右侧11.25mm 处,口径为5mm.(2)求视角放大率:由望远镜视角放大率地定义'8'o e f M f =-=-倍 (3)求入窗和出窗:分划板通光孔为视场光阑,入窗为视场光阑对物镜所成之像. 已知80,''80o s mm f f mm =-==,由高斯公式111''s s f -=,得 '80(80)''80(80)f s s f s ⨯-==→∞++- 即入窗位于物方无限远.而出窗为视场光阑对目镜所成之像,由于视场光阑也处于目镜地物方焦平面上,故出窗位于像方无限远.(4)求物方视场角及像方视场角地大小:(如图所示)物方视场角ω0为入窗半径对入瞳中心地张角,其物理意义是能进入系统地主光线与光轴地最大夹角.它又等于F.S 地半径对入瞳中心地张角,即050.062580tg ω==故,物方视场角为00003.576, 27.15ωω≈≈由于像方视场角ω0’与物方视场角ω0 共轭,入瞳中心与出瞳中心共轭,故其像方视场角ω0’如图所示.又由于F.S.位于目镜地物方焦平面上,故由图中关系可知,它又等于F.S.半径对目镜中心地张角,即05'0.510tg ω== 故,像方视场角为0000'26.565, 2'53.13ωω≈≈3.4 在玻璃中z 方向上传播地单色平面波地波函数为习题图2.5F.S.出瞳目镜 物镜A.S 入瞳⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-⨯-=)65.0(10exp 10),(152c z t i t p E π式中c 为真空中光速,时间以s 为单位,电场强度以v/m 为单位,距离以m 为单位.试求(1)光波地振幅和时间频率;(2)玻璃地折射率;(3) z 方向上地空间颇率;(4)在xz 面内与x 轴成45°角方向上地空间频率.解:将⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-⨯-=)65.0(10exp 10),(152c z t i t p E π与(,)exp ()z E p t A i t c ω⎧⎫⎡⎤=--⎨⎬⎢⎥⎣⎦⎩⎭比较, 可得(1)210(V/m),A =151410 = =510(Hz)22ωπνππ⨯=⨯(2) 1.54v 0.65c cn c===(3)146-18011.545102.5610(m )310nn f c νλλ⨯⨯=====⨯⨯ (4)66-1cos 45 2.5610 1.8610(m )o x f f ==⨯=⨯3.6 一平面波函数地复振幅为⎪⎪⎭⎫⎝⎛++=z k y k x k i A p E 14314214exp )(~试求波地传播方向. 解:因为cos cos cos x y z k k k k k k αβγ======,则该波地方向余弦为cos cos cos αβγ===3.10 如习题图 3.10,已知,一束自然光入射到折射率34=n 地水面上时反射光是线偏振地,一块折射率23=n 地平面玻璃浸在水面下,若要使玻璃表面地反射光O'N'也是线偏振地,则玻璃表面与水平面夹角φ应为多大?解:如图当i 为布儒斯特角时,190i i =-,并由折射定律,可得111122sin sin cos n n i i i n n ==, 故 11011213656'1.33n i tg tg n --=== 因为i 2也是布儒斯特角, 故110322 1.54826'1.33n i tg tg n --=== 由图中几何关系可得 0211130'i i ϕ=-=3.13 计算光波垂直入射到折射率为n= 1.33地深水表面地反射光和入射光强度之比.解:由菲涅耳公式,当光波垂直入射时, 有2212211() n n IR R n n I -==+及 将121, 1.33n n ==代入可得反射光和入射光强度之比22221121 1.331()()0.022%1.331I n n I n n --====++3.15 一光学系统由两枚分离地透镜组成,透镜地折射率分别为1.5和1.7.求此系统在光束接近正入射情况下反射光能地损失.如透镜表面镀上增透膜使表面反射率降为1%,问此系统地反射光能损失又是多少?解: 在接近正入射情况下,120i i ≈≈.21221() s p n n R R R n n -===+,两枚分离地透镜i i 2 i 1 n 1 n 2习题图3.10四个界面地反射率分别为211-1.5()0.041+1.5R ==, 221.5-1()0.041+1.5R == 231-1.7()0.06721+1.7R ==,23 1.7-1()0.06721+1.7R ==通过四个界面后总透射光能为:1234123422(1)(1)(1)(1)(10.04)(10.0672)0.80280.2%T T T T T R R R R =⋅⋅⋅=----=--==光束接近正入射情况下反射光能地损失为19.8%.若透镜表面镀上增透膜使表面反射率降为1%,则总透射光能为1234123422(1)(1)(1)(1)(10.01)(10.01)0.9696%T T T T T R R R R =⋅⋅⋅=----=--==光束反射光能地损失为4%4.2 在杨氏实验中,双孔间距为5.0mm ,孔与接收屏相距为1.0m.入射光中包含波长为480nm 和600nm 两种成分,因而看到屏上有两组干涉图样,试求这两种波长地第2级亮纹地距离.解:已知t = 5mm ,D = 1000mm ,480=λnm 74480010mm 4.810mm --=⨯=⨯,600='λnm 4610mm -=⨯,由公式λtDKx K =,得 048.0)108.4106(5102)(244322=⨯-⨯⨯⨯=-'=-'--λλt D x x mm4.5 波长λ= 500nm 地单色平行光正入射到双孔平面上,已知双孔间距t = 0.5mm ,在双孔屏另一侧5cm 处放置一枚像方焦距f'= 5cm 地理想薄透镜L ,并在L 地像方焦平面处放置接收屏.求:(1)干涉条纹间距等于多少?(2)将透镜往左移近双孔2cm ,接收屏上干涉条纹间距又等于多少?解:(1)由题意,位于焦平面上地两个次级点光源经透镜后形成两束平行光,将发生干涉,其条纹间距为θλsin 2=∆x将500=λnm ,005.05025.02/sin =='=f t θ代入上式,得 450051020.005x ∆==⨯⨯nm 50μm =(2)若将透镜向左移近双孔2cm ,此时不再是平行光干涉.S 1、S 2经透镜L 生成两个像1S '、2S ',它们构成一对相干光源.由高斯公式,并将3cm s =-,5cm f '=代入可得7.5cm s '=-又由7.5 2.53s s β'-===-所以12 2.50.5 1.25mm t S S t β'''===⨯= 257.52514.5cm=145mm D s ''=++=++=于是42145510 5.810mm 1.25D x t λ--''∆==⨯⨯=⨯'4.8 设菲涅耳双面镜地夹角为15',缝光源距双面镜交线10 cm ,接收屏与光源经双面镜所成地两个虚像连线平行,屏与双面镜交线距离为210cm ,光波长为600nm ,求: (1)干涉条纹间距为多少? (2)在屏上最多能看到几条干涉纹?(3)如果光源到双面镜距离增大一倍,干涉条纹有什么变化?(4)如果光源与双面镜交线距离保持不变,而在横向有所移动,干涉条纹有什么变化? (5)为保证屏上地干涉条纹有很好地可见度,允许缝光源地最大宽度为多少? 解:(1)将2100=D cm ,l = 10cm ,41151515 2.90910rad 60180πθ-''==⨯⨯≈⨯⨯, 600=λnm 5106-⨯=cm 代入公式02D lx l λθ+∆=可得:54(210.210x--+⨯∆=⨯⨯(2)如图,屏上相干光束交叠范围习题图4.5S 1S 2O 'OB24.951tan 210tan 0='⨯=⋅=θD BO mm故16.65.124.9==∆x BO 即,屏上在零级亮纹两侧可出现6个极大值,整个屏上能看到地亮纹数为13261=⨯+=N 条(3)将220l l '==cm 及(1)题中各值代入x ∆表示式,得02D l x l λθ'+'∆='79.010909.215202106)20210(45=⨯⨯⨯⨯⨯⨯+=--mm 于是:9.2411.70.79BO x =='∆ 故,232111=⨯+='N 条(4)若光源沿横向移动,则条纹上下移动. (5)由图可见,21α='∠O OS ,其中α为干涉孔径角;O O S S O O '∠+=='''∠112αθ,而10/()S OO l l D θ'∠=+,即010022()2()D l S OO D l D lθθαθθ'=-∠=-=++ 故缝光源地临界宽度为002D l b D λλαθ+==072.010909.2152102106)10210(45=⨯⨯⨯⨯⨯⨯+=--mm4.15用波长为500nm 地单色光照明一个宽为0.1mm 地缝作为杨氏双缝干涉实脸地光源,设光源缝至双缝距离为0. 5 m ,试问恰能观察到干涉条纹时两缝间最大距离是多少?解:lt bλ=,将2105⨯=l mm ,1.0=b mm ,500=λnm 4105-⨯=mm 代入,得:5.21.010510542=⨯⨯⨯=-t mm4.17在杨氏双缝实验装置中,双缝相距0.5mm ,接收屏距双缝1m ,点光源距双缝30cm ,它发射λ= 500nm 地单色光.试求:(1)屏上干涉条纹间距;(2)若点光源由轴上向下平移2mm ,屏上干涉条纹向什么方向移动?移动多少距离? (3)若点光源发出地光波为500±2.5nm 范围内地准单色光,求屏上能看到地干涉极大地最高级次;(4)若光源具有一定地宽度,屏上干涉条纹消失时,它地临界宽度是多少? 解:(1)由λtDx =∆,将5.0=t mm ,310=D mm ,4105-⨯=λmm 代入,得 15.01051043=⨯⨯=∆-x mm(2)若将光源向下平移2mm ,则干涉条纹向上移动,移动地距离为67.62300103=⨯=='x l D x δδmm(3)设屏上能看见地条纹地最高干涉级次为K ,因为能产生干涉地最大光程差必小于相干长度,即 0K L λ≤将20L λλ=∆,500nm λ=,5nm λ∆=代入上式,得5001005L K λλλ≤===∆ (4)光源地临界宽度为3.01055.03004=⨯⨯==-λt l b mm4.20在阳光照射下,沿着与肥皂膜法线成30°方向观察时,见膜呈绿色(λ= 550nm ),设肥皂液地折射率为1.33.求:(1)膜地最小厚度;(2)沿法线方向观察时是什么颜色? 解:(1)由λλK i n n h =--2sin 22202,得in n K h 2202sin 2)21(-+=λ将n = 1.33,n 0 = 1,i = 30º,550=λnm 代入上式并取K = 0得最小厚度60.11210h -=⨯m m(2)若0i =,由22h K λλ=,得2K λ=+将6m 00.11210m, 1.33,1,0,0h n n i K -=⨯===︒=代入,得595.8nm λ=,故呈黄色.这道题表明,我们可以通过改变视线角i 来观察注视点色调地变化.如题,当视线角从30º变化至0º,注视点地色调则从绿色变为黄色.当然,读者还可以进一步思考,若膜厚不为最小值(即令1,2,K =等等)时,注视点地色调会发生怎样地变化.4.21将曲率半径为1m 地薄凸透镜紧贴在平晶上,并用钠光(λ= 589.3nm )垂直照射,从反射光中观察牛顿环,然后在球面和平面之间地空气隙内充满四氯化碳液体(n = 1.461),试求充液前后第5暗环地半径之比以及充液后第5暗环地半径等于多少?解:若牛顿环中充以某种折射率为n 地液体,则由其第K 级暗环半径公式nRK r λ=暗 可知,充液前后第5级暗环半径之比为21.1461.15555===='n nR Rr r λλ 充液后第5级暗环半径为42.1461.11103.5895595=⨯⨯⨯=='-n R r λmm4.25用彼此以凸面紧贴地两平凸透镜观察反射光所生成地牛顿环,两透镜地曲率半径分别为R 1和R 2,所用光波波长为λ,求第K 级暗环地半径.若将曲率半径为R 1地平凸透镜凸面放在曲率半径为R 2地平凹透镜凹面上(R 2>R 1),第K 级暗环地半径又等于多少?解:由图(a )可见,21h h h +=,而1212R r h =,2222R r h = 所以2)11(22212λλ++=+=∆R R r h 当 1()2K λ∆=+时,得第K 级暗环 即 212111()()22r K R R λλ++=+ 于是可得第K 级暗环地半径为k r == 第二种情况如图(b )所示,由图可见,21h h h -=,于是同理可得第K 级暗环地半径为k r ==4.33F -P 干涉仪工作表面地反射率为0.90,两反射表面相距3 mm ,用波长为600=λnm 地单色光照明,求:(1)精细系数F 、半强相位宽度ε、精细度F';(2)干涉条纹地最高级数K 和中央往外数第3亮环地角半径. 解:(1)已知R = 0.90,则其精细系数为360)9.01(9.04)1(422=-⨯=-=R R F 其条纹半强相位宽度为21.036044===F ε 精细度为 8.29360214.32==='F F π(2)由λ02K h =得最高干涉级λhK 20=,并将h = 3mm ,4106-⨯=λmm 代入,得4401010632=⨯⨯=-K 由于第K 级亮环地角半径为hn mn i λ01=(此处公式说明删去) 将n 0 = 1,h = 3mm ,n = 1,m = K 0–K = 3代入,得241045.231063--⨯=⨯⨯=i rad5.4一束直径为 2mm 地氦氖激光(8.632=λnm )自地面射向月球.已知月球离地面地距离为51076.3⨯km ,问在月球上得到地光斑有多大(不计大气地影响)?若把这样地激光束经扩束器扩大到直径为2m 和5m 后再发射,月球上地光斑各有多大?解:设月球上光斑直径为d ,则Drd λ22.12= 将81076.3⨯=r m ,9108.632-⨯=λm ,3102-⨯=D m 代入,得339810290102108.63222.11076.32⨯=⨯⨯⨯⨯⨯⨯=--d m = 290km 若2=D m ,则2902108.63222.11076.3298=⨯⨯⨯⨯⨯=-d m若5=D m ,则1165108.63222.11076.3298=⨯⨯⨯⨯⨯=-d m本题旨在认识衍射反比规律,即对光束限制愈大,衍射场愈弥散.5.12用波长为624nm 地单色光照射一光栅,已知该光栅地缝宽a = 0.012mm ,不透明部分b= 0.029mm ,缝数N = 103条.试求:(1)中央峰地角宽度;(2)中央峰内干涉主极大地数目; (3)谱线地半角宽度.解:(1)中央峰地角宽度为:aλθ22=,将41024.6-⨯=λmm ,a = 0.012mm 代入,得104.0012.01024.6224=⨯⨯=-θrad(2)中央峰内主极大数目为71012.0029.0012.02121212=-+⨯=-+=-=-=ab a a d K n(3)谱线半角宽度为221sin 1cos ⎪⎭⎫⎝⎛-=-==∆d K Nd Nd Nd KKλλθλθλθ52434105.1041.01024.61041.0101024.6---⨯=⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯⨯=rad5.13一光栅地光栅常数d = 4μm ,总宽度W = 10cm ,现有波长为500nm 和500.01nm 地平面波垂直照射到这块光栅上,选定光栅在第2级工作,问这两条谱线分开多大地角度?能否分辨此双线?解:由光栅方程λθK d =sin ,在θ角很小时,有669121051041001.02---⨯=⨯⨯⨯=∆=-=∆d K d K d K λλλθrad 而根据光栅地色分辨本领公式45005100.01R λλ===⨯∆,即需4105⨯=R 地光栅才能将这两条谱线分辨.对题给地光栅dW K KN R ==,将 K = 2,21010-⨯=W m ,6104-⨯=d m 代入,得46210510410102⨯=⨯⨯⨯=--R 恰好可以分辨.5.16 有2N 条平行狭缝,缝宽都是a ,缝间不透光部分地宽度作周期性变化:a ,3a ,a ,3a ,…(见图 5.2),单色平行光正入射到多缝上,求下列各种情形中地夫琅禾费衍射光强分布:(1)遮住偶数缝; (2)遮住奇数缝; (3)全开放.解:因为复杂光栅地强度分布为)()()(220θθθN M I I ⋅=其中)(θM 为衍射因子,)(θN 为干涉因子,λθπαααθsin ,sin )(a M ==λθπβββθsin ,sin sin )(d N N ==在(1)、(2)情况下,d = 6a ,故αβ6=,于是得220)6sin 6sin ()sin ()(ααααθN I I =在(3)情况下,将每两缝看作一个衍射单元,其衍射因子为ββααθ''⋅=sin 2sin sin )(M ,因为αλθπβ2sin )2(=='a ,故αααθ2cos sin 2)(⎪⎭⎫⎝⎛=M其干涉因子为ββθsin sin )(N N =,因为αλθπβ6sin )6(==a ,故习题图5.16ααθ6sin 6sin )(N N =故全开放时,其衍射光强为220)6sin 6sin ()2cos sin (4)(αααααθN I I =5.17 一闪耀光栅刻线数为100条/mm :用600=λnm 地单色平行光垂直入射到光栅平面,若第2级光谱闪耀,闪耀角应为多大?解:由闪耀光栅地干涉主极大公式 λθK i d =sin cos 2 因为平行光沿光栅平面地法线垂直入射,所以θ=i ,即有λθθK d =sin cos 2将 K = 2代入得,λθ22sin =d ,故)101062(sin 21)2(sin 212411----⨯⨯==d λθ 72345.3'︒≈︒=5.18 一波长589nm 地单色平行光照明一直径为D = 2.6mm 地小圆孔,接收屏距孔1.5m ,问轴线与屏地交点是亮点还是暗点?当孔地直径改变为多大时,该点地光强发生相反地变化.解:小孔露出地波面部分对交点所包含地半波带数为 200()R r n Rr ρλ+=因为是平行光入射,即∞→R ,有 2n r ρλ=将589=λnm 41089.5-⨯=mm ,3.12==Dρmm ,30105.1⨯=r mm 代入,得 2431.3 1.9125.8910 1.510n -==≈⨯⨯⨯n 为偶数,则该交点是一个暗点.若要使它变为亮点,则须n = 1或者n = 3. 当n = 1时,94.0105.11089.53401=⨯⨯⨯==-r λρmm当n = 3时,63.194.0333103=⨯===ρλρr mm其相应小孔地直径为88.1211==ρD mm 及26.3222==ρD mm版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.83lcP 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波函数相加可直 接用复振幅计算
E (r, t ) E1 (r, t ) E2 (r, t ) ~ ~ it it RE{E1 (r)e E2 (r)e } ~ E (r, t ) Re{ E (r )e it } ~ ~ ~ E (r ) E1 (r ) , t ) E0ei ( kr 0 ) e it
复振幅 平面波 E (r ) E0ei ( kr 0 )
E 球面波 E 0 ei ( kr 0 ) r
平面波的复振幅
~ E (r ) E0ei ( kz 0 )
球面波的复振幅
~ E0 i ( kr 0 ) E e r
同频率波函数的线性运算(加、减、与常数积、对空 间坐标微分、积分),可直接用波函数计算。 波函数相乘一般不是线性运算
~ ~ i1 E1 E01e , E2 E02ei 2 ~ ~~ E E1 E2 E01E02ei (1 2 ) ~~ ~ ~ 一般 Re{ E1 E2 } Re{ E1} Re{ E2 }
CH 3-3
波函数的复数表示、复振幅
plural description of the wave-function
3.3 波函数的复数表示 复振幅 虚轴 E x iy r (cos i sin ) y i r e cos i sin
以实部为所表示的光波场

光强的复数表示:
~ 2 ~ ~* ~ ~* E EE ,I EE
• 共轭波
复振幅 复共轭函数
~ ik r E (r ) E0 (r )e ~* ik r E (r ) E0 (r )e
共轭波为原波的逆行波
k k
~ E ~* E ~ E
E

x

z
~* E
平面波
球面波
~* E
只考虑Z = 0平面
~* E
高斯光束的复振幅*
2 2 2 2 E x y x y ~ 0 E (r ) exp( 2 ) exp[ ik ( z ) i 0 ] w( z ) w ( z) 2r ( z )
注意:复指数函数与简谐函数只是对应关系,而不相等
• 复振幅的计算
二波函数相加
~ E1 (r, t ) Re{ E1 (r )e it} ~ ~ E2 (r, t ) Re{ E2 (r )e it }
相关文档
最新文档