寿险精算第一章资料
合集下载
寿险精算原理 第一章

4、实际利率、名义利率、实际贴现率、名 义贴现率、利息强度和折现因子之间的等 价关系(单位时间为1年的情况下):
m
m
i 1 m
d 1 i 1 v 1 d p 1 1
p
p
e
例3、已知年度实际利率为8%,求等价的 利息强度。 例4、一笔业务按利息强度6%计息,求投 资500元经8年的积累值。
a
a
n
1 i
n
dn
n a
a
n 1
1 i
n
1 i
n
n 1
n
1 i
i 1 i
※ d n 与 n无关,为常数,通常把这种情 况下的贴现率叫做复贴现率。
②与实际贴现率 d 等价的实际利率为 1 d 。 如果某人以实际贴现率 d 借款1元,则 实际上的本金为1 d ,而利息(贴现,意 味着期初支付)金额为 d ,则实际利率为:
例2、某银行以单利计息,年息为2%,某 人存入5000元,问5年后的积累值是多少?
例3、如果例2中银行以复利计息,其他条 件不变,问5年后的积累值是多少?
1.1.3 实际贴现率
某一个度量期的实际贴现率,是指该度量 期内得到的利息金额与此度量期期末积累 值金额之比。实际利率通常用字母 d 表示。 从投资日算起第 n 个度量期的实际贴侠率 用 d n 表示,则有
In a
n
a
n
n 1
1 i a
1 i n
n
1 i
n 1
i 1 i
1
保险精算第二版复习ppt

死亡即刻赔付的含义
死亡即刻赔付就是指如果被保险人在保障期内发 生保险责任范围内的死亡 ,保险公司将在死亡事 件发生之后,立刻给予保险赔付。它是在实际应 用场合,保险公司通常采用的理赔方式。
4.1.1 精算现值的概念
精算现值即趸缴纯保费,未来保险金给付 在签单时的现值,即一次性缴清的纯保费, 它是以预定利率和预定死亡率为基础计算 的。
续存活的时间,称为剩余寿命,记作T(x)。
分布函数 t qx :
t qx Pr(T (X ) t) pr(x X x t X x) s(x) s(x t) s(x)
剩余寿命的生存函数 t px :
t px Pr(T (x) t) Pr(X x t X t) s(x t) s(x)
vt , t n
1 , t n bt 0 , t n
zt
btvt
0
,
tn
符号:
1
A x:n
厘定:
1
n
Ax:n E(zt ) 0 zt fT (t)dt
n 0
vt
t
px xt dt
en t
0
t
px xt dt
方差公式:
Var(zt ) E(zt2 ) E(zt )2
0
e2 t
fT
(t)dt
E(zt
)2
记
2 Ax
0
e2 t
fT
(t )dt
所以方差等价为
Var(zt )2Ax ( Ax )2
4.1.4 延期终身寿险
定义
保险人对被保险人在投保m年后发生的保险责任范围内的死亡均 给付保险金的险种。
假定: (x)岁的人,保额1元,延期m年的终身寿险 基本函数关系
死亡即刻赔付就是指如果被保险人在保障期内发 生保险责任范围内的死亡 ,保险公司将在死亡事 件发生之后,立刻给予保险赔付。它是在实际应 用场合,保险公司通常采用的理赔方式。
4.1.1 精算现值的概念
精算现值即趸缴纯保费,未来保险金给付 在签单时的现值,即一次性缴清的纯保费, 它是以预定利率和预定死亡率为基础计算 的。
续存活的时间,称为剩余寿命,记作T(x)。
分布函数 t qx :
t qx Pr(T (X ) t) pr(x X x t X x) s(x) s(x t) s(x)
剩余寿命的生存函数 t px :
t px Pr(T (x) t) Pr(X x t X t) s(x t) s(x)
vt , t n
1 , t n bt 0 , t n
zt
btvt
0
,
tn
符号:
1
A x:n
厘定:
1
n
Ax:n E(zt ) 0 zt fT (t)dt
n 0
vt
t
px xt dt
en t
0
t
px xt dt
方差公式:
Var(zt ) E(zt2 ) E(zt )2
0
e2 t
fT
(t)dt
E(zt
)2
记
2 Ax
0
e2 t
fT
(t )dt
所以方差等价为
Var(zt )2Ax ( Ax )2
4.1.4 延期终身寿险
定义
保险人对被保险人在投保m年后发生的保险责任范围内的死亡均 给付保险金的险种。
假定: (x)岁的人,保额1元,延期m年的终身寿险 基本函数关系
1、社会保障精算(第一章)寿险精算基础(3)

0.005000 0.004500 0.004000
死亡率
0.003500 0.003000 0.002500 0.002000 0.001500 0.001000 0.000500 0.000000
12
16
20
24
28
32
36
40
44
48
0
4
8
年龄
1.2.1 基本函数(生命表的基本内容) 基本函数(生命表的基本内容)
已知: 已知: 求: 解:
1|
l20 = 1000
1|
l21 = 998
l22 = 992
q 20
d 20 +1 d 21 l 21 − l 22 = = = l 20 l 20 l 20
998 − 992 = = 0 . 006 1000
q 20
q 20
1|
已知40岁的死亡率为0.04,41岁的死亡率 已知40岁的死亡率为0.04,41岁的死亡率 40岁的死亡率为0.04 0.06,42岁的人生存到43岁的概率为0.92。 岁的人生存到43岁的概率为0.92 为0.06,42岁的人生存到43岁的概率为0.92。如果 40岁生存人数为100人 岁生存人数为100 43岁时的生存人数 岁时的生存人数。 40岁生存人数为100人,求43岁时的生存人数。
0
x
定义式
死亡 时点
ω −1
105
时间
s( x) = Pr( X > x)
s ( 0) = 1
s (105) = 0
lx s( x) = l0
s ( x ) = x p0
s( x) = 1 − F ( x)
岁的人在0~ 之间存活的概率 之间存活的概率) (表示0岁的人在 ~x之间存活的概率) 表示 岁的人在
死亡率
0.003500 0.003000 0.002500 0.002000 0.001500 0.001000 0.000500 0.000000
12
16
20
24
28
32
36
40
44
48
0
4
8
年龄
1.2.1 基本函数(生命表的基本内容) 基本函数(生命表的基本内容)
已知: 已知: 求: 解:
1|
l20 = 1000
1|
l21 = 998
l22 = 992
q 20
d 20 +1 d 21 l 21 − l 22 = = = l 20 l 20 l 20
998 − 992 = = 0 . 006 1000
q 20
q 20
1|
已知40岁的死亡率为0.04,41岁的死亡率 已知40岁的死亡率为0.04,41岁的死亡率 40岁的死亡率为0.04 0.06,42岁的人生存到43岁的概率为0.92。 岁的人生存到43岁的概率为0.92 为0.06,42岁的人生存到43岁的概率为0.92。如果 40岁生存人数为100人 岁生存人数为100 43岁时的生存人数 岁时的生存人数。 40岁生存人数为100人,求43岁时的生存人数。
0
x
定义式
死亡 时点
ω −1
105
时间
s( x) = Pr( X > x)
s ( 0) = 1
s (105) = 0
lx s( x) = l0
s ( x ) = x p0
s( x) = 1 − F ( x)
岁的人在0~ 之间存活的概率 之间存活的概率) (表示0岁的人在 ~x之间存活的概率) 表示 岁的人在
第一章 生命表

60p20,2|3q50
1.1.4
离散型未来寿命的分布
取整余命( K):K(x)=[T(x)]
Pr[ K ( x ) k ] Pr[ k T ( x ) k 1] Pr[ k T ( x ) k 1] k 1 q x k q x k p x k 1 p x k|q x
1.1.5
死力
几种常见的假设:
1)de Moivre假设(1729):
xt
1 0 x 1 , e x E [T ( x )]
0
xt
x
,
s(x) 1
,
f T (t )
x
2
x
其中的ω 为极限年龄,即假定在此年龄下,所 有的人均已死亡。
1.1.5
0
1
2
3
… …
q0
q1
i
q2
q3
q
i0
1,
qi 0
1.1.2
含义
生存函数
s(x)=1- F(x)=Pr(X>x), x≥0
新生婴儿x岁以后死亡的概率 新生婴儿活过x岁的概率
性质 a. s ( 0 ) 1,
x
lim s ( x ) 0
b. 单调递减函数
死力
xt
2)Gompertz假设(1825):
xt B C
,
B 、 C 为常数
3)Makeham假设(1860):
xt A B C
xt
,
A 、 B 、 C 为常数
4)Weibull假设(1939):
xt k ( x t ) ,
1.1.4
离散型未来寿命的分布
取整余命( K):K(x)=[T(x)]
Pr[ K ( x ) k ] Pr[ k T ( x ) k 1] Pr[ k T ( x ) k 1] k 1 q x k q x k p x k 1 p x k|q x
1.1.5
死力
几种常见的假设:
1)de Moivre假设(1729):
xt
1 0 x 1 , e x E [T ( x )]
0
xt
x
,
s(x) 1
,
f T (t )
x
2
x
其中的ω 为极限年龄,即假定在此年龄下,所 有的人均已死亡。
1.1.5
0
1
2
3
… …
q0
q1
i
q2
q3
q
i0
1,
qi 0
1.1.2
含义
生存函数
s(x)=1- F(x)=Pr(X>x), x≥0
新生婴儿x岁以后死亡的概率 新生婴儿活过x岁的概率
性质 a. s ( 0 ) 1,
x
lim s ( x ) 0
b. 单调递减函数
死力
xt
2)Gompertz假设(1825):
xt B C
,
B 、 C 为常数
3)Makeham假设(1860):
xt A B C
xt
,
A 、 B 、 C 为常数
4)Weibull假设(1939):
xt k ( x t ) ,
社会保险基金精算(第一章)寿险精算基础(2)

2
n −1
− nv
n
= a n − nv n
a n − nv ( Ia ) n = i
n
对于期首付等差递增年金来说, 对于期首付等差递增年金来说, 期首付等差递增年金来说
a n − nv ( Ia ) n = d
n
期末付等差递增年金的终值 期末付等差递增年金的终值 (FV) 等差递增年金的
(1 + i) n
(1 + i) n
(1 + i ) 2
(1 + i )
1 0
1 1
1 2
1 3
L
1 n-2
1 n-1 n
付款额 时间
L
思路1 思路
sn
= (1 + i ) + (1 + i ) 2 + L + (1 + i ) n
1 − (1 + i) n 1 + i (1 + i) n − 1 (1 + i) n − 1 s n = (1 + i) ⋅ = ⋅ = 1 − (1 + i) i 1 d
1000
0 1
1100 1200
2 3
L
1700
8
1800
9
1900
10
付款额
L
时间
900 100
0 1
900 200
2
900 300
3
L
900 800
8
900 900
9
900 1000
10
付款额
L
时间
900
900 200
2
900 300
3
n −1
− nv
n
= a n − nv n
a n − nv ( Ia ) n = i
n
对于期首付等差递增年金来说, 对于期首付等差递增年金来说, 期首付等差递增年金来说
a n − nv ( Ia ) n = d
n
期末付等差递增年金的终值 期末付等差递增年金的终值 (FV) 等差递增年金的
(1 + i) n
(1 + i) n
(1 + i ) 2
(1 + i )
1 0
1 1
1 2
1 3
L
1 n-2
1 n-1 n
付款额 时间
L
思路1 思路
sn
= (1 + i ) + (1 + i ) 2 + L + (1 + i ) n
1 − (1 + i) n 1 + i (1 + i) n − 1 (1 + i) n − 1 s n = (1 + i) ⋅ = ⋅ = 1 − (1 + i) i 1 d
1000
0 1
1100 1200
2 3
L
1700
8
1800
9
1900
10
付款额
L
时间
900 100
0 1
900 200
2
900 300
3
L
900 800
8
900 900
9
900 1000
10
付款额
L
时间
900
900 200
2
900 300
3
01第一章寿险定价.ppt

费率过高的情况。
3. 公平性原则
❖ 费率的公平性,指保险市场上保险产品价格的公平, 保险人对被保险人所承担的责任与投保人交纳的保 费对等,对出险概率高、赔付成本高的被保险人收 取更多的保险费,反之亦然。
❖ 在竞争激烈的保险市场上,投保人有充分的选择保 险公司和保险产品的权利和条件,保险费率的公平 性将在这种自由和充分的选择中得到保证。
2. 定价策略和利润目标
❖ 产品的定价策略,指在定价中反映开发新产品期望实现 的效果或期望达到的目标。如:在定价中反映实现公司 盈利水平或者提升公司形象的目标等。
❖ 产品的利润目标,在英国和澳州体系中,利润用增加值 (value created)衡量,是产品在预期的整个生命周期内 所能带来的法定利润(statutory profit)的现值,用于衡 量新产品为公司创造的新价值。
寿险定价的 基本原则
1. 充足性原则
❖ 费率充足,指保险费率足够用于保单所承诺的赔付 或给付、退保金、费用、税金、红利等各项支出, 同时保险公司还要获取合理的利润。
❖ 如果费率不充足,就会导致保险公司缺乏偿付能力, 从而会使被保险人的利益受损。
❖ 为测定寿险费率是否充足,必须将实际给付率与预 定给付率进行比较。
❖ 保额。大额保单的失效率通常较低。 ❖ 保费支付方式。一般交费频率越高,失效率越高。 ❖ 风险分类。次标准体的风险更高,保费也更高,则
失效率在保单前几年更高。 ❖ 性别、佣金支付方式、产品类型……
3. 利率
❖ 利率假设可以看做是保单持有人未来的收益率。寿 险公司假设的利率能否实现,要看其未来投资收益。
通常,是否吸烟比性别对死亡率的影响更大,吸烟程度严重 者的死亡率可能是非吸烟者的3倍。
2. 失效率
3. 公平性原则
❖ 费率的公平性,指保险市场上保险产品价格的公平, 保险人对被保险人所承担的责任与投保人交纳的保 费对等,对出险概率高、赔付成本高的被保险人收 取更多的保险费,反之亦然。
❖ 在竞争激烈的保险市场上,投保人有充分的选择保 险公司和保险产品的权利和条件,保险费率的公平 性将在这种自由和充分的选择中得到保证。
2. 定价策略和利润目标
❖ 产品的定价策略,指在定价中反映开发新产品期望实现 的效果或期望达到的目标。如:在定价中反映实现公司 盈利水平或者提升公司形象的目标等。
❖ 产品的利润目标,在英国和澳州体系中,利润用增加值 (value created)衡量,是产品在预期的整个生命周期内 所能带来的法定利润(statutory profit)的现值,用于衡 量新产品为公司创造的新价值。
寿险定价的 基本原则
1. 充足性原则
❖ 费率充足,指保险费率足够用于保单所承诺的赔付 或给付、退保金、费用、税金、红利等各项支出, 同时保险公司还要获取合理的利润。
❖ 如果费率不充足,就会导致保险公司缺乏偿付能力, 从而会使被保险人的利益受损。
❖ 为测定寿险费率是否充足,必须将实际给付率与预 定给付率进行比较。
❖ 保额。大额保单的失效率通常较低。 ❖ 保费支付方式。一般交费频率越高,失效率越高。 ❖ 风险分类。次标准体的风险更高,保费也更高,则
失效率在保单前几年更高。 ❖ 性别、佣金支付方式、产品类型……
3. 利率
❖ 利率假设可以看做是保单持有人未来的收益率。寿 险公司假设的利率能否实现,要看其未来投资收益。
通常,是否吸烟比性别对死亡率的影响更大,吸烟程度严重 者的死亡率可能是非吸烟者的3倍。
2. 失效率
人寿保险的基本概念及其精算学PPT(31张)

受益人是指人身保险合同中由被保险人或 者投保人指定的享有保险金请求权的人,投保 人、被保险人可以为受益人。
寿险合同的基本内容包括保险人名称和 住所,投保人、被保险人名称和住所,人身 保险受益人名称和住所, 保险责任和责任免 除,保险期间和保险责任开始时间,保险以 及支付办法,保险金赔偿或者给付办法,违 约责任和争议处理,订立合同的具体时间等。
•
14、一个人的知识,通过学习可以得到;一个人的成长,就必须通过磨练。若是自己没有尽力,就没有资格批评别人不用心。开口抱怨很容易,但是闭嘴努力的人更加值得尊敬。
•
15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。
•
16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。
本课程只讨论人寿保险。 人寿保险是以人的生存和死亡为保险 事故的保险。若被保险人在保险期内死亡 或生存到一定年龄,保险人依照契约规定 给付保险金。
纯粹的生存保险 生存保险
生存年金 人寿保险 死亡保险(定期、终身、延期)
生死合险(两全保险、养老保险) 人身保险 健康保险(疾病保险)
人身意外伤害保险
第0章 总 论
本章主要内容: ● 人寿保险的基本概念 ●精算学及其应用领域 ● 寿险精算学的基本思想 ● 精算师和精算工作
一、 人寿保险的基本概念
1、 基本概念 • 保险是指投保人根据合同约定,向保险人支
付保费,保险人对于合同约定的可能发生的 事故因其发生所造成的财产损失承担保险赔 偿责任,或者当被保险人死亡、伤残、疾病 或者达到合同约定的年龄、期限时承担给付 保险金责任的商业行为。
投保人是指与保险人订立保险合同,并 按照保险合同负有支付保险费义务的人。
寿险合同的基本内容包括保险人名称和 住所,投保人、被保险人名称和住所,人身 保险受益人名称和住所, 保险责任和责任免 除,保险期间和保险责任开始时间,保险以 及支付办法,保险金赔偿或者给付办法,违 约责任和争议处理,订立合同的具体时间等。
•
14、一个人的知识,通过学习可以得到;一个人的成长,就必须通过磨练。若是自己没有尽力,就没有资格批评别人不用心。开口抱怨很容易,但是闭嘴努力的人更加值得尊敬。
•
15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。
•
16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。
本课程只讨论人寿保险。 人寿保险是以人的生存和死亡为保险 事故的保险。若被保险人在保险期内死亡 或生存到一定年龄,保险人依照契约规定 给付保险金。
纯粹的生存保险 生存保险
生存年金 人寿保险 死亡保险(定期、终身、延期)
生死合险(两全保险、养老保险) 人身保险 健康保险(疾病保险)
人身意外伤害保险
第0章 总 论
本章主要内容: ● 人寿保险的基本概念 ●精算学及其应用领域 ● 寿险精算学的基本思想 ● 精算师和精算工作
一、 人寿保险的基本概念
1、 基本概念 • 保险是指投保人根据合同约定,向保险人支
付保费,保险人对于合同约定的可能发生的 事故因其发生所造成的财产损失承担保险赔 偿责任,或者当被保险人死亡、伤残、疾病 或者达到合同约定的年龄、期限时承担给付 保险金责任的商业行为。
投保人是指与保险人订立保险合同,并 按照保险合同负有支付保险费义务的人。
寿险精算(第一章)

定理1.3.2. 假设个体的年龄及是否死亡为已 知,个体的其他信息均未告知. x岁的个体生 存了 t 年后, 其再继续生存时间的分布和x+t 岁的个体的未来生存时间的分布相同, 即
P(T ( x) s t | T ( x) t ) P(T ( x t ) s), s [0, )
(3) p P (T ( x) t ) t x
P (T ( x) h) P (T ( x) t | T ( x) h) P (T ( x) h) P (T ( x h) t h | T ( x h) 0) P (T ( x) h) P (T ( x h) t h) h px t h px h .
第一部分 生存模型和多元衰减模型
第一章 单生命生存模型 第二章 多生命生存模型 第三章 多元衰减模型 大意梗概:人寿保险是以人的寿命、身体或健康 为保险标的(指具体的保险目标)的保险, 因此, 研究人的寿命的延续规律是制定保险保费的重要 基础。人的寿命往往是不确定的,可以看作随机 变量,因此,用概率统计方法研究寿命是普遍方 法。
T ( x)
2) T(x)的死亡力
s ( x)
x (t )
fT ( x ) (t ) 1 FT ( x ) (t )
X与T(x)的分布、密度、生存、死亡函数的 关系
结论1.3.1
f X (x t) fT ( x ) (t ) , t 0; s ( x)
t
( x s ) ds sT ( x ) (t ) e 0 ;
还可证明:
由于 X (t ) ( x t )
sT ( x ) '(t ) sT ( x ) (t ) (ln sT ( x ) (t )) ',
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
uxt
整值剩余寿命
定义:(x未) 来存活的完整年数,简记 K (x)
K(X ) k, k T (x) k 1, k 0,1,
概率函数
Pr(K ( X ) k) Pr(k T (x) k 1) q k1 x k qx k px p k 1 x k px qxk k qx
1
S0x t S0x
S0
x S0x S0x
t
精算符号
剩余寿命的生存函数 t p:x
t px Pr T x
t
Sx
t
S0 x S0
t x
1
t
qx
特别:
x p0 S0 x
精算符号
px :x岁的人至少能活到x+1岁的概
率
px 1 px
qx
:x岁的人将q在x 11年qx内死亡的概率
t u qx
剩余寿命的期望与方差
完全平均余寿:(x)剩余寿命的期望值(均值),简
记
o
ex
o
ex E(T (x)) td (1 t px ) t pxdt
0
0
剩余寿命的方差
o2
Var(T (x)) E(T (x)2) E(T (x))2 2 t t pxdt ex
0
整值剩余寿命的期望与方差
定义:已经活到x岁的人(简记(x)),还 能继续存活的时间,称为剩余寿命,记 作T(x)。
分布函数
定义
F0 (t) Pr[T 0 t]
意义:新生儿在 t岁之前死亡的概率。
定义: Fx (t) PrT x t
意义:x在 年t 之内死亡的概率。
定义:密度函数 f (x) F(x)
De Moivre模型(1724)
f
x
t
1
x
uxt
1
xt
Gompertze模型(1825)
xt t px x
t qx
t
x
x Bcx
s(x) exp{B(cx 1) / ln c} , B 0,c 1,x 0
有关寿命分布的参数模型
Makeham模型(1860)
x A Bcx
新生儿将在t岁至z岁之间死亡的概率:
Pr[t T 0 z] F0z F0t
生存函数
定义 S0 (t) Pr[T 0 t]
意义:新生儿能活过 t岁的概率。
与分布函数的关系: S0 (t) 1 F0 (t)
与密度函数的关系: f0 (t) S0 (t)
新生儿将在t岁至z岁之间死亡的概率:
使用这些参数模型推测未来的寿命状况会产生 很大的误差
寿险中通常不使用参数模型拟合寿命分布,而 是使用非参数方法确定的生命表拟合人类寿命 的分布。
在非寿险领域,常用参数模型拟合物体寿命的 分布。
生命表起源
生命表的定义
根据已往一定时期内各种年龄的死亡统计资料编制成的由每 个年龄死亡率所组成的汇总表.
第一章
生存分布理论基础
本章重点
生命表函数
生存函数 剩余寿命 死亡效力
生命表的构造
有关寿命分布的参数模型 生命表的起源 生命表的构造 选择与终极生命表
有关分数年龄的三种假定
本章中英文单词对照
死亡年龄 生命表 剩余寿命 整数剩余寿命 死亡效力 极限年龄 选择与终极生命表
:X岁的人将在x+t岁至x+t+u岁之
间死亡的t u概qx率 q tu x t qx t px tu px
t 1 qx t qx
死亡效力
定义:(x的) 瞬时死亡率,简记 x
ux
S0 x S0 x
f0x 1 F0 x
ln
S0 x
死亡效力与生存函数的关系
x
s(x) exp{ sds} 0
s(x) exp{Ax B(cx 1) / ln c} , B 0,A -B,c 1,x 0 Weibull模型(1939)
x kxn
s(x) ex 0
参数模型的问题
至今为止找不到非常合适的寿命分布拟合模型。 这四个常用模型的拟合效果不令人满意。
取整平均余寿:(x取) 整余寿的期望值(均值),简
记 ex
ex E(K (x)) k k px qxk p k1 x
k 0
k 0
取整平均余寿的方差
Var(K (x)) E(K 2 ) E(K )2 (2k 1) k1 px ex2 k 0
第二节
生命表
有关寿命分布的参数模型
Age-at-death Life table Time-until-death Curtate-future-lifetime Force of mortality Limiting ate Select-and-ultimate
tables
第一节 寿命与生存分布
剩余寿命
定义:新生儿(即0岁的人)未来存活的 时间,简称为寿命,记作T(0) 。
生命表的发展历史
1662年,Jone Graunt,根据伦敦瘟疫时期的洗礼和死亡名单,写 过《生命表的自然和政治观察》。这是生命表的最早起源。
1693年,Edmund Halley,《根据Breslau城出生与下葬统计 表对人类死亡程度的估计》,在文中第一次使用了生命表的 形式给出了人类死亡年龄的分布。人们因而把Halley称为生 命表的创始人。
与 S0的t 关系:
Sx t Pr T x t Pr T 0 x t T 0 x
Pr T 0 x t S0 x t
Pr T 0 x
S0 x
即 S0 x t S0 xSx t Sx u t Sx tSxt u
精算符号
q 分布函数: t x
t qx Fxt PrTx t1 Sxt
xt
t px exp{ sds} x
死亡效力
死亡效力与密度函数的关系
t
f0 t S0 t ut ute0uydy
死亡效力表示剩余寿命的密度函数 fx t
Fx
t
1t
px
S0
x S0x S0x
t
fx
t
dFx t
dt
d dt
S0
x S0x S0x
t
S0x t S0x
uxt
t
px
Prt T 0 z S0t S0z
特性:1、S0 0 1 S0 0
2、 是S0关t于t的递减函数;一般还是
关于t的连续函数
生存函数
定义
Sx (t) Pr[T x t]
意义:x至少活到 x 岁 t的概率。
与分布函数的关系: Sx (t) 1 Fx (t)
与密度函数的关系: fx (t) Sx (t)