实验二、单容水箱液位PID控制系统

合集下载

单容水箱液位定值控制系统

单容水箱液位定值控制系统

单容水箱液位定值控制系统一、实验目的1.理解单容水箱液位定值控制的基本方法及原理;2.了解压力传感器的使用方法;3.学习PID控制参数的配置。

二、实验设备1.控制理论实验平台2.数据采集卡一块3.PC机1台4.THBDY-1单容水箱液位控制系统三、实验原理单容水箱液位定值控制系统的控制对象为一阶单容水箱,主要的实验项目为单容水箱液位定值控制。

其执行机构为微型直流水泵,正常工作电压为24V。

直流微型水泵控制方式主要有调压控制以及PWM控制,在本实验中采用PWM控制直流微型水泵的转速来实现对单容水箱液位的定值控制。

PWM调制与晶体管功率放大器的工作原理参考实验十三的相关部分。

控制器采用了工业过程控制中所采用的最广泛的控制器——PID控制器。

通过计算机模拟PID控制规律直接变换得到的数字PID控制器,它是按偏差的比例(P)、积分(I)、微分(D)组合而成的控制规律。

水箱液位定值控制系统一般有由电流传感器构成大电流反馈环。

在高精度液位控制系统中,电流反馈是必不可少的重要环节。

这里为了方便测量与观察反馈信号,通常把电流反馈信号转化为电压信号:反馈端输出端串接一个250Ω的高精度电阻。

本实验电压与液位的关系为:H液位=(V反馈-1)×12.5 单位:mm 水箱液位控制系统方框图为:四、实验步骤1.实验接线1.1 将水箱面板上的“LT –”与实验台的“GND”相连接;水箱面板上的“LT +”与实验台的“AD1”相连接。

1.2将水箱面板上的“输入–”与实验台的“GND”相连接;水箱面板上的“输入+”与实验台的“DA1”相连接。

1.3将水箱面板上的“输出–”与“水泵电源–”连接;水箱面板上的“输出+”与“水泵电源+”连接。

1.4打开实验平台的电源总开关。

2.压力变送器调零本实验在开始实验前必须对压力变送器调零操作。

具体方法为:2.1 将水箱中打满水,然后再全部放到储水箱中;2.2 旋开压力变送器的后盖,用小一字螺丝刀调节压力变送器中电路板上有“Z”标识的调零电位器,让压力变送器的输出电压为1V;2.3 再次向水箱中打水,并观察水箱液位与压力变送器输出电压的对应情况,其对应关系为:H液位=(V反馈-1)×12.5(当液位为10cm时,输出电压应为1.8V左右),如不对应,再重复步骤2.1、2.2直到对应为至;2.4 如果步骤1)、2)、3)还不能调好水箱液位与压力变送器输出电压的对应情况,那么可适度调节压力变送器中电路板上有“S”标识的增益电位器,再重复步骤2.1、2.2、2.3直到对应为至。

单容水箱液位pid控制实验报告

单容水箱液位pid控制实验报告

单容水箱液位pid控制实验报告实验报告:单容水箱液位PID控制实验实验目的:本实验旨在通过PID控制器对单容水箱的液位进行控制,验证PID控制算法在液位控制中的应用效果,并了解PID控制器参数调节的方法和影响因素。

实验装置和仪器:1. 单容水箱:用于存放水并模拟液位变化。

2. 液位传感器:用于实时监测水箱的液位。

3. 控制器:采用PID控制器,用于调节水箱液位。

4. 电源和信号线:提供电力和信号传输。

实验步骤:1. 将水箱与液位传感器连接,并确保传感器能够准确测量液位。

2. 将PID控制器与液位传感器连接,建立控制回路。

3. 设置PID控制器的参数,包括比例系数(P)、积分时间(I)和微分时间(D)。

4. 将控制器调至手动模式,并将控制器输出设定值调整为合适的初始值。

5. 开始实验,记录初始液位和控制器输出设定值。

6. 观察液位的变化,并记录实时液位值。

7. 根据液位变化情况,调整PID控制器的参数,使液位尽可能接近设定值。

8. 结束实验,记录最终液位和控制器参数。

实验结果:通过实验,我们得到了如下的结果和观察:1. PID控制器的参数调节对液位控制有重要影响,不同的参数组合会导致液位的不同响应和稳定性。

2. 比例系数P的增大可以增加控制器对液位误差的敏感程度,但过大的P值可能引起震荡或超调。

3. 积分时间I的增大可以减小稳态误差,但过大的I值可能导致震荡或系统不稳定。

4. 微分时间D的增大可以提高系统的动态响应速度,但过大的D值可能引起噪声干扰或导致系统不稳定。

5. 通过逐步调整PID控制器的参数,我们可以实现较好的液位控制效果,使液位尽可能接近设定值并保持稳定。

结论:本实验通过PID控制器对单容水箱的液位进行控制,验证了PID控制算法在液位控制中的应用效果。

通过逐步调整PID控制器的参数,我们可以实现较好的液位控制效果,并使液位保持稳定。

实验结果表明,PID控制器的参数调节对液位控制有重要影响,需要根据实际情况进行调整和优化。

单容水箱液位定值PID数字控制系统

单容水箱液位定值PID数字控制系统

制 ,输 出的信号通 过D A 换器和保持器后输 出P M /转 W 信
号,用所 产生 的P M W 控制驱动 电机的转速进 而控制微 型水泵来控制水流量的大小 。这 样实现对 单容 水箱液 位 的定值控制。
先进 的控制技术 ,即当被控对象的结构和参数不 能完 全 掌握 ,或得不到精确的数学模型时 ,控 制理论 的其

PD数 字控 制 系统 对水箱水 位的控 制 I
( 控制流程 图 一)


{蛐


小 ;液 位 h 的变 化 反 映 了 由 于 q与 q不 相 等 而 引起 的
液位在单容 水箱 内的积 累 。设 h 为被控 量 ,q为输 入 l
量,q为扰动量,构成单输入有扰动 的系统 。 。 单容水箱液位控制结构图见 图3 :
这 是累计流量的关系式。
系统研究更关心 的是在某平衡 状态下的增量式 , 设各个参数分别为q。 。 。 、q。 ,则增量为 : 、h
△ l q —q 。 g l l
di pv, SV, ei, ex, ey, K, Ti, Td, q m O,
q ,q ,o ,h l 2 p
传统 的水箱液位控制多采用包含手动控制方式的
单回路控制, 同时采用 传统 的指针式机械仪表来显示 液位的当前值 ,如浮子式、磁 电式 、接近开关式 、电 容式 、声波式等 。而2 世纪发展 中的P D 1 I 控制 是~项
机 中用V S r p 编程 ,所采集 的信 号通过数字P D B c it I 控
— —


( ) 4
T R C ”液位h % ”,h TAE =f s=O v l 水箱液位 的控制高度 ,单位c m

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告一、实验目的本实验旨在通过单容量水箱液位pid控制实验,掌握PID控制器的基本原理及其在工程中的应用,熟悉液位传感器的使用方法,了解单容量水箱液位pid控制系统的组成和工作原理。

二、实验原理1. PID控制器PID控制器是一种用于工业过程自动化控制的常见算法。

PID是Proportional-Integral-Derivative(比例-积分-微分)三个英文单词的缩写。

PID算法通过对过程变量进行采样和比较,计算出误差,并根据误差大小进行调整。

其中比例项P、积分项I和微分项D分别代表了对过程变量偏差大小、偏差持续时间以及偏差变化率的反馈调整。

2. 液位传感器液位传感器是一种用于测量液体或固体物料高度或深度的设备。

常见的液位传感器有浮球式、压力式、电容式等多种类型。

本实验中采用电容式液位传感器进行测量。

3. 单容量水箱液位pid控制系统单容量水箱液位pid控制系统由水箱、液位传感器、PID控制器和执行机构(如电磁阀)组成。

系统的工作原理是:液位传感器采集水箱内的液位信号,将其转换为电信号并传输给PID控制器;PID控制器通过比较设定值和实际值之间的误差,输出相应的控制信号给执行机构,使其调节水箱内的水流量,从而维持水箱液位稳定在设定值。

三、实验步骤1. 搭建实验装置将单容量水箱与电磁阀、电容式液位传感器等连接起来,组成完整的单容量水箱液位pid控制系统。

2. 设置PID参数根据实际情况,设置合适的PID参数。

其中比例系数Kp、积分系数Ki 和微分系数Kd需要进行适当调整以达到最佳效果。

3. 进行实验测试将设定值设置为一定值,并记录下当前的反馈值。

根据反馈值计算出误差,并通过PID控制器输出相应的调节信号给执行机构。

随着时间的推移,观察液位是否能够稳定在设定值附近。

4. 调整PID参数如果发现液位不能够稳定地保持在设定值附近,需要对PID参数进行适当调整。

可以通过增大或减小比例系数、积分系数和微分系数来调整系统的响应速度和稳定性。

实验二、单容水箱液位PID控制系统

实验二、单容水箱液位PID控制系统

单容水箱液位PID 控制系统一、实验目的1、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2、研究系统分别用P 、PI 和PID 调节器时的阶跃响应。

3、研究系统分别用P 、PI 和PID 调节器时的抗扰动作用。

4、定性地分析P 、PI 和PID 调节器的参数变化对系统性能的影响。

图7-1、单容水箱液位控制系统的方块图单容水箱液位控制系统。

这是一个单回路反馈控制系统,它的控制任务是使水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动的影响。

单回路控制系统由于结构简单、投资省、操作方便、且能满足一般生产过程的要求,故它在过程控制中得到广泛地应用。

当一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数的选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会导致控制质量变坏,甚至会使系统不能正常工作。

因此,当一个单回路系统组成以后,如何整定好控制器的参数是一个很重要的实际问题。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

图7-2单容液位控制系统结构图 系统由原来的手动操作切换到自动操作时,必须为无扰动,这就要求调节器的输出量能及时地跟踪手动的输出值,并且在切换时应使测量值与给定值无偏差存在。

一般言之,具有比例(P )调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。

比例积分(PI )调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti 选择合理,也能使系统具有良好的动态性能。

比例积分微分(PID )调节器是在PI 调节器的基础上再引入微分D 的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

在单位阶跃作用下,P 、PI 、PID 调节系统的阶跃响应分别如图7-3中的曲线①、②、③所示。

图7-3、P 、PI 和PID 调节的阶跃响应曲线四、实验内容与步骤1、比例(P)调节器控制1)、按图7-1所示,将系统接成单回路反馈系统(接线参照实验一)。

单容水箱液位控制综合报告

单容水箱液位控制综合报告

单容水箱液位过程控制综合报告自动化专业实验单容水箱液位过程控制综合报告I. 实验目的一、 了解单容水箱液位控制系统的结构与组成。

二、 掌握单容水箱液位控制系统调节器参数的整定方法。

三、 研究调节器相关参数的变化对系统静、动态性能的影响。

四、 了解P 、PI 、PD 和PID 四种调节器分别对液位控制的作用。

II. 单容水箱系统模型一、单容水箱物理模型单容水箱的结构图如下:由图2-1可知,对象的被控制量为水箱的液位H ,控制量(输入量)是流入水箱中的流量Q 1,手动阀V 1和V 2的开度都为定值,Q 2为水箱中流出的流量。

根据物料平衡关系,在平衡状态时10200Q Q -= (1)动态时,则有12d V Q Q d t-=(2)式中V 为水箱的贮水容积,dtdV 为水贮存量的变化率,它与H 的关系为Adh dV =,即d V d h Ad td t= (3)A 为水箱的底面积。

把式(3)代入式(2)得12d h Q Q Ad t-= (4)基于Q 2=SR h ,R S 为阀V2的液阻,则上式可改写为1Sh d h Q AR d t-=即1sd h A R h K Qd t+=或写作1()()1H s K Q s T S =+ (5)式中s T A R =,它与水箱的底积A 和V 2的R S 有关;s K R =。

二、 电动调节阀流量特性物理模型电动调节阀包括执行机构和阀两个部分,它是过程控制系统中的一个重要环节。

电动调节阀接受调节器输出4~20mADC 的信号,并将其转换为相应输出轴的角位移,以改变阀节流面积S 的大小。

图2-9为电动调节阀与管道的连接图。

图2-9 电动调节阀与管道的连接图图中:u----来自调节器的控制信号(4~20mADC ) θ---阀的相对开度 s ---阀的截流面积q----液体的流量由过程控制仪表的原理可知,阀的开度θ与控制信号的静态关系是线性的,而开度θ与流量Q 的关系是非线性的。

单容水箱液位过程控制报告 2

单容水箱液位过程控制报告 2

目录前言一.过程控制概述 (2)二.THJ-2型高级过程控制实验装置 (3)三.系统组成与工作原理 (5)(一)外部组成 (5)(二)输入模块ICP-7033和ICP-7024模块 (5)(三)其它模块和功能 (8)四.调试过程 (9)(一)P调节 (9)(二)PI调节 (10)(三)PID调节 (11)五.心得体会 (13)前言现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。

首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。

通过对基础训练设施的集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。

其次,工程实训的内容应一定程度地体现技术发展的时代特征。

为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。

应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。

第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。

以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

本次工程实践就是针对单容水箱液位进行恒高度控制通过调试,来熟悉THJ-2型高级过程控制实验装置。

通过本次工程实践,来熟悉工业过程控制的工作流程以及其控制原理。

一过程控制概述在工业生产中,有一类按照一定的工艺流程(或程序)进行连续不间断的生产的工业生产过程,例如电力、石油、化工、冶金等,这些工业在经济发展中占有举足轻重的地位,我们称之为连续过程工业。

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告实验目的:通过单容量水箱液位PID控制实验,学习PID控制器的原理和调节方法,掌握PID控制器在液位控制中的应用。

实验器材:1. 单容量水箱2. 水泵3. 液位传感器4. 控制器5. 电脑实验原理:PID控制器是由比例(P)、积分(I)和微分(D)三个部分组成的控制器。

根据物体的反馈信号与设定值之间的差异,PID控制器会计算出相应的控制量,以使系统的输出信号趋近于设定值,从而实现对物体的控制。

实验步骤:1. 搭建实验装置:将单容量水箱与水泵和液位传感器连接,将控制器与电脑连接。

2. 设置实验参数:根据实验需求,设置控制器的比例增益、积分时间常数和微分时间常数,并将设定值设定为所需的液位。

3. 开始实验:启动水泵,观察水箱液位的变化,并记录在实验报告中。

4. 数据分析:根据液位传感器的反馈信号,计算实际液位与设定值之间的差异,并根据PID控制器的算法计算出相应的控制量。

5. 调整控制参数:根据实验数据分析的结果,调整PID控制器的参数,如增大比例增益、调整积分时间常数和微分时间常数,再次进行实验。

6. 重复步骤3-5,直到达到所需的控制效果。

实验结果与分析:根据实验数据,绘制出液位随时间变化的曲线图。

通过分析曲线形状和数据变化趋势,判断控制系统的稳定性和响应时间。

如果液位在设定值附近波动较小,并且响应时间较短,则说明PID控制系统的参数调节较为合适。

结论:通过单容量水箱液位PID控制实验,我们学习了PID控制器的原理和调节方法,并掌握了PID控制器在液位控制中的应用。

同时,我们还了解到PID控制器的参数调节对控制系统的稳定性和响应时间有很大影响,需要通过实验数据的分析来进行参数调整。

这些知识和技能对于后续的控制系统设计和实施有着重要的指导意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二、单容水箱液位PID 控制系统
一、实验目的
1、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2、研究系统分别用P 、PI 和PID 调节器时的阶跃响应。

3、研究系统分别用P 、PI 和PID 调节器时的抗扰动作用。

4、定性地分析P 、PI 和PID 调节器的参数变化对系统性能的影响。

二、实验设备
1、THKGK-1型过程控制实验装置:
GK-02、 GK-03、 GK-04、 GK-07(2台)
2、万用表一只
3、计算机系统
三、实验原理
1、单容水箱液位控制系统
图7-1、单容水箱液位控制系统的方块图
图7-1为单容水箱液位控制系统。

这是一个单回路反
馈控制系统,它的控制任务是使水箱液位等于给定值所要
求的高度;并减小或消除来自系统内部或外部扰动的影
响。

单回路控制系统由于结构简单、投资省、操作方便、
且能满足一般生产过程的要求,故它在过程控制中得到广
泛地应用。

当一个单回路系统设计安装就绪之后,控制质量的好
坏与控制器参数的选择有着很大的关系。

合适的控制参
数,可以带来满意的控制效果。

反之,控制器参数选择得
不合适,则会导致控制质量变坏,甚至会使系统不能正常
工作。

因此,当一个单回路系统组成以后,如何整定好控
制器的参数是一个很重要的实际问题。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

图7-2单容液位控制系统结构图 系统由原来的手动操作切换到自动操作时,必须为无扰动,这就要求调节器的输出量能及时地跟踪手动的输出值,并且在切换时应使测量值与给定值无偏差存在。

一般言之,具有比例(P )调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密
切相关。

比例积分(PI )调节器,由于积分
的作用,不仅能实现系统无余差,而且只要t(s)T( c)
.10e ss
23
1
参数δ,Ti选择合理,也能使系统具有良好的动态性能。

比例积分微分(PID)调节器是在
PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图
7-3中的曲线①、②、③所示。

图7-3、P、PI和PID调节的阶跃响应曲线
四、实验内容与步骤
1、比例(P)调节器控制
1)、按图7-1所示,将系统接成单回路反馈系统(接线参照实验一)。

其中被控对象是上水箱,被控制量是该水箱的液位高度h1。

2)、启动工艺流程并开启相关的仪器,调整传感器输出的零点与增益。

3)、在老师的指导下,接通单片机控制屏,并启动计算机监控系统,为记录过渡过程曲线作好准备。

4)、在开环状态下,利用调节器的手动操作开关把被控制量“手动”调到等于给定值(一般把液位高度控制在水箱高度的50%点处)。

5)、观察计算机显示屏上的曲线,待被调参数基本达到给定值后,即可将调节器切换到纯比例自动工作状态(积分时间常数设置于最大,积分、微分作用的开关都处于“关”的位置,比例度设置于某一中间值,“正-反”开关拔到“反”的位置,调节器的“手动”开关拨到“自动”位置),让系统投入闭环运行。

6)、待系统稳定后,对系统加扰动信号(在纯比例的基础上加扰动,一般可通过改变设定值实现)。

记录曲线在经过几次波动稳定下来后,系统有稳态误差,并记录余差大小。

7)、减小δ,重复步骤6,观察过渡过程曲线,并记录余差大小。

8)、增大δ,重复步骤6,观察过渡过程曲线,并记录余差大小。

9)、选择合适的δ值就可以得到比较满意的过程控制曲线。

10)、注意:每当做完一次试验后,必须待系统稳定后再做另一次试验。

2、比例积分调节器(PI)控制
1)、在比例调节实验的基础上,加入积分作用(即把积分器“I”由最大处“关”旋至中间某一位置,并把积分开关置于“开”的位置),观察被控制量是否能回到设定值,以验证在PI控制下,系统对阶跃扰动无余差存在。

2)、固定比例度δ值(中等大小),改变PI调节器的积分时间常数值Ti,然后观察加阶跃扰动后被调量的输出波形,并记录不同Ti值时的超调量σp。

3)、固定积分时间T i于某一中间值,然后改变δ的大小,观察加扰动后被调量输出的动态波形,并列表记录不同δ值下的超调量σp。

4)、选择合适的δ和Ti值,使系统对阶跃输入扰动的输出响应为一条较满意的过渡过程曲线。

此曲线可通过改变设定值(如设定值由50%变为60%)来获得。

3、比例积分微分调节(PID)控制
1)、在PI调节器控制实验的基础上,再引入适量的微分作用,即把D打开。

然后加上与前面实验幅值完全相等的扰动,记录系统被控制量响应的动态曲线,并与实验步骤(二)所得的曲线相比较,由此可看到微分D对系统性能的影响。

2)、选择合适的δ、Ti和Td,使系统的输出响应为一条较满意的过渡过程曲线(阶跃输入可由给定值从50%突变至60%来实现)。

3)、用计算机记录实验时所有的过渡过程实时曲线,并进行分析。

五、注意事项
1、实验线路接好后,必须经指导老师检查认可后才能接通电源。

2、必须在老师的指导下,启动计算机系统和单片机控制屏。

3、若参数设置不当,可能导致系统失控,不能达到设定值。

六、实验报告要求
1、绘制单容水箱液位控制系统的方块图。

2、用接好线路的单回路系统进行投运练习,并叙述无扰动切换的方法。

3、P调节时,作出不同δ值下的阶跃响应曲线。

4、PI调节时,分别作出Ti不变、不同δ值时的阶跃响应曲线和δ不变、不同Ti值时的阶跃响应曲线。

5、画出PID控制时的阶跃响应曲线,并分析微分D的作用。

6、比较P、PI和PID三种调节器对系统余差和动态性能的影响。

相关文档
最新文档