导数中的不等式运用
利用导数证明或解决不等式问题

利用导数证明或解决不等式问题
导数在解决不等式问题中起着非常重要的作用,利用导数可以轻松地证明和解决各种
不等式问题。
本文将通过一些具体的例子,来展示导数在不等式问题中的应用。
我们来看一个简单的例子:证明当x>0时,e^x\geq1+x。
我们可以利用导数来证明这
个不等式。
我们计算e^x和1+x的导数,分别为e^x和1。
然后我们发现e^x-1\geq x,这意味着在x>0时,e^x\geq1+x。
这样就利用导数证明了这个不等式。
除了证明不等式,我们还可以利用导数来解决不等式问题。
我们要求解不等式
x^2-5x+6>0。
我们可以通过求解x^2-5x+6的导数来判断x^2-5x+6的增减性。
首先求导得
到2x-5,然后令2x-5=0,解得x=\frac{5}{2}。
这说明在x<\frac{5}{2}时,x^2-5x+6<0,而在x>\frac{5}{2}时,x^2-5x+6>0。
不等式x^2-5x+6>0的解集是x<\frac{5}{2}或
x>\frac{3}{2}。
浅析导数在不等式证明中的应用

浅析导数在不等式证明中的应用
导数是数学中一个重要的概念,它可以证明许多数学定理,也是很多学科研究的基础。
比如,在做不等式证明时,导数会保证证明的连贯性和有效性。
误差分析和最优化问题是数学研究中常常遇到的问题,解决这些问题的关键在于找到较好的函数,以便评估结果的可靠性。
一个函数对于给定的变量可以描述为一个函数模型,那么我们可以利用导数来推测变量之间的关系,其中,导数也可以证明不等式定理。
在不等式领域,可以借助导数分析函数的变化情况,找出函数拐点或者极值,以证明不等式定理。
此外,导数也可以用来证明概率采样的中心极限定理,以及熵的最小值定理。
更重要的是,导数还有助于优化不等式的解,例如证明梯度下降优化算法最优解是全局最优解,以此来满足最优性原理要求。
总之,导数是研究数学问题中一个不可缺少的重要概念,它在不等式证明中的作用是非常重要的。
特别是,根据导数的微分性质,可以衡量函数变化的快慢,从而有效解决不等式证明问题。
导数在不等式证明中的应用

导数在不等式证明中的应用摘 要本文归纳、介绍了用导数证明不等式的几种证明思路和证明方法.使用这些方法可以简洁、快速地解决一些不等式的证明问题.关键词 导数; 不等式; 函数在数学学习中,不等式是证明定理与公式的工具,不等式的证明又蕴涵着许多数学做题的技巧.其证明方法有很多且难易不同,所用技巧也不相同.结合对微分学的学习发现导数在不等式的证明中有着广泛的应用.本文我们就导数在不等式证明中的应用作以下五方面的归纳,分别介绍具体的证明思路和证明方法.1 利用函数单调性证明不等式该方法使用于某区间I 上成立的函数不等式,一般地,证明区间I 上的不等式()()f x g x >时,可以选择()()()F x f x g x =-作为辅助函数.对()F x 求导,判断()F x '是大于0或小于0,判定()F x 的单调性,从而证明不等式.定理 [1]1 设函数)(x f 在区间I 上可导,则)(x f 在I 上递增(递减)的充要条件是()0(()0)f x f x ''><.例1 设0>x ,证明不等式)1(2)1ln(222x x x x x x +-<+<-成立. 证明 令2)1ln()(xx x x f +-+=,显然.0)0(=f 当0>x 时,有 01111)(2>+=+-+='xx x x x f从而)(x f 在),0(+∞内严格递增,又)(x f 在0=x 处连续,所以,当0>x 时,.0)0()(=>f x f即 .2)1ln(2x x x ->+ (1) 设)1(2)1ln()(2x x x x x g ++-+=,则0>x 时,0)1(2)1(2)1(2111)(2222<+-=+-+⋅+-+='x x x x x x x x g 所以)(x g 在),0(+∞内递减,又)(x g 在0=x 处连续,故0>x 时,有0)0()(=<g x g即 )1(2)ln(2x x x x +-<(2)由(1)、(2)可知,当0>x 时,有)1(2)1ln(222x x x x x x +-<+<-. 注 构造适当的辅助函数,使得证明简洁些是很有必要的.为此,往往对待证的不等式作适当的恒等变形.2 利用函数的极值证明不等式此法使用范围也是在某区间上成立的不等式,这里所作的辅助函数()F x 比较的不是函数的端点,而是极值和最值.定理]1[3 设函数)(x f 在点0x 连续,在某邻域),(00δx U 内可导,)1(若当),(00x x x δ-∈时0)(≤'x f ,当),(00δ+∈x x x 时0)(≥'x f ,则)(x f 在点0x 取得极小值.)2(若当),(00x x x δ-∈时0)(≥'x f ,当),(00δ+∈x x x 时0)(≤'x f ,则)(x f 在点0x 取得极大值.定理]1[4 设函数)(x f 在0x 的某邻域),(0δx U 内一阶可导,且0)(0='x f ,0)(0≠''x f .)1(若0)(0<''x f ,则)(x f 在0x 取得极大值. )2(若0)(0>''x f ,则)(x f 在0x 取得极小值.例3 证明:121-p ≤p p x x )1(-+≤1.,10≤≤x 1>p .分析 由待证不等式建立辅助函数,当)(x f 在定义域内可导时,只须解方程()0f x '=得出稳定点,再对每个稳定点应用定理3或定理4判定是否为极值点,求出极大(小)值,再借助函数的单调性证明不等式成立.证明 引入辅助函数)(x f =ppx x )1(-+,则有])1([)(11----='p p x x p x f ,求得稳定点21=x , 又0)1()[1()(]22>-+-=''--p p x x p p x f故21=x 是)(x f 在)1,0(的唯一极值点,且有极小值121)21(-=p f ,而1)1()0(==f f 为)(x f 在]1,0[上最大值,于是有121-p ≤p p x x )1(-+≤1.例4 设12ln ->a 为任一常数,试证:当0>x 时,xe ax x <+-122. 证明 当0>x 时,取2()21xf x e x ax ≡-+-.因0)0(='f ,所以只要证明当0>x 时022)(>+-='a x e x f x,或0)(min 0>'>x f x令 02)(=-=''xe xf ,解得稳定点 2ln =x 当2ln <x 时,0)(<''x f 2ln >x 时,0)(>''x f所以,2ln =x 是)(x f 的最小值点.即有 a f x f x 22ln 22)2(ln )(min 0+-='='>02)2ln 1(2>+-a 故 当0>x 时,xe ax x <+-122成立.注 利用最值证明不等式,如果函数()()()F x f x g x =-在I 上不是单调函数,要证在I 上有()()f x g x ≥成立,不妨证明()F x 在I 上的最小值0()0F x ≥;要证在I 上有()()f x g x ≤成立,不妨证明()F x 在I 上的最大值0()0F x ≤.4 利用函数的凸凹性证明不等式函数的凸凹性的重要应用之一是证明不等式,许多不等式问题用以前的方法(如中值定理、泰勒公式等)证明起来十分困难,但利用函数的凸凹性质,可以方便、快捷地得到结论.定理]6[5 )(x f 为I 上的凸函数的充要条件是:对于I 上的任意三点321x x x <<总有32212132()()()()f x f x f x f x x x x x --≤--. 例5 利用)(x f ln x =-(0)x >是凸函数,证明:1212nnx x x λλλ≤ 1122n n x x x λλλ+++ .其中0i x >,0i λ>,11nii λ==∑.证明 因为)(x f ln x =-(0)x >是凸函数,所以詹森不等式11()()nni iiii i f x f x λλ==≤∑∑成立.即 1122ln()n n x x x λλλ-+++ ≤1122[ln ln ln ]n n x x x λλλ-+++1122ln()n n x x x λλλ-+++ ≤1212ln()n n x x x λλλ-亦即 1122ln()n n x x x λλλ+++ ≥1212ln()n n x x x λλλ从而 1212nnx x x λλλ≤ 1122n n x x x λλλ+++注 如果)(x f 是I 上凸(凹)函数,那么由定义,对于I 上的任意两点1x ,2x 总有12121212()()()()()(())2222x x f x f x x x f x f x f f ++++≤≥, 所以只需证明)(x f 在I 上是凸(凹)函数即可证上述不等式.6 利用两导数的不等性证明不等式使用该方法,可以有待证不等式建立两个再端点值相等的函数,比较两函数导数的大小 ,应用下面定理证明不等式.定理]4[7设函数(),()f x g x 满足:(1)在区间[,]a b 上可导;(2)在半开区间(,]a b 上有,()()f x g x ''>; (3)()()f a g a =, 则,在[,]a b 上,有()()f x g x >.证明 设()()()F x f x g x =-,则在[,]a b 上,有()()()0F x f x g x '''=->因而,()F x 是(,]a b 上的增函数另一方面,()()()0F a f a g a =-=,且lim ()()0x a F x F a +→==,故()F x 在[,]a b 上递增且()0F a =于是,当(,]x a b ∈时,(,]x a b ∈,即()()f x g x >.此定理具有明显的几何意义:如果曲线(),()y f x y g x ==,都过一点(,())M a f a ,且当a xb <≤时,曲线()y f x =的切线斜率大于曲线()y g x =的切线斜率,则曲线()y f x =必在曲线 ()y g x =的上方.类似地可以得到定理]3[8 设函数(),()f x g x 满足: (1)在区间[,]a b 上可导;(2)在半开区间[,)a b 上,有()()f x g x ''<; (3)()()f b g b =, 则, 在[,]a b 上,有()()f x g x >.例8 证明3sin 6x x x ->. (0)x <证明 设3(),6x f x x =- ()sin g x x =,显然(0)(0)f g =,对(),()f x g x 求导得,2()12x f x '=-,()cos g x x '=为在(,0)-∞上判断()f x '与()g x '的大小,在求一次导数,得()f x x ''=-,()sin sin()g x x x ''=-=-因0x <,即0x ->,故sin()x x ->-.又因为(0)(0)1f g ''==,在(,0)-∞上应用定理7即知()()f x g x ''<,再在(,0)-∞上应用定理7,知()()f x g x >,即3sin 6x x x -> (0)x <.以上介绍了六种应用导数证明不等式的方法,并且举例说明了其证明思路及方法,体现了导数在证明不等式中的应用,关于文献[5]、[7]、[8]、[10]中给出的方法对于知识理论研究具有十分重要的价值.证明不等式的方法有很多种,在这里只介绍了其中的六种方法,对于文献[9]中的介值性的应用,其用来证明不等式的应用还有待于研究.在证明不等式中,通常需要根据待证不等式构造辅助函数,然后借助导数知识分别利用相应的方法去证明,许多情况下可以应用多种方法综合地进行证明.参考文献[1] 华东师范大学数学系.编数学分析上册[M]. 北京: 高等教育出版社,2001,119-156.[2] 裴礼文.数学分析内容、方法与技巧[M].(上)北京: 高等教育出版社,1993,170-205.[3] 邵剑等.大学数学考研专题复习[M]. 北京: 科学出版社,2001,300-309.[4] 周晓农.导数在不等式证明中的应用[J].金筑大学学报,2000,39(3):107-111.[5] 赵朋军.用导数证明不等式[J].商洛师范专科学校学报,2005,19(1):96-98.[6] 刘绛玉,郝香芝,陈佩宁.不等式的证明方法[J].石家庄职业技术学院学报,2001,16(6):39-41.[7] 刘恒群.用导数研究不等式[J].宁夏工学院学报,1997,9(1):63-64.[8] 梁俊平.导数在不等式证明中的应用[J].龙岩师专学报,1997,15(3):167-170.[9] 苏农.关于导数的介值性的简单应用[J].高等数学研究,2006,9(5):55-56.[10] 尚肖飞,贾计荣.利用导数证明不等式的若干方法[J].太原教育学院学报,2002,20(2):35-37.。
导数在不等式证明中的应用

导数在不等式证明中的应用齐雨萱高中数学学习中,不等式是研究各项数学问题的基础工具,不等式证明是一种常见数学题型,也是同学们较为头疼的数学题型之一,要想提高自身的不等式证明准确率和效率,就必须充分掌握运用导数理论展开科学解题,导数理论证明不等式是最为高效和基本的一种解题方法,合理利用导数工具进行不等式实践证明,能够有效将不等式证明过程从困难转化为简单,帮助自身建立起更好的数学自信心,并提高数学解题综合能力。
本文将对导数在不等式证明中的应用展开分析与探讨,为不等式证明过程提供一定借鉴与参考。
1 合理运用导数单调性证明不等式在实践计算函数某个区间导数最大值或者小于0时,可以通过合理运用导数单调性展开科学高效证明。
首先,必须准确计算出该函数在此区间中表现出来的递减或者递增过程,这样才能够顺利证明不等式问题。
在日常证明数学不等式过程中,要学会结合不等式的不同特点,合理运用不同形式构造出对应的函数,同时科学采用导数工具去证明出实际构造出函数的单调性,这样一来就能够根据函数单调性特征去完成对该不等式的有效证明,提高整个证明解题过程的效率。
通过去科学准确判断出函数单调性,就可以比较出区间大小,同时在该区间中融入不等式,有效将不等式与函数结合在一起,除此之外,要正确认识到利用导数单调性进行证明不等式能够为自身提供极为实用的解题思路,无论是多复杂的曲线,往往只需要经过两个步骤就可以实现对不等式题目的高效准确证明。
这两个解题步骤是先将不等式与函数有机结合起来,接着准确判断出该函数在对应区间的单调性。
比如,当遇到这个问题时,已知X〉0,证明X-X2/2-1N (1+X)〈0,我们在证明这个不等式的时候,可以合理利用导数单调性去进行有效证明。
在相应单调区间内,通过判断函数是递减还是递增去得出该不等式是否成立。
证明解题步骤如下所示:假设函数f(X)=X-X2/2-1N(1+X)(X〉0),则f (X)=X-X2/2,当X〉0时,f(X)〈0,这样我们就能够准确判定出f(X)在X〉0区间中该函数是一种递减的发展趋势,X=0可以去除函数的最大值,通过f(X)〈f(0)有效证明出f(X)〈0成立,并且也能够准确证明出X-X2/2-1N(1+X)〈0是成立的。
导数在证明不等式中的有关应用

导数在证明不等式中的有关应用1.最值的判定导数可以帮助我们判断一个函数在其中一区间的最值。
具体来说,如果在一个区间内,函数的导数恒为零或者导数的正负性在其中一点发生变化,那么在该区间内函数的最值就会出现。
例如,考虑函数$f(x)=x^2-4x+3$。
我们可以通过求取导数$f'(x)=2x-4$,并令其等于零,得到$x=2$。
通过检查导数的符号,可以确认在$x<2$时导数为负,$x>2$时导数为正。
因此,在$x<2$时,函数的导数为负,说明函数在这个区间上是递减的;而在$x>2$时,函数的导数为正,说明函数在这个区间上是递增的。
因此,根据导数的正负性和最值判定原则,我们可以得出结论:函数$f(x)$在区间$(-\infty,2)$上单调递减,在区间$(2,+\infty)$上单调递增。
进一步,我们可以求得函数的最值,即当$x=2$时,函数取得最小值。
因此,我们得到了函数$f(x)$的最值以及最值的取值点。
2.利用导数证明不等式的成立导数可以被用来证明各种类型的不等式。
其中一个常见的方法是使用导数的定义和可微函数的局部性质。
考虑函数$f(x)$在闭区间$[a,b]$上有定义且在开区间$(a,b)$内可微。
如果在$(a,b)$内存在一个点$c$,使得$f'(c)>0$,那么基于导数的定义,我们可以得出结论:对于任意的$x \in (a,b)$,都有$f'(x)>0$。
这意味着$f(x)$在$(a,b)$内是单调递增的。
我们可以进一步得出结论:对于任意的$x \in [a,b]$,都有$f'(x) \geq f'(a)$。
因此,我们可以断定$f(x)$在闭区间$[a,b]$上是凸函数。
根据凸函数的性质,我们可以利用函数的凸性证明各种类型的不等式。
例如,我们可以证明对于任意的$x>0$和$y>0$,成立如下的不等式:$\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y}$。
导数在研究不等式中的应用举例

导数在研究不等式中的应用举例陕西张磊导数问题和不等式问题相互交织构成了高考试题中的一道亮丽的风景线,常见的题型有四种.基本方法:构造函数,利用导数研究函数的单调性来解或证不等式或求最值研究恒成立问题.1 比较两个函数值大小(尤其比较两抽象函数)(1) 设函数f(x) , g(x)在(a ,b)上可导,且f′(x)>g′(x) ,则当a<x<b 时有( )(A) f(x)> g(x) (B) f(x)+ g(a)> g(x)+ f(a)(C) f(x)< g(x) (D) f(x)+ g(b)> g(x)+ f(b)解构造函数F(x)= f(x) − g(x) ,则F′(x)=f′(x) −g′(x)>0 ,故函数F(x)在区间[a ,b]上递增 ,又a<x<b ,故F(a)< F(x)< F(b) ,即f(a)−g(a)<f(x)−g(x)<f(b)−f(b) 变形得选B(2) 若函数y= f(x)在(0 ,+∞)上可导,且不等式x f′(x)> f(x)恒成立,又常数a ,b满足a>b>0 ,则下列不等式一定成立的是( )(A) bf(a)>af(b) (B) bf(a)<af(b) (A) af(a)>bf(b) (A) af(a)<bf(b)解构造函数F(x)=f(x)x ,则F′(x)=xf′(x)−f(x)x2>0 , 故函数F(x)=f(x)x在区间(0 ,+∞)上递增,又a>b>0 ,从而f(a)a >f(b)b,即选A2 求解不等式(3) 设f(x) , g(x)分别是定义在R上的奇函数和偶函数,当x<0时, f′(x)g(x)+f(x)g′(x)>0 ,且g(-3)=0,则不等式f(x)g(x)<0的解集是( )(A) (−3 ,0)∪(3 ,+∞) (B) (−3 ,0)∪(0 ,3)(C) (−∞ ,−3)∪(3 ,+∞) (D) (−∞ ,−3)∪(0 ,3)解构造函数F(x)= f(x)g(x),则F(x)= f(x)g(x)+f(x)g′(x)>0 , 故函数F(x)在R上递增,又f(x) , g(x)分别是定义在R上的奇函数和偶函数且g(-3)=0结合题意提供的信息作出大致图像如图示,不难得到不等式解集为D3 含参不等式恒成立问题解不等式恒成立问题的基本思想是把问题转化为求函数的最值或函数的值域的端点问题.利用导数研究不等式恒成立问题,首先要构造函数,利用导数研究函数单调性,求出最值,进而得出相应的含参不等式,从而求得参数的取值范围;也可分离变量构造函数,直接把问题转化为函数最值问题.(4)已知函数f(x)=axlnx的图像在点(e ,f(e))处的切线与直线y=2x平行(其中e为自然对数的底数),g(x)=x2−bx−2①求函数f(x)的解析式②对一切x∈(0 ,e],3 f(x)≥g(x)恒成立,求实数b取值范围.解: ①依题, 函数f(x)=axlnx的图像在点(e ,f(e))处的切线的斜率k=2,即f ′(e)=2又f ′(x)=a(lnx+1),令a(lne+1)=2,得a=1,∴f(x)= xlnx②对一切x ∈(0 ,e],3 f(x)≥g(x)恒成立,∴ 3 xlnx ≥x 2−bx −2在x ∈(0 ,e]上恒成立.即b ≥x −3lnx − 2x 在x ∈(0 ,e]上恒成立, (分离变量法)令h(x)= x −3lnx − 2x x ∈(0 ,e]则h ′(x)=(x−1)(x−2)x 2 由h ′(x)=0 得x=1或x=2 ∴x ∈(0 ,1)时h ′(x)>0 h(x)单调递增;x ∈(1 ,2)时h ′(x)<0 ,h(x) 单调递减 x ∈(2 ,e)时, h ′(x)>0 , h(x)单调递增∴h(x)极大值=h(1)=-1,而h(e)=e −3−2e −1<-1∴h(x)max=h(1)=-1∴b ≥h(x)max=-1故实数b 的取值范围为[-1 ,+∞)(5) 已知函数f(x)=ax+b x +2−2a (a>0)的图像在点(1 ,f(1))处的切线与直线y=2x+1平行.① 求a ,b 满足的关系式② 若f(x)≥2lnx 在[1 ,+∞)上恒成立,求a 的取值范围. 解 ① f ′(x)=a −bx ,根据题意f ′(1)=a −b=2 ,即b=a −2 ② 由①知, f(x)=ax+a−2x +2−2a令g(x)= f(x)−2lnx= ax+a−2x +2−2a −2lnx ,x ∈[1 ,+∞), 则g(1)=0 ,g ′(x)=a − a−2x − 2 x =a (x−1)(x−2−a a )x , 当0<a<1时 , 2−a a >1 若1<x<2−a a,则g′(x)<0 , g(x)在[1 ,2−aa) 上为减函数所以g(x)< g(1)=0 , f(x)≥2lnx在[1 ,2−aa)上恒不成立当a≥1时,2−aa≤1 ,当x>1时, g′(x)>0 , g(x)在[1 ,+∞)上为增函数,又g(1)=0 ,所以f(x)≥2lnx综上所述,所求a的取值范围是[1 ,+∞)4 利用导数证明不等式对于只含有一个变量的不等式都可以通过构造函数,然后利用函数的单调性和极值解决.(6) 设函数f(x)=x+a x2+blnx ,曲线y=f(x)过 P(1 ,0),且在点P处的切线斜率为2(i) 求a ,b的值 (ii) 证明f(x)≤2x−2解 (i)f′(x)=1+2ax+bx 由已知条件得{f(1)=0f′(1)=2即{1+a=01+2a+b=2解得 a=-1 b=3(ii)由(i)知f(x)=x−x2+3lnx 设g(x)= f(x)−(2x−2)=2−x−x2+3lnx 则g′(x)=-1−2x+3x =−(x−1)(2x+3)x当0<x<1时g′(x)>0 ;当x>1时g′(x)<0所以g(x)在(0 ,1)上单调递增,在(1 ,+∞)内单调递减 ,,而g(1)=0故当x>0时 , g(x)≤0 ,即f(x)≤2x−2解题心得:利用导数证明不等式成立,重点是构造适当的函数,利用导数的方法研究函数的单调性,通过单调性证明不等式.(7) 已知f(x)=12x2+lnx ,求证:在[1 ,+∞)上,f(x)的图像总在g(x)=23x3的图像的下方.解析: 本题等价于证明:当x≥1时,不等式12x2+lnx<23x3恒成立构造函数F(x)=12x2+lnx−23x3 ,则F′(x)=x+1x−2x2=(1−x)(1+x+2x2)x因为x≥1 所以F′(x)≤0 故F(x)在区间[1 ,+∞)上是减函数,从而F(x)≤ F(1)=-16<0 ,即12x2+lnx<23x3故在[1 ,+∞)上f(x)的图像总在g(x)=23x3的图像的下方.通过以上几例可以看出,构造辅助函数是用导数方法求解或求证不等式问题的关键,只要函数构造的恰当,求解及推证的过程就会特别的简单、明快.。
导数的应用——利用导数证明不等式

导数的应用——利用导数证明不等式导数是微积分中的重要概念,它不仅在数学中有广泛的应用,还能帮助我们解决一些实际问题。
利用导数来证明不等式是导数的另一个重要应用之一、在本文中,我们将探讨如何使用导数来证明一些不等式。
在开始之前,我们需要回顾一下导数的定义。
对于函数f(x),如果在特定点x处的导数存在,那么导数的定义为:f'(x) = lim(h->0) (f(x+h)-f(x))/h其中,f'(x)表示函数f(x)在点x处的导数。
证明不等式的基本方法是比较函数在一些区间内的导数大小关系。
如果可以证明在这个区间内,一个函数的导数始终大于另一个函数的导数,那么我们可以推断出,这个区间内的一个函数始终大于另一个函数,从而得到不等式的证明。
下面将通过一些具体的例子来说明如何利用导数证明不等式。
例1:证明当x>0时,e^x>1+x首先,我们定义函数f(x)=e^x-(1+x),我们需要证明当x>0时,f(x)>0。
对于上述函数,我们可以计算它的导数f'(x)=e^x-1、现在我们只需要证明当x>0时,f'(x)>0即可。
对于x>0,显然有e^x>1,因此f'(x)=e^x-1>1-1=0,即f'(x)>0。
由此可知,当x>0时,f(x)是递增函数。
由此得到,f(x)>f(0),即e^x-(1+x)>1-(1+0)=0。
因此,当x>0时,e^x>1+x。
例2:证明当 x>-1 时,(1+x)^n>1+nx在这个例子中,我们需要证明当 x>-1 时,(1+x)^n>1+nx,其中 n是正整数。
我们定义函数 f(x) = (1+x)^n-(1+nx),我们需要证明当 x>-1 时,f(x)>0。
同样地,我们计算这个函数的导数f'(x)=n(1+x)^(n-1)-n。
利用导数证明不等式的四种常用方法

利用导数证明不等式的四种常用方法方法一:使用函数的单调性如果函数f(x)在区间[a,b]上单调递增(或递减),则对于任意的x1,x2∈[a,b],有f(x1)≤f(x2)(或f(x1)≥f(x2))。
举例说明:证明当x>0时,e^x>1+x。
我们考虑函数f(x)=e^x-(1+x),取f'(x)=e^x-1、如果f'(x)≥0,则f(x)在x>0上单调递增,且f(x)在x=0处取到最小值。
通过计算可得f'(x)≥0,所以f(x)在x>0上单调递增,即e^x-(1+x)≥0。
即e^x>1+x。
方法二:使用函数的极值点如果函数f(x)在一些点x0处取得极小值(或极大值),则该点附近的函数值也有相应的性质。
举例说明:证明(1+x)^n > 1+nx,其中n为自然数。
我们考虑函数f(x) = (1+x)^n - (1+nx),取f'(x) = n(1+x)^(n-1) - n。
令f'(x) = 0,可得x = -1/(n-1)。
我们先考虑x ∈ (-∞, -1/(n-1)),在此区间上f'(x) > 0,所以f(x)在此区间上单调递增。
当x < -1/(n-1)时,有f(x) > f(-1/(n-1)) = 0。
所以在此区间上(1+x)^n > 1+nx。
同理可得,当x ∈ (-1/(n-1), +∞)时,也有(1+x)^n > 1+nx。
方法三:使用函数的凹凸性如果函数f(x)在一些区间上是凹的(或凸的),则函数的函数值也有相应的性质。
举例说明:证明当a>0时,有√a≤(a+1)/2我们考虑函数f(x) = √x,取f''(x) = -x^(-3/2)。
我们知道,当f''(x)≥0时,函数f(x)在该区间上为凹函数。
计算可得f''(x)≥0,所以f(x)在[0, +∞)上为凹函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题09 导数与不等式的解题技巧一.知识点基本初等函数的导数公式 (1)常用函数的导数①(C )′=________(C 为常数); ②(x )′=________; ③(x 2)′=________; ④⎝ ⎛⎭⎪⎫1x ′=________;⑤(x )′=________. (2)初等函数的导数公式①(x n )′=________; ②(sin x )′=__________; ③(cos x )′=________; ④(e x )′=________; ⑤(a x )′=___________; ⑥(ln x )′=________; ⑦(log a x )′=__________.(一)构造函数证明不等式例1.【山东省烟台市2019届高三数学试卷】已知定义在(﹣∞,0)上的函数f (x ),其导函数记为f'(x ),若成立,则下列正确的是( )A .f (﹣e )﹣e 2f (﹣1)>0B .C .e 2f (﹣e )﹣f (﹣1)>0D .【答案】A【分析】由题干知:,x <﹣1时,2f (x )﹣xf′(x )<0.﹣1<x <0时,2f (x )﹣xf′(x )>0.构造函数g (x )=,对函数求导可得到x <﹣1时,g′(x )<0;﹣1<x <0,g′(x )>0,利用函数的单调性得到结果.练习1.设是定义在上的偶函数的导函数,且,当时,不等式恒成立,若,,,则的大小关系是()A.B.C.D.【答案】D【分析】构造函数,根据函数的奇偶性求得的奇偶性,再根据函数的导数确定单调性,由此比较三个数的大小.【解析】构造函数,由于是偶函数,故是奇函数.由于,故函数在上递增.由于,故当时,,当时,.所以,,,根据单调性有.故,即,故选D.【点睛】本小题主要考查函数的奇偶性,考查构造函数法比较大小,考查化归与转化的数学思想方法,属于中档题.练习2.设函数,的导函数为,且满足,则()A.B.C.D.不能确定与的大小【答案】B【解析】令g(x)=,求出g(x)的导数,得到函数g(x)的单调性,【详解】令g(x)=,则g′(x)==,∵xf′(x)<3f(x),即xf′(x)﹣3f(x)<0,∴g′(x)<0在(0,+∞)恒成立,故g(x)在(0,+∞)递减,∴g()>g(),即>,则有故选B.练习3.定义在[0,+∞)上的函数满足:.其中表示的导函数,若对任意正数都有,则实数的取值范围是()A.(0,4]B.[2,4] C.(﹣∞,0)∪[4,+∞)D.[4,+∞)【答案】C【解析】由可得,令,则,利用导数可得函数在区间上单调递减,从而由原不等式可得,解不等式可得所求范围.【详解】∵,∴,当且仅当且,即时两等号同时成立,∴“对任意正数都有”等价于“”.由可得,令,则,∴.令,则,∴当时,单调递增;当时,单调递减.∴,∴,∴函数在区间上单调递减,故由可得,整理得,解得或.∴实数的取值范围是.故选C.【点睛】本题难度较大,涉及知识点较多.解题的关键有两个,一是求出的最小值,在此过程中需要注意基本不等式中等号成立的条件,特别是连续两次运用不等式时要注意等号能否同时成立;二是结合条件中含有导函数的等式构造函数,并通过求导得到函数的单调性,最后再根据单调性将函数不等式转化为一般不等式求解.主要考查构造、转化等方法在解题中的应用.(二)不等式中存在任意问题例2.【安徽省皖南八校2019届高三第二次(12月)联考数学】已知函数,,对于,,使得,则实数的取值范围是A.B.C.D.【答案】D【解析】,,使得,可得,利用,的单调性、最值即可求得.【详解】对于,,使得,等价于,因为是增函数,由复合函数增减性可知在上是增函数,所以当时,,令,则,若时,,,所以只需,解得.若时,,,所以只需,解得.当时,成立.综上,故选D.练习1.已知函数,函数(),若对任意的,总存在使得,则实数的取值范围是()A.B.C.D.【答案】B【解析】由题意,可得在的值域包含于函数的值域,运用导数和函数的单调性和值域,即可求解.【详解】由题意,函数的导数为,当时,,则函数为单调递增;当时,,则函数为单调递减,即当时,函数取得极小值,且为最小值,又由,可得函数在的值域,由函数在递增,可得的值域,由对于任意的,总存在,使得,可得,即为,解得,故选B.【点睛】本题主要考查了函数与方程的综合应用,以及导数在函数中的应用,其中解答中转化为在的值域包含于函数的值域,运用导数和函数的单调性和值域是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.练习2.函数,,若对,,,则实数的最小值是_________.【答案】14【解析】利用导数以及指数函数的性质,分别求出函数f(x),g(x)的最值,将问题转为求f(x)min≥g (x)min即可.【详解】,在递减,在递增,所以,在单调递增,,由已知对,,,可知只需f(x)min≥g(x)min即练习3.已知函数,且,,若存在,使得对任意,恒成立,则的取值范围是________.【答案】【解析】存在,使得对任意的,恒成立,即,由在上递增,可得,利用导数可判断在上的单调性,可得,由,可求得的范围;【详解】的定义域为,,当时,,,为增函数,所以;若存在,使得对任意的,恒成立,即,,当时,为减函数,,∴,,∴故答案为:.【点睛】对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数。
(三)数列与不等式【湖北省武汉市2019届12月高三数学试题】等差数列的前项和,若,例3.,则下列结论正确的是()A.,B.,C.,D.,【答案】A【解析】设f(x)=x3+2 018x判断函数的奇偶性以及函数的单调性,然后判断a8+a2011=2,且a2011<a8,推出结果.【详解】设f(x)=x3+2 018x,则由f(﹣x)=﹣f(x)知函数f(x)是奇函数.由f′(x)=3x2+2 018>0知函数f(x)=x3+2 018x在R上单调递增.因为(a8﹣1)3+2 018(a8﹣1)=1,(a2011﹣1)3+2 018(a2011﹣1)=﹣1,所以f(a8﹣1)=1,f(a2011﹣1)=﹣1,得a8﹣1=﹣(a2011﹣1),即a8+a2011=2,且a2011<a8,所以在等差数列{a n}中,S2018=2 018•=2 018•=2 018.故选:A.(四)极值点偏移与证明不等式例4.【福建省福州市2018-2019学年高三第一学期质量抽测】已知函数.(1)求曲线在点处的切线方程;(2)函数与函数的图像总有两个交点,设这两个交点的横坐标分别为,.(ⅰ)求的取值范围;(ⅱ)求证:.【答案】(1)(2)(ⅰ),(ⅱ)见解析【解析】(1)求出的导数,求得切线的斜率,由得切点由点斜式方程可得切线的方程;(2)(ⅰ)函数与函数的图像总有两个交点转化为函数有两个零点的问题,进而研究的导数及图像即可.(ⅱ)先由(ⅰ)得的单调性,分析出、不可能在同一单调区间内;设,将导到上,利用函数在上单调性,欲证,只需证明,结合,只需证明.再构造,结合单调性即可证明结论.【详解】(1)解:由已知得,∴∴,又∵,曲线在点处的切线方程为:.(2)(ⅰ)令,∴,由得,;由得,易知,为极大值点,又时,当时,即函数在时有负值存在,在时也有负值存在.由题意,只需满足,∴的取值范围是:(ⅱ)由题意知,,为函数的两个零点,由(ⅰ)知,不妨设,则,且函数在上单调递增,欲证,只需证明,而,所以,只需证明.令,则∴.∵,∴,即所以,,即在上为增函数,所以,,∴成立.所以,.【点睛】本题属于极值点偏移问题,主要考查函数与导数的综合应用能力,具体涉及到用导数来研究函数的单调性、极值,教学中的重点和难点.练习1.已知函数的极小值为.(1)求的值;(2)任取两个不等的正数,且,若存在正数,使得成立,求证:.【答案】(1);(2)见解析.【解析】(1)求函数的导数,分类讨论,确定函数的单调性,即可得到结论;(2)求出后把用,表示,再把与作差后构造辅助函数,求导后得到构造的辅助函数的最小值大于0,从而得到,运用同样的办法得到,最后得到要证的结论.【详解】(1)显然,,令,解得.当时,若,为减函数;若,为增函数,∴在处取得极小值,∴解得当时与题意不符,综上,.(2)由(1)知,,∴,∴,即.=.设,则再设,则,在上是减函数∴,即,又∴ ,即,∴,∴,同理可证得, ∴.【点睛】本题考查了利用导数研究函数的单调性,由,得函数单调递增,得函数单调递减;解题的关键亦为其难点即通过构造函数和,利用函数的单调性和极值证明不等式,是一道难度较大的综合题型.练习2.已知函数,.(Ⅰ)当时,求函数在区间上的最值;(Ⅱ)若,是函数的两个极值点,且,求证:.【答案】(Ⅰ) 最小值为,最大值为;(Ⅱ)证明见解析。
【解析】(Ⅰ)求出函数f(x)的定义域,运用导函数判断函数的单调性,求解函数的最值即可.(Ⅱ)x1,x2是函数的两个极值点,所以(x1)=(x2)=0.令通过及构造函数,利用函数的导数判断函数的单调性,推出,所以,即可证明结论.【详解】(Ⅰ)当时,,函数的定义域为,所以,当时,,函数单调递减;当时,,函数单调递增.所以函数在区间上的最小值为,又,显然所以函数在区间上的最小值为,最大值为.(Ⅱ)因为所以,因为函数有两个不同的极值点,所以有两个不同的零点.因此,即有两个不同的实数根,设,则,当时,,函数单调递增;当,,函数单调递减;所以函数的最大值为。
所以当直线与函数图像有两个不同的交点时,,且要证,只要证,易知函数在上单调递增,所以只需证,而,所以即证,记,则恒成立,所以函数在上单调递减,所以当时所以,因此.练习3.已知函数.(1)讨论的单调性;(2)若存在两个极值点,证明:.【答案】(1)见解析;(2)证明见解析.【解析】(1)首先确定函数的定义域,之后对函数求导,之后对进行分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2)根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.【详解】(1)的定义域为,.(i)若,则,当且仅当,时,所以在单调递减.(ii)若,令得,或.当时,;当时,.所以在单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值点满足,所以,不妨设,则.由于,所以等价于.设函数,由(1)知,在单调递减,又,从而当时,.所以,即.【点睛】该题考查的是应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先保证函数的生存权,先确定函数的定义域,要对参数进行讨论,还有就是在做题的时候,要时刻关注第一问对第二问的影响,再者就是通过构造新函数来解决问题的思路要明确.练习4.已知函数.(1)求的单调区间;(2)若有极值,对任意的,当,存在使,证明:【答案】(1)详见解析;(2)详见解析.【解析】(1)求导数后根据a可分类讨论,找到导数大于零、小于零的解即可求出单调区间;(2)由(1)有极值,则,由题设化简得,作差比较,构造函数,利用导数可得,进而可得,再利用由知在上是减函数,即可得出结论.【详解】(1)的定义域为,.①若,则,所以在上是单调递增.②若,当时,,单调递增.当时,,单调递减.(2)由(1)当时,存在极值.由题设得又,设.则.令,则所以在上是增函数,所以又,所以,因此即又由知在上是减函数,所以,即.(五)构造函数例5.【河北省衡水中学2019届高三第一次摸考】已知函数.(1)讨论的单调性;(2)当,为两个不相等的正数,证明:.【答案】(1)时,在区间内为增函数;时,在区间内为增函数;在区间内为减函数;(2)见解析.【解析】(1)求出,分两种种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)设,原不等式等价于,令,则原不等式也等价于即.设,利用导数可得在区间内为增函数,,从而可得结论.(2)当时,.不妨设,则原不等式等价于,令,则原不等式也等价于即..下面证明当时,恒成立.设,则,故在区间内为增函数,,即,所以.【点睛】本题主要考查利用导数研究函数的单调性以及不等式的证明,属于难题.不等式证明问题是近年高考命题的热点,利用导数证明不等主要方法有两个,一是比较简单的不等式证明,不等式两边作差构造函数,利用导数研究函数的单调性,求出函数的最值即可;二是较为综合的不等式证明,要观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明.练习1.设函数.(1)若恒成立,求的取值范围;(2)对函数图像上任意两个点,,设直线的斜率为(其中为函数的导函数),证明:.【答案】(1)(2)证明过程详见解析【解析】(1)恒成立即,利用导函数研究函数的单调性与极值即可;(2)由要证,即证,令,,即证.【详解】(1)解法一:,,在为减函数,在为增函数.∴,由已知,所以所求范围为.实数的最大值为.。