紫外可见分光光谱法及其应用

合集下载

UV-Vis原理及应用概述

UV-Vis原理及应用概述

lnT
微分后除以上式可得浓度的相对误差为:
C
C
T T lnT
当溶液的透光率为36.8%或吸光度为0.434时, 浓度的相对误差最小。
T值在65~20%或A值在0.2~0.7之间,浓度相对 误差较小,是测量的适宜范围。
§3 分析条件的选择
仪器测量条件的选择 显色反应条件的选择 参比溶液的选择
A 分子中电子能级、振动能级和转动能级示意图
2. 电子跃迁主要类型
按照价电子性质不同讨论不同的紫外-可 见吸收光谱。 以甲醛分子为例: 存在σ电子,π电子,n(p)电子。
分子轨道理论:
σ成键轨道< π成键轨道< n 非键轨道<π*反键轨道<σ*反键 轨道
分子中外层电子能级及跃迁类型示意图
2.1 σ→σ*跃迁
1. 仪器测量条件的选择
1.1 适宜的吸光度范围
即当A=0.434时,吸光度测量误差最小。 最适宜的测量范围为0.2~0.7之间。
1.2 入射光波长的选择
通常是根据被测组分的吸收光谱,选择最 强吸收带的最大吸收波长(λmax )为入射波 长。当最强吸收峰的峰形比较尖锐时,往往 选用吸收稍低,峰形稍平坦的次强峰进行测 定。
1.3 狭缝宽度的选择
为了选择合适的狭缝宽度,应以减少狭缝 宽度时试样的吸光度不再增加为准。一般来 说,狭缝宽度大约是试样吸收峰半宽度的十 分之一。
2. 显色反应条件的选择
可见分光光度法一般用来测定能吸收可见光 的有色溶液。对某些无色或浅色物质进行测 定,常利用显色反应将被测组分转变为在可 见波长范围有吸收的物质。常见的显色反应 有配位反应、氧化还原反应等。
测定试样溶液的吸光度,需先用参比溶液调 节T为100% (A为0) ,以消除其它成分及 吸收池和溶剂等对光的反射和吸收带来的测 定误差。

5.紫外-可见吸收光谱法

5.紫外-可见吸收光谱法

•双波长分光光度计
双波长分光光度计的优点:是可以在有 背景干忧或共存组分吸收干忧的情况下 对某组分进行定量测定。 岛津UV-2700双光束双波长的
5.4 分析条件的选择 (一)显色反应的选择及类型 选择显色反应时应考虑的因素:
灵敏度高、选择性高、生成物稳定、显色剂在测定波 长处无明显吸收,两种有色物最大吸收波长之差:“对比 度”,要求△ > 60nm。
吸光度A与显色剂用量CR 的关系会出现如图所示的几种 情况。选择曲线变化平坦处。
2.反应体系的酸度
在相同实验条件下,分别测定不同pH值条件 下显色溶液的吸光度。选择曲线中吸光度较大且 恒定的平坦区所对应的pH范围。
3.显色时间与温度
由实验确定。
4.溶剂
一般尽量采用水相测定。
(三) 波长的选择
一般根据待测组分的吸收光谱,选择最大 吸收波长作为测定波长。
收物质最大限度的吸光能力,也反映了光度法测定该物质可 能达到的最大灵敏度。 (5)εmax越大表明该物质的吸光能力越强,用光度法测定该 物质的灵敏度越高。 ε>105:超高灵敏; ε=(6~10)×104 :高灵敏;
ε<2×104 :不灵敏。
3. 吸光度A与透光度T的关系
透过光的强度It与入射光的强度Io之比称 为透光度或透光率,用T表示。 T = I t / I0
⑶ π→π*跃迁
所需能量较小,吸收波长处于远紫外区的近紫外端或近 紫外区,摩尔吸光系数εmax一般在104 L· mol-1· cm-1以上,属于
强吸收。不饱和烃、共轭烯烃和芳香烃类均可发生该类跃迁 。如:乙烯π→π*跃迁的λmax为162 nm,εmax为1×104 L·mol1· cm-1。
在波长200-750nm内,基于分子内电子跃迁的吸收 光谱来确定物质的组成、含量,推测物质结构的一种 分析方法,又称为紫外-可见分光光度法。它属于分子 吸收光谱法。

紫外-可见分光光度法在药物检验中的应用

紫外-可见分光光度法在药物检验中的应用

紫外-可见分光光度法在药物检验中的应用摘要:随着我国医疗水平的提高,大众对药物的关注度也在提高,特别是近几年食品药品问题不断被曝光,大众越发重视药物生产的质量问题。

药物是给人们治病、保健的重要物质,能够对人类的身体起到预防、治疗的作用,所以药物的好坏会对人类的身体健康产生直接影响,因此对药物的检验十分重要。

目前我国检测药物的方法主要有气象色谱法、紫外分光光度法、液相色谱法等,本文主要讨论的是紫外可见分光光度法在药物检验中的应用。

关键词:紫外可见分光光度法;药物检验;应用一、我国药物检验现状药物质量问题一直是全民关注的重点问题,为了保证药物的质量,我们对药物的原料来源、生产、运输过程都要严格监管,对生产成成品的药物要进行检验。

药物检验标准具有科学性,我国药品质量标准经过多次修改完善,例如《中国药典》、《中华人民共和国卫生部药品标准》、《国家食品药品监督管理局国家药品标准》等等,都越来越完善、越来越细分、越来越科学。

目前我国药物检验方法不一,有的生产企业使用气相色谱法、有些企业使用紫外分光法,但是目的都是为了保证药物的质量,保障全民的健康。

二、紫外-可见分光光度法(一)紫外-可见分光光度法定义紫外-可见分光光度法的原理是根据物质对不同波长的单色光的吸收程度不同来反映物质的,通过该方法能够对物质进行定性和定量分析。

紫外-可见光分光光度法是基于郎伯-比尔定律上进行的一种测试方法,目前该方法较为成熟,被广泛应用在药物质量的检验和控制上。

(二)紫外-可见分光光度法的特点紫外-可见光分光光度法具有较高的灵敏度,能够适用于微量组分的测定,并且还具有较好的准确性,一般相对误差在2%-5%左右,可以说紫外-可见光分光光度法具有速度快、便捷、操作简单、灵敏度高、准确性好、仪器价格低等特点,是目前技术成熟且应用广泛的一种检测方法。

三、紫外-可见分光光度法在药物检验中的应用(一)用于药物鉴别紫外-可见光分光光度法对药物的鉴别是根据药物的吸收光谱呈现的特征判断的,例如观察吸收光谱的形状、吸收峰值的位置、最大吸收波长等。

《中国药典》2020年版四部通则 0401 紫外-可见分光光度法

《中国药典》2020年版四部通则 0401 紫外-可见分光光度法

《中国药典》2020年版四部通则0401 紫外-可见分
光光度法
《中国药典》2020年版四部通则0401紫外-可见分光光度法主要包括以下内容:
1.定义:紫外-可见分光光度法是一种通过测定物质在紫外-可见光区的吸收光谱,
对物质进行定性和定量分析的方法。

2.适用范围:适用于具有紫外-可见光吸收特性的物质的定性和定量分析。

该方法
广泛应用于药品、食品、环境等领域。

3.原理:基于物质吸收紫外-可见光后,其吸收光谱的波长和强度与物质的浓度和
种类有关,通过测量物质的吸收光谱,可以对其进行定性和定量分析。

4.操作方法:包括直接比较法、标准曲线法、差示光谱法、差示光谱比率法等。

根据不同情况选择合适的方法进行操作。

5.注意事项:
•在操作过程中应注意避免光的散射和干扰因素的影响。

•应注意控制实验条件,如温度、湿度、气压等,以确保实验结果的准确性和可靠性。

•对于某些特定物质,可能需要采用其他方法进行测定,如络合滴定法、离子交换法等。

总之,《中国药典》2020年版四部通则0401紫外-可见分光光度法为药品、食品、环境等领域提供了重要的分析手段,有助于保证分析结果的准确性和可靠性。

紫外可见分光光度法的应用现状及发展

紫外可见分光光度法的应用现状及发展

紫外可见分光光度法的应用现状及发展紫外可见分光光度法是一种常用的分析方法,广泛应用于药物、食品、环境、化工等领域。

该方法基于物质吸收紫外可见光谱的特性,通过测量样品在不同波长下的吸光度来确定其浓度。

本文将探讨紫外可见分光光度法的应用现状及发展。

一、应用现状1.药物分析紫外可见分光光度法在药物分析中应用广泛,可以用于测定药物的含量、纯度、杂质等。

例如,对于一些含有芳香族结构的药物,可以利用其在紫外区域的吸收特性进行定量分析。

此外,紫外可见分光光度法还可以用于药物的稳定性研究和药物代谢动力学研究等方面。

2.食品分析紫外可见分光光度法在食品分析中也有广泛的应用。

例如,可以用于测定食品中的维生素、色素、脂肪酸等成分的含量。

此外,还可以用于检测食品中的添加剂、农药残留等有害物质。

3.环境分析紫外可见分光光度法在环境分析中也有重要的应用。

例如,可以用于测定水中的有机物、无机物、重金属等成分的含量。

此外,还可以用于检测大气中的污染物、土壤中的有害物质等。

4.化工分析紫外可见分光光度法在化工分析中也有广泛的应用。

例如,可以用于测定化工产品中的有机物、无机物、杂质等成分的含量。

此外,还可以用于检测化工废水中的有害物质、化工气体中的污染物等。

二、发展趋势1.自动化程度提高随着科技的不断发展,紫外可见分光光度法的自动化程度也在不断提高。

例如,现在已经出现了自动进样、自动调节波长、自动记录数据等功能的紫外可见分光光度计,大大提高了分析效率和准确性。

2.微型化趋势明显随着微型化技术的不断发展,紫外可见分光光度法也在向微型化方向发展。

例如,现在已经出现了微型紫外可见分光光度计,可以进行微量样品的分析,适用于生物医学、环境监测等领域。

3.多元化应用随着人们对分析方法的需求不断增加,紫外可见分光光度法的应用也在不断扩展。

例如,现在已经出现了紫外可见分光光度法与其他分析方法的联用,如气相色谱-紫外可见分光光度法、液相色谱-紫外可见分光光度法等,可以更加准确地分析复杂的样品。

紫外-可见分光光度法测定

紫外-可见分光光度法测定

紫外-可见分光光度法测定1. 引言1.1 引言紫外-可见分光光度法是一种常用的分析化学方法,通常用于测定物质的浓度或测定物质的吸光度。

该方法利用紫外-可见光谱仪测量样品对紫外和可见光的吸收情况,从而推断样品中所含物质的浓度或结构。

在化学分析实验中,紫外-可见分光光度法具有灵敏度高、准确性高和简便易行的优点,因此被广泛应用于药物分析、环境监测、食品检测等领域。

本实验旨在通过该方法测定样品中目标物质的浓度,并探讨影响测定结果的因素。

通过对仪器原理、操作步骤、实验结果、数据分析和影响因素的详细讨论,我们将深入了解紫外-可见分光光度法的原理和应用,并为今后在相关领域的研究提供参考和借鉴。

希望本实验能够为我们提供更多关于分光光度法的实际操作经验,提升我们的实验技能和分析能力。

1.2 背景介绍紫外-可见分光光度法是一种广泛应用于化学分析领域的分析方法,通过测定物质在紫外-可见光区域的吸收特性,从而确定物质的浓度或者进行定性分析。

紫外-可见分光光度法具有操作简单、灵敏度高、选择性强的特点,被广泛应用于环境监测、食品安全检测、药品质量控制等领域。

随着科学技术的不断发展,紫外-可见分光光度法在实验室分析中扮演着越来越重要的角色。

通过测定物质在特定波长范围内的光吸收情况,我们可以获得关于物质性质的重要信息,如浓度、溶解度、稳定性等。

掌握紫外-可见分光光度法的原理和操作方法,对于提高实验准确性和效率具有重要意义。

在本文中,我们将介绍紫外-可见分光光度法的仪器原理、操作步骤、实验结果、数据分析和影响因素,希望能够为读者提供一份系统全面的紫外-可见分光光度法测定指南。

通过总结和展望,我们也希望能够进一步探讨该方法在化学分析领域的应用前景。

1.3 研究目的紫外-可见分光光度法是一种常用的分析化学技术,可以用于测定物质的吸光度,从而推断物质的浓度。

本实验的研究目的主要分为以下几点:1. 研究紫外-可见分光光度法在测定物质浓度方面的应用。

(整理)紫外可见分光光度计及其应用

科技论文写作期末作业西北民族大学生命科学与工程学院11级生物技术(1)班符朝方学号:P112114841紫外可见分光光度计及其应用李诗哲西北民族大学生命科学与工程学院兰州730100摘要:紫外可见分光光度计对于分析人员来说是最有用的分析工具之一,几乎每一个分析实验室都离不开紫外可见分光光度计。

下面介绍了紫外分光光度计的原理、结构及其特点,并介绍了它在生物领域的应用及其他方面的应用1引言:紫外可见分光光度计是一类很重要的分析仪器,无论在物理学、化学、生物学、医学、材料学、环境科学等科学研究领域,还是在化工、医药、环境检测、冶金等现代生产与管理行业,紫外可见分光光度计都获得了日益广泛的应用。

2原理:紫外可见分光光度法紫外可见分光光度法【1】是根据物质分子对波长为200~760nm 的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。

操作简单、准确度高、重现性好。

波长长的光线能量小,波长短的光线能量大。

分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。

物质的吸收光谱本质上就是物质中的分子和原子吸收了人射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。

由于各种物质具有不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这是分光光度定性和定量分析的基础。

分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。

2.1有机化合物的紫外可见吸收光谱【2】有机化合物的电子跃迁与紫外可见吸收光谱有关的电子有三种[[4],即形成单键的σ电子、形成双键的π电子以及未参与成键的n电子。

跃迁类型有:σ→σ*、n→σ*,π→π*、n→π四种。

饱合有机化合物的电子跃迁类型为σ→σ*,n→σ*跃迁,吸收峰一般出现在真空紫外区,吸收峰低于200nm,实际应用价值不大。

药物分析中的紫外可见吸收光谱法

药物分析中的紫外可见吸收光谱法紫外可见吸收光谱法在药物分析中的应用引言:药物分析是研究药物性质和质量的一项重要领域,其中紫外可见吸收光谱法被广泛应用于药物的定性和定量分析。

本文将就药物分析中紫外可见吸收光谱法的原理、仪器设备以及应用案例进行探讨。

一、原理紫外可见吸收光谱法是一种通过测量物质在紫外和可见光波段对电磁辐射的吸收来鉴定和定量分析物质的方法。

其基本原理是根据分子在特定波长的电磁辐射下,电子跃迁从基态到激发态,吸收特定波长的光能,并呈现出吸收峰。

二、仪器设备紫外可见吸收光谱法需要使用紫外可见分光光度计进行分析。

该仪器主要由光源、单色器、试样室、光电倍增管和计算机系统等组成。

光源提供紫外和可见光波段的光线,单色器用于选择特定波长的光线,试样室中放置待测样品,光电倍增管转化光信号为电信号,计算机系统用于数据处理和谱图显示等功能。

三、应用案例1. 药物质量控制紫外可见吸收光谱法可用于药物的定量分析和质量控制。

通过建立药物与特定波长光的吸收关系,可以快速准确地确定药物中特定成分的含量。

例如,对某种药物中有效成分含量进行测定,可以根据其在特定波长处的吸光度与含量之间的线性关系来计算出含量。

2. 药效研究紫外可见吸收光谱法还可用于药效研究中。

通过测量药物在不同波长下的吸光度,可以得到药物的吸收光谱。

根据吸收峰的强度和位置可以判断药物的溶解度、稳定性以及药物与其他物质的相互作用等信息,从而为药效研究提供依据。

3. 药物相互作用研究紫外可见吸收光谱法还可用于研究药物与其他物质之间的相互作用。

例如,通过测量药物与药剂、辅料以及体内代谢产物等物质之间的吸光度变化,可以分析药物在配方中的相互作用情况,为合理选用药剂和优化配方提供依据。

4. 药物稳定性研究药物在贮存和使用过程中会受到光线、温度、湿度等因素的影响,从而导致药物的质量变化。

紫外可见吸收光谱法可用于药物稳定性研究,通过测量药物在不同条件下的吸光度变化,可以评估药物的稳定性,从而为药物的储存和使用提供依据。

紫外可见光谱法的基本原理及其在医药中的应用


分析 化学
化 学 分 析
分析 化学
酸碱滴定法 配位滴定法 氧化还原滴定法 沉淀滴定法
红外光谱 紫外-可见光谱 原子吸收 原子发射 荧光、磷光 核磁共振
仪 器 分 析
光谱分析 色谱分析 质谱 电分析
二、紫外光谱的原理
1、分子吸收光谱的产生——由能级间的跃迁引起


能级:电子能级、振动能级、转动能级 跃迁:电子受激发,从低能级转移到高能级的过程
特点:①E小,λmax250~400nm,εmax<100
②溶剂极性↑,λmax↓ → 蓝移(短移)
R带举例
CH3 CH3 C=O max 279nm( 15)
O CH2=CH-C-H
max(R) 315nm( 14)
O CH3-C-H max 291nm( 11) O C-CH3 max(R) 319nm( 50)
(2) K带:来自德文Konjugierte(共轭)
由共轭双键的π→ π*跃迁产生

(—CH=CH—)n,—CH=C—CO—
特点: ① λmax 210-270nm,εmax>10000 ②共轭体系增长,λmax↑,εmax↑; ③溶剂极性↑时,λmax不变(双烯) 或发生红移(烯酮)。
K带举例
三部:
生物制品
药材及饮片、 植物油酯、 提取物等共 1146种
共101种
84种,占含量测定 52.1%
903种,占仪器分析 测定含量的87.6%
一、紫外光谱的由来 二、紫外光谱的原理 三、紫外光谱的术语
四、紫外光谱仪的类型
五、紫外光谱的应用
一、紫外光谱的由来
无机 化学
有机 化学
四大化 学
物理 化学

第四章紫外-可见分光光度法

3. 红移和紫移:吸收带的最大吸收波长发生移动, 向长波方向移动称为红移,向短波方向移动称为 紫移。
(三)有机化合物的紫外、可见光谱
1. 饱和烃及其取代衍生物 σ→σ*、n→σ* 2. 不饱和烃及共轭烯烃 σ→σ*、π→π* 3. 羰基化合物 n→σ*、π→π*和n→π* 4. 苯及其衍生物 E1带、 E2带、 B带 5. 稠环和杂环
当l以cm,c以mol/L为单位时,k称为摩尔吸 光系数,用ε表示,它比a更为常用,ε的单位 为L mol-1 cm-1,即: A = ε c l
当l以cm,c以百分浓度g/100mL为单位时,k 称为比吸光系数,用A1cm1%表示 ε = 0.1 M A1cm1%
用比吸光系数的表示方法特别适用于摩尔质 量未知的化合物。
(二)配位场跃迁
1. f-f跃迁
镧系和铜系元素的离子对紫外和可见光的吸收是 基于内层f电子跃迁而产生的,其吸收光谱是由一些狭 窄的特征吸收峰组成,且这些吸收峰不易受金属离子 所处的配位环境的影响。
2. d-d跃迁
过渡金属离子的d轨道在受到配位体场的作用时 产生分裂。d电子在能级不同的d轨道间跃迁,吸收紫 外或可见光产生吸收光谱。这种光谱的吸收带比较 宽,吸收峰强烈地受配位环境的影响。
光。
3. 吸收池
功能:盛放分析试样(一般是液体)
4. 检测器 功能:检测光信号,测量单色光透过溶
液后光强度变化的一种装置。 5. 信号显示系统
6. 紫外一可见分光光度计的类型
(1) 单波长单光束分光光度计
缺点:测量结果受电源波动的影响较大, 误差较大。
(2) 单波长双光束分光光度计
一个环外双键
5nm
同环二烯 39nm 一个β烷基 12nm 三个γ+烷基 54nm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 在方法上,随着可调谐染料激光器的广泛应用,光声光谱法 已经逐渐发展起来,逐渐应用于生物试样分析和研究药物 和化妆品等对皮肤的吸收和渗透,这也是一个值得重视的 方向。随着化学计量学的发展,将化学计量学方法应用于 药物光度分析,将是解决多组分测定以及中药等复杂样品 快速测定的有效途径。将色谱等分离分析技术与光度法联 用,也是在复杂基体样品分析和中草药有效成分分析鉴定 中常用的有效手段。 随着社会的发展和人们生活水平的提高,药物分析现场 化、家庭化的呼声越来越高。相应地,对药物分析仪器的 小型化、智能化的要求也越来越迫切。由金钦汉等研制的 一种廉价的智能化高灵敏手持式光度计以及相应的智能化 手持式专用仪器,已经由吉大-小天鹅仪器有限公司开始批 量生产,能够应用于蛋白质、碘药水、碘盐的现场分析。 这种仪器的研制和生产,将会给药物光度分析注入新的活 力。
2.0 1.5 1.0 0.5

返回
4
8
12
t 16
天然水中痕量铋的测定
• 原理:溴化十六烷基三甲胺(CTMAB)能增敏Bi(Ⅲ)对H2O2氧 化荔枝红素(R)褪色反应的抑制作用。H2O2能使R褪色;Bi能抑 制H2O2对R的褪色反应;CTMAB+Bi对R褪色有更大的抑制作用 • 条件:max 500 nm 500 9.3105 Lmol 1 1 cm 峰值吸光系数 0 ~ 80.0m g / L 线性范围 KCl-HCl缓冲溶液(pH=0.50) 以水作参比
n cR/cM
应用举例
• 紫外分光光度法测定蔬菜硝酸盐含量 • 紫外分光光度法测定莲子心总黄酮的含量 • 紫外分光光度法测定海红果中总黄酮的含 量 • 紫外分光光度法测定夏枯草微丸中总黄酮 的含量 • 紫外分光光度法测定大豆中异黄酮的含量
分光光度法在环境分析中的应用

分光光度法
生成络合物 氧化还原反应 置换反应
紫外可见分光光谱法及 其应用
孔德万(20071755) 沈词专(20071750)
光谱仪器
紫外可见分光光谱法
• (Ultraviolet-Visible Absorption Spectrometry,UV-Vis)是根据溶液中物质 的分子或离子对紫外可见光谱区辐射能的 吸收来研究物质的组成和结构的方法,也 称为紫外可见光吸收广度法。 • 紫外可见分光光谱法特点:仪器比较简单、 价廉、分析操作也比较简单,灵敏度高、 准确度高,而且有较高的分析速度。
返回
废水中甲醛的测定
• 原理:在室温酸性条件下,甲醛对溴酸钾氧化乙基橙的反应具有 显著的催化作用,该催化反应具有一定的诱导期。甲醛浓度在 0.10~1.5mg/L范围内与1/t呈良好的线性关系。 • 条件:最大吸收波长508nm • 硫酸用量的影响,2.0mol/L 1.0mL,A最大。 • 反应时间:如右图,在一定的时间内,吸光度在一定的时间内吸 光度略有降低,当达到一定时间吸光度迅速降低。 • 干扰分析,主要干扰离子I-和Br-, 吸光 A 度下 加入一定量的硝酸银溶液
紫外-可见光吸收光谱法在药物中的 应用
• 大部分药物都是有机物,能够在紫外区产生 吸收峰,所以紫外分光光度法是有机药物的 分析测定的首选方案。 • 无论是有机物还是无机物,通过特定的化学 反应,其产物在可见区的摩尔吸光系数都比 在紫外区大。
• 龙井市药品检验所 鲍延丰 在通过对药物定 性分析,通过与标准样品分子比较光谱的 一致性,比较最大吸收波长和吸收系数的 一致性及吸收度比值的一致性;来分析药 物的成分。
• 《 吉林医学信息) ) 2 O O O年第 l ~2期 龙 井市药品检验所 鲍延丰
紫外可见光分光光度法同时 测定F e( I I ) 和F e( I I I )
昆明理工大学分析测试中心 邱林友等通过 7 5 1 型紫外一可见分光光度计。Fe (I I ) 和F e (I I I ) 与邻菲啰啉及 F的络合物的最 大吸收分别位干5 1 8 n m和3 7 5 n m。本 文测定波长选定为5 1 8 n m和3 7 5 n m。
微量硫酸根离子的测定
原理:以二甲基磺基偶氮Ⅲ(二甲基3,6-双 [2-磺酸苯基偶氮]变色剂)为试剂测定水中 中低含量的硫酸根离子。水样中的硫酸根与试 剂R-Ba络合物中的试剂离子R发生置换反应, 光度法测定释出的R的吸光度,波长为644nm 因为有阳离子干扰,所以采用阳离子交换树脂 在线吸附消除干扰,相对标准偏差为1.5%, 测定精度在5%以内。 线性响应范围为1~14mg/L
邻二氮菲吸光光度法测定Fe
原理: 2 3Phen [ Fe( Phen)3 ]2 (桔红色) Fe 条件: PH 绘制A-PH曲线 显色剂用量 绘制A—V曲线 显色时间 绘制A-t曲线 最大吸收波长510nm 标准曲线的制作 A-C曲线 A 试样样测定 以制作的标准曲线确定测物质的浓度C 配合物组成的测定
分光光度计的构造原理
• 单色束分光光度计
光源
单色器
试样池
检测器
记录与数据处理
参比池
• 双光束分光光度法 • Fra bibliotek波长分光光度法
单色器 光源 检测器
单色器
紫外-可见光吸收光谱法的应用
• 其应用非常之广泛:用于定量分析,定性分析和 结构分析;无机和有机物的分析,配合物的组成 及解离常数的测定。 • 以分子吸收光谱为基础的紫外-可见区分光光度分 析法具有设备简单、适用性广、准确度和精密度 较好等特点,已在地质、环境、能源、材料、食品 等科学中发挥着重要作用,尤其是随着多元络合物、 胶束增敏光度法、有机试剂等的发展,它已经成为 应用最广泛的分析手段之一。分光光度法的早期 应用集中在无机分析化学领域,即对为数众多的无 机离子和化合物进行定性分析或定量测定。
返回
亚硫酸盐的测定
• 原理:利用亚硫酸盐的还原性质,用Fe(Ⅲ)-缓 冲溶液-1,10 –二氮菲混合液为显色剂,分光 光度法直接测定亚硫酸盐的方法。 • 条件:有色络合物在波长510nm处有最大吸收 • 缓冲溶液pH=4.0 • Fe(Ⅲ):缓冲溶液:1,10 :二氮菲混合液为 显色剂=1:5:4 • 显色剂用量2.0~12.0mL,过量光度值上升 • 干扰分析:阳离子 等对亚 Cu 2 , Pb2 , Zn2 硫酸盐的测定产生负影响,加入量越大其影响 越大。
返回
测定废水中的铬(Ⅵ)
• 原理:室温下铬(Ⅵ)与苯基荧光酮在HCl-H3PO4混 合酸介质中可被氧化显色,黄色的苯基荧光酮可被氧 化成橙红色产物。 • 反应条件:最大吸收波长为492nm 线性范围0~50mg/50mL HCl-H3PO4的用量6mol/LHCl2mL,5mol/LH3PO4 5mL 显色时间,在10分钟后吸光度最大
趋势和展望
• 在紫外区进行有机药物的分光光度法测定, 因其简便、快捷、有效而在药物分析中占 有很大比重。在今后几年内,这种局面仍将 维持下去。在可见区,因其灵敏度高、选择 性好、方法灵活、适用面宽而受到越来越 多的青睐。随着分析试剂的发展,尤其是氯 冉酸等荷移反应显色剂,环芳烃等具有识 别能力的特效显色剂以及金属离子显色剂 等的发展,使得可见区的分光光度药物分析 法将可能出现一个迅速发展阶段。
待测物质作为催化剂
树脂交换富集法
氧化剂
还原剂
正催化
负催化
4 ,5 二溴邻硝基苯基荧光酮与锌Ⅱ的显色发应
• 原理:在CTMAB 存在下,研究了4 ,5 二溴邻硝基苯基荧光酮 595nm (DBON 2 PF)与锌Ⅱ的显色反应。在p H 8 1 0 的氨性缓冲溶液 中,锌Ⅱ与D-BON- PF 形成1∶2 的红色络合物 • 条件:该络合物的最大吸收波长为595 nm ,其表观摩尔吸光系数 为6 1 87 ×10 4 ,有色络合物稳定24 h 以上;25 mL 溶液中,锌质 量在0 ~10 μg 范围内符合比尔定律,选用和加入不同量的阳离 子表面活性剂CTMAB 增敏,提高了方法的灵敏度和有色络合物 稳定性 • 分析:当无阳离子表面活性剂CTMAB 存在时,显色剂DBON PF 的最大吸收峰为520 nm ,锌与显色剂形成有色络合物的最大 1 ;2 吸收峰为595nmDBON 1PF(水参比) 2-PF +;当显色体系加入CTMAB 后, ,ε= - 1 4 ×10 DBON 2-PF + CTMAB(相应试剂 4 Zn C (相应试剂空白参比) ; 空白参比) ;3 DBON 显色剂的最大吸收峰为550 Zn C + CTMAB(相应试剂空白参比)。 4 DBON 2-PF + nm ,而锌与显色剂DBON-PF 形成的 络合物最大吸收峰仍为595 nm ,ε=6 1 87 ×10 4 ,吸光度明显增 返回 加,大大提高了灵敏度。
相关文档
最新文档