1.集合的运算

合集下载

第三节 集合的基本运算(必修1第一章)

第三节 集合的基本运算(必修1第一章)

第三节集合的基本运算知识清单1.并集一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A ,读作:“A 并B ”,即}{B x A x x B A ∈∈=,或 .2.交集一般地,由所有属于集合A 且属于集合B 的元素组成的集合,称为集合A 与B 的交集.记作:B A ,读作:“A 交B ”,即}{B x A x x B A ∈∈=,且 .3.补集一般的,如果一个集合含有我们所研究问题中涉及到的所有元素,那么就称这个集合为全集,通常记作U .对于一个集合A ,由全集U 中所有不属于A 的元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作A C U ,即}{A x U x x A C U ∉∈=,且.4.图示表达交集并集补集AC U }{B x A x x B A ∈∈=,且 }{B x A x x B A ∈∈=,或 }{A x U x x A C U ∉∈=,且5.一些常见结论(1)A B A = 或B B A = B A ⊆⇒(2)B B A = 或A B A = A B ⊆⇒(3)BA B A =BA =⇒(4)BC A C B A C U U U =)(BC A C B A C U U U =)(题型训练题型一集合的并集、交集运算1.已知集合}0)2({}11{≤-=<<-=x x x B x x A ,,则B A 等于()A .}21{≤<-x x B .}10{<≤x x C .}10{<<x x D .}20{≤≤x x 2.已知集合}311{,,-=A ,}23{N x x x B ∈≤<-=,,则集合B A 中元素的个数为()A .3B .4C .5D .63.已知集合}2){(=+=y x y x M ,,}2){(=-=y x y x N ,,则集合=N M ()A .}02{,B .)02(,C .)}02{(,D .}02{==y x ,4.已知集合}32012{,,,,--=A ,}1{2A x x y y B ∈-==,,则B A 中元素的个数是()A .2B .3C .4D .55.已知}054{}42{}621{2≤--===x x x C B A ,,,,,,则=C B A )(6.已知集合}1{-==x y x A ,}1{-==x y y B ,则=B A 题型二集合的补集、综合运算7.已知全集}32{<-∈=x z x U ,}32{2<-∈=*x x N x A ,则=A C U ()A .}21{,B .}43{,C .}210{,,D .}430{,,8.已知全集}10{R x x x U ∈≤=,,}33{≤≤-=a a M ,}5{-≤=b b N ,则=)(N M C U ()A .}10335{<<-<<-x x x 或B .}335{>-<<-x x x 或C .}10335{≤<-<<-x x x 或D .}10335{<<-≤≤-x x x 或9.已知全集}43210{,,,,=U ,集合}3210{,,,=A ,}432{,,=B ,则=B C A C U U 10.已知全集R U =,集合}04{2≤-=x x M ,则=M C U 11.设全集}42{}54321{,,,,,,===N C M N M U U ,则=N 12.已知全集R U =,集合}032{}43{2>--=≤≤-=x x x B x x A ,.(1)求B A ,B A ;(2)求B A C U )(,)(B A C U .题型三Venn 图的运用13.设全集I 是实数集R .}22{-<>=x x x M 或与}31{<<=x x N 都是I 的子集(如图所示),则阴影部分所表示的集合为()A .}2{<x xB .}12{<≤-x xC .}21{≤<x xD .}22{≤≤-x x 14.如图,U 是全集,S P M 、、是U 的3个子集,则阴影部分所表示的集合是()A .S P M )(B .SP M )(C .S C P M U )(D .SC P M U )(15.如图,I 为全集,S P M 、、是I 的三个子集,则阴影部分所表示的集合是()A .SP M )(B .S C P M I )(C .S C P M I )(D .SC P M I )(16.设P M ,是两个非空集合,定义M 与P 的差集为}{P x M x x P M ∉∈=-,且,则)(P M M --等于()A .PB .PM C .PM D .M17.经调查,我班70名学生中,有37名喜欢语文,49名喜欢数学,两门都喜欢的有20名,则两门都不喜欢的学生有名.18.某班50人在一次考试中对C B A ,,三道题的作答情况如下:答错A 者17人,答错B 者15人,答错C 者11人,答错B A ,者5人,答错C A ,者3人,答错C B ,者4人,C B A ,,都答错的有1人,则C B A ,,都答对的有人.题型四由集合运算求参数19.已知集合}1{}20{2a B a A ,,,,==,若}164210{,,,,=B A ,则=a 20.已知集合}91{}412{2,,,,,+=+=x x B x x A ,若}9{=B A ,则=B A 21.已知集合}42{≤≤-=x x A ,}{a x x B ≤=,若A B A = ,则a 的取值范围是,若A B A ≠ ,则a 的取值范围是22.已知集合}11{+<<-=a x a x A ,}045{2≥+-=x x x B ,若∅=B A ,则a 的取值范围是,若∅≠B A ,则a 的取值范围是23.已知集合}02{}31{2=+-==b ax x x B A ,,,若∅)(B A 且A B A = ,求b a ,.24.已知集合}019|{22=-+-=a ax x x A ,}065|{2=+-=x x x B ,}082|{2=-+=x x x C ,若∅≠B A 且∅=C A ,求a 的值.25.已知集合}05)1(2{}023{222=-+++==+-=a x a x x B x x x A ,.(1)若}2{=B A ,求a 的值;(2)若A B A = ,求a 的取值范围.26.已知集合}121{},43{+≤≤-=≤≤-=m x m x B x x A .(1)若B B A = ,求m 的取值范围;(2)若∅=B A ,求m 的取值范围.综合训练1.已知全集Z U =,集合}102{Z x x x A ∈≤≤-=,,}82{N x x x B ∈≤≤-=,,则集合B C A U 中的元素个数为()A .7B .6C .5D .42.已知全集}4321{,,,=U ,集合}034|{2=+-=x x x M ,集合}065|{2=+-=x x x N ,则集合=)(N M C U ()A .}4{B .}21{,C .}421{,,D .}431{,,3.定义差集}{B x A x x B A ∉∈=-,且,现有三个集合C B A 、、分别用圆表示,则集合)(B A C --可表示下列图中阴影部分的为()A .B .C .D .4.设集合}20{}31{}24{≥≤=<≤-=<≤-=x x C x B x x A 或,,,则=B C A )(5.定义}2{B y A x y x z z B A ∈∈+==*,,,若}21{}321{,,,,==B A ,则=*B A 6.已知}15{的正奇数不大于=U ,集合}155{,=N M ,J 集合}133{)()(,=N C M C U U ,集合}71{)(,=N C M U ,则集合=M ,=N 7.设B A ,是非空集合,定义)}()({B A x B A x x B A ∉∈=⊗且.已知集合}20{<<=x x A ,}0{≥=y y B ,则=⊗B A 8.设集合}87654{}654321{,,,,,,,,,,==B A ,集合S 满足A S ⊆且∅≠B S ,则这样的集合S 的个数是9.已知集合}61{≤≤-=x x A ,集合}121{+≤≤-=m x m x B .(1)当2=m 时,求)(B C A B A R ,;(2)若A B A = ,求实数m 的取值范围,10.已知集合}52)({2++==x x y y x M ,,}1)({+==ax y y x N ,.(1)若N M 中有两个元素,求实数a 的取值范围;(2)若N M 中仅有一个元素,求实数a 的取值范围.11.已知集合}034|{2=+-=x x x A ,}01|{2=-+-=m mx x x B ,}0122|{2=+-=ax x x C ,且A C A B B A == ,,求实数m 的值及实数a 的取值范围.12.对于正整数集合)3(}{21≥∈⋅⋅⋅=n N n a a a A n ,,,,,如果去掉其中任意一个元素i a (=i 1,2,…,n )之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A 为“和谐集”.(1)判断集合}54321{,,,,是否是“和谐集”(不必写过程);(2)请写出一个只含有7个元素的“和谐集”,并证明此集合为“和谐集”;(3)当n =5时,集合}{54321a a a a a A ,,,,=,求证:集合A 不是“和谐集”.第三节集合的基本运算参考答案题型一集合的并集、交集运算1-4B ,C ,C ,B5.}421{,,6.}0{≥x x 题型二集合的补集、综合运算7-8D ,A9.}410{,,10.}22{><x x x ,或11.}531{,,12.(1)}4313{≤<-<≤-=x x x B A ,或 ,RB A = (2)}43{)(>-<=x x x B AC U ,或 ,}4313{)(>≤≤--<=x x x x B A C U ,或,或 题型三Venn 图的运用13-18C ,C ,C ,B17.418.18题型四由集合运算求参数19.4=a 20.}94235{,,,,---21.44<≥a a 、22.3232><≤≤a a a 或、23.11==b a ,或93==b a ,或32==b a ,24.2-=a 25.(1)31-=-=a a 或(2)3-≤a 26.(1)23≤m (2)52>-<m m 或综合训练1-3D ,C ,A4.}34{<≤-x x 5.}76543{,,,,6.}151195{}15751{,,,、,,,==N M 7.}20{≥=x x x 或8.569.(1)}51{≤≤=x x B A ,}6511{)(≤<<≤-=x x x B C A R ,或 (2)2502≤≤-<m m 或10.(1)62>-<a a 或(2)26-==a a 或11.42==m m 或,22<<-a 12.(1)不是(2)}131197531{,,,,,,(3)证明略。

集合的基本运算课件(共11张PPT)

集合的基本运算课件(共11张PPT)

解析: M={x|-1≤x≤3},M∩N={1,3},有2个.
3:(必修1第一章复习参考题B组练习1) 学校举办运动会时,高一(1)班有28名同学参 加比赛,有15人参加游泳比赛,有8人参加田径比 赛,14人参加球类比赛,同时参加游泳和田径比赛的 有3人,同时参加游泳和球类比赛的有3人,没有人 同时参加三项比赛。问同时参加田径和球类比赛的 有_____人? 解析:设同时参加田径和球 类比赛的有x人,则 9+3+3+(8-3-x)+x+(14-3-x)=28
二:以点集为背景的集合运算:
例1:(必修1习题1.1B组练习2)在平面直角坐标系中,
集合 C ( x, y ) y x表示直线 y
x, 从这个角度看,集合
2 x y 1 D ( x, y ) ,表示什么?集合C , D之间有什么关系? x 4 y 5
(1) A B A, A B B; A A B, B A B
A (CU A) , A (CU A) U
( 2) A B A A B;
A B B A B
(3)德摩根定律: CU ( A B ) (CU A) (CU B ) CU ( A B ) (CU A) (CU B )
【解题回顾】将两集合之间的关系转化为两曲线之 间的位置关系,然后用数形结合的思想求出 的范围 (准确作出集合对应的图形是解答本题的关键).
a
课堂总结:
1、集合的基本运算:
2、集合的运算性质:
3、注重数形结合思想的应用:
(1)韦恩(Venn)图 (2)连续的数集——数轴 (3)点集的运算——曲线位置关系
游泳 田径

高中数学必修一之集合的运算(共15张PPT)

高中数学必修一之集合的运算(共15张PPT)

)
D.{-2,0,2}
2、已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.当m=-1时,求A∪B. A、{x|1<x<3} B、{x|2<x<3} C、{x|-2<x<3} D、{x|1<x<2}
练习题
1、
已知集合
A {x x 2 2 x 0}, B {x 5 x 5} ,则(
4、
2 S { x | x 2 }, T { x | x 3x 4 0} ,则 (CR S ) T ( 设集合

A.(2,1]
(,4] B.
(,1] C.
D. [1,)
【方法总结】
1.判断两集合的关系常有两种方法: 一是化简集合,从表达式中寻找两集合间的关系; 二是用列举法表示各集合,从元素中寻找关系.
2.在进行集合运算时要尽可能地借助韦恩(Venn)图和数轴使抽象问题直观 化.一般地,集合元素离散时用韦恩(Venn)图表示;集合元素连续时用数轴表 示,用数轴表示时注意端点值的取舍.
作业一
1 k 1 1. 设集合 A {x | x k , k Z}, B {y | y , k Z},则它们之间的关系是( 4 2 4
.
2、并集:一般地,由所有属于集合A或者属于集合B的元素所构成的集合,称为A 与B的并集,记作A∪B,即 A∪B = {x|x∈A,或x∈B},A∪B可用右图中的阴影部 分来表示。 其实,并集用通俗的语言来说,就是把两个集合的元素 合并到一起。所以交B
例题: 设集合A={x|-1<x<2},集合B={x|1<x<3},求A∪B 解: A∪B ={x|-1<x<2} ∪ {x|1<x<3} ={x|-1<x<3}

高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】

高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】
当A与B无公共元素时,A与B
的交集仍存在,此时A∩B=∅.
(三)交集
【做一做】
【探究2】
已知集合A={0,2},B={-2,-1,0,1,2},
则A∩B=(
)
A.{0,2}
C.{0}
B.{1,2}
D.{-2,-1,0,1,2}
交集的性质:
[答案]
A
①A∩B=B∩A;②A∩A=A;
③A∩∅=∅; ④若A⊆B,则A∩B=A;
(四)集合的交并运算
【巩固练习1】
(1) 已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是(
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2) 若集合A={x|-2≤x<3},B={x|0≤x<4},则A∪B=________.
⑤(A∩B)⊆A;(A∩B)⊆B.
(四)集合的交并运算
1.集合的并集运算
例1.
(1)设集合M={x| 2 +2x=0,x∈R},N={x| 2 -2x=0,x∈R},则M∪N=(
A.{0}
B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B。
(2)在解决问题时,用到了哪些数学思想?
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)
教材分析
本小节内容选自:
《普通高中数学必修第一册》
人教A版(2019)
第一课时
课时内容
集合的并集、交集运算
集合的补集、综合运算
所在位置
教材第10页

人教版高一必修1 集合的基本运算

人教版高一必修1 集合的基本运算

类型五 用描述法表示集合的应用. 【例 5】 已知集合 A={x|ax2-3x+2=0,a∈R} (1)若 A 中只有一个元素,求 a 的值,并把这个元素写出来; (2)A 中至少有一个元素,求 a 的取值范围.
思维启迪:集合 A 中只有一个元素,即为方程 ax2-3x+2=0 只有一个根或两个相等的根.分 a=0 和 a≠0 两种情况讨论求解.
点评 在已知元素与集合的关系求字母的值时,一定要注意检验,保 证集合的互异性.
变式训练 2 已知集合 A={a-2,2a2+5a,12},且-3∈A,求 a 的值.
解析:∵-3∈A,则-3=a-2 或-3=2a2+5a. 3 ∴a=-1 或 a=-2, 当 a=-1 时,a-2=-3, 2a2+5a=-3,不符合集合中元素的互异性. 3 ∴a=-1 应舍去,故 a=-2.
解析:(1)∵x2-9=(x-3)(x+3), ∴x2-9 的一次因式组成的集合为{x-3,x+3}. (2)由 5x-3<3x+5,解得 x<4. ∵x∈N*,∴x 的值为 1,2,3. ∴不等式的解集中的正整数组成的集合为{1,2,3}. x=-1, (3)由|x+1|+ y-3=0,得 y=3. ∴方程|x+1|+ y-3=0 的解集为{(-1,3)}.
解析:方程组的解集中元素应是有序数对形式,排除 A,B, 而 D 中表示的不是集合,排除 D,故选 C. 答案:C
3.已知集合 A={x|x≤10},a= 2+ 3,则 a 与集合 A 的关 系是( ) A.a∈A B.a∉A C.a=A D.{a}∈A
解析:由于 2+ 3<10,所以 a∈A,故选 A. 答案:A
5.已知集合
12 A=x5-x∈N,x∈N

课件集合的基本运算_人教版高中数学必修一PPT课件_优秀版

课件集合的基本运算_人教版高中数学必修一PPT课件_优秀版

(3)(∁SA)∪(∁SB);
6
解析:
• 【解析】(1)由并集的概念可知A∪B={1,2,3,4,5,6};

(2)借助数轴(如图)


∴M∪N={x|x<-5或x>-3}.
• 【答案】(1){1,2,3,4,5,6} (2)A
7
方法归纳:
• 并集的运算技巧: • (1)若集合中元素个数有限,则直接根据并集的定义求解,但要注意集合中元素的
互异性. • (2)若集合中元素个数无限,可借助数轴,利用数轴分析法求解,但是要注意含“=”
用实心点表示,不含“=”用空心点表示.
8
探究一 并集的运算
9
解析:
10
探究二 交集的运算
• 【例】(1)已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则A∩B=________.

(2)已知集合A={x|x≥5},集合B={x|x≤m},且A∩B={x|5≤x≤6},则实数m=
________.

11
解析:
• 【解析】(1)A={x|x=1或x=-2},B={x|x=-2或x=3},

∴A∩B={-2}.

(2)结合数轴:


由图可知m=6.
• 【答案】(1){-2} (2)6
是否存在?若存在,求出x;
∴(∁RA)∩B={x|2<x<3或7≤x<10}.
由此可得:(1)(∁SA)∩(∁SB)={x|1<x<2}∪{7}.(2)∁S(A∪B)={x|1<x<2}∪{7};
(3)(∁SA)∪(∁SB)={x|1<x<3}∪{x|5≤x≤7}={x|1<x<3,或5≤x≤7};

人教A版高中数学必修第一册课件:集合的运算


A={高一(2)班参加足球队的同学} B={高一(2)班没有参加足球队的同学} U={高一(2)班全体同学}
问题一:集合A、B、U有什么关系? 问题二:集合A中的元素与集合U和集合B有什么关系?
集合A中的元素在集合U中,但是不在B中 相对集合U来说,集合B是集合A的补集
定义
文字语言
符号语言 图形语言
设A={x x2+4x=0}, B={x x2+2(a+1)x+a2-1=0}, 集合是什么?
= A∩( B∩C )
A={1,2,3,4},B={3,4,5,6},C={3,4}
已知M={2,a2-3a+5,5},N={1,a2-6a+10,3},M∩N={2,3},则a的值是( )
(3)∁U(∁UA)=A;
A∩B∩C U={高一(2)班全体同学}
2、若集合A={x|-1<x<2},B={x|1<x<3}, 集合C中的元素是A中所有元素和B中所有元素组成的
集合A中的元素在集合U中,但是不在B中
(2)A∩A=A,即任何集合与其本身的交集等于这个集合本身.
(A∪B)∪C = A∪( B∪C ) (2)A∩A=A,即任何集合与其本身的交集等于这个集合本身.
(3)∁U(∁UA)=A;
1、实数有加法,集合是否也可以“相加”呢?
类型一:元素个数有限
A={1,2,3,4},B={4,5,6},则A∪B=
,A∩B=
.
已知表示集合M={-1,0,1}和P={0,1,2,3}关系的Venn图如图所 示,则阴影部分表示的集合是( )
A.{0,1} B.{0} C.{-1,2,3} D.{-1,0,1,2,3} 解析:选A

高一数学必修一集合的基本运算课件

1.1.3 集合的基本运算
考察下列各个集合你能说出集合C与集合AB之 间的关系吗
1 A={135} B={246} C={123456}
2 A={x|x是有理数}B={x|x是无理数} C={x|x是实数}.
1.并集
一般地由所有属于集合A或属于集合B的元素所 组成的集合称为集合A与B的并集记作A∪B读作A 并B.即
记 C U A 作 { x |x U ,且 x A }
补集可用Venn图表示为:
U A
CUA
例8 设U={x|x是小于9的正整数}A={123} B={3456}求CUACUB.
解:根据题意可知U={12345678} 所以 CUA={45678}
CUB={1278} .
例9 设全集U={x|x是三角形}A={x|x是锐角 三角形}B={x|x是钝角三角形}
(1) AA A (2) A A (3) ABBA (4) AAB,BAB, ABAB (5) AB则ABB
4.补集
一般地如果一个集合含有我们所研究问题中 所涉的所有元素那么就称这个集合为全集通常 记作U.
对于一个集合A由全集U中不属于A的所有元 素组成的集合称为集合A相对于全集U的补集简 称为集合A的补集.
3 .已 A { 知 x|x 2 3 x 2 0 }B , { x|x 2 a x a 1 0 } 若 A B A ,求a 的 实 . 值 数
4 .设A 集 {x| 2 合 x 1 } {x|x 1 }B , {x|axb } 若 A B {x|x 2 }A , B {x|1x3 }求 ,a ,b 的 . 值
A∪B={x|x∈A或x∈B}
例4 设A={4568} B={3578}求A∪B.
解: A∪B={4568} ∪ {3578} ={345678}

【新教材】1.3 集合的基本运算培优强基训练二 练习-吉林省长春市第八中学人教A版2019高中数学必修第一册

新教材必修1 每课讲与练 第3讲 集合的运算(精讲篇)一、知识提要1. 集合的运算:交集、并集、补集符号表示 图形表示 符号语言 集合的并集 A ∩B ,读作:“A 交B”A ∩B ={x |x ∈A ,且x ∈B }集合的交集 A ∪B ,读作:“A 并B”A ∪B ={x |x ∈A ,或x ∈B }集合的补集若全集为U ,则集合A 的补集为∁U A ,读作:“A的补集”∁U A ={x |x ∈U ,且x ∉A }交集:交集是个宝,家家不可少,只是独家有,怎么能谈交 并集:并集是个大箩筐,什么元素往里装,相同元素装一次,再装就是违规章。

补集:大家庭中几小家,小家之外是其补2. 集合的三种基本运算的常见性质: 交集的性质:①A B BA =;②A A A =;③A ∅=∅;④,A B A A B B ⊆⊆;⑤若A B A =则A B ⊆;反之亦然。

并集的性质: ① A B =A B BA =;②A A A =;③A A ∅=;④,A A B B A B ⊆⊆;⑤若A B B =则A B ⊆;反之亦然。

补集的性质:()UU A A =; ②U U =∅,U U ∅=; ③,UUA A A A U =∅=;④若A B ⊆,则UA B =∅;若A B ⊆则UB A U =;⑤()UUUA B AB =,()UUUA B AB =。

分配率:()()()A B C A B A C =,()()()A B C A B A C =。

结合律:()()A B C A B C =,()()A B C A B C =。

注 ⑤称为摩尔根定律⑥有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0. 基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A) (4)设有限集合A, card(A)=n,则 (ⅰ)A 的子集个数为n 2;(ⅱ)A 的真子集个数为12-n ;(ⅲ)A 的非空子集个数为12-n ;(ⅳ)A 的非空真子集个数为22-n .(5)设有限集合A 、B 、C , card(A )=n ,card(B )=m,m<n ,则(ⅰ) 若A C B ⊆⊆,则C 的个数为m n -2;(ⅱ) 若A C B ⊂⊆,则C 的个数为12--m n ; (ⅲ) 若A C B ⊆⊂,则C 的个数为12--m n ; (ⅳ) 若A C B ⊂⊂,则C 的个数为22--m n .培优强基训练—1.3.2【课堂达标】1.设集合U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则∁U (A ∩B )等于( )A .{2,3}B .{1,4,5}C .{4,5}D .{1,5} 2.集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∁R B )=( )A .{x |x >1}B .{x |x ≥1}C .{x |1<x ≤2}D .{x |1≤x ≤2} 3.已知全集U ={1,2,a 2-2a +3},A ={1,a },∁U A ={3},则实数a 等于( )A .0或2B .0C .1或2D .24.已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N ∩(∁I M )=∅,则M ∪N =( )A .MB .NC .ID .∅5.设A ,B ,U 均为非空集合,且满足A ⊆B ⊆U ,则下列各式中错误的是( )A .(∁U A )∪B =U B .(∁U A )∪(∁U B )=UC .A ∩(∁U B )=∅D .(∁U A )∩(∁U B )=∁U B【巩固“四基”】1.设全集U ={x |x ≥0},集合P ={1},则∁U P 等于( )A .{x |0≤x <1或x >1}B .{x |x <1}C .{x |x <1或x >1}D .{x |x >1} 2.已知集合U ={1,2,3,4,5,6,7},A ={3,4},B ={6,7},则(∁U B )∩A 等于( )A .{1,6}B .{1,7}C .{3,4}D .{3,4,5}3.集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁R B)等于()A.{x|x>1} B.{x|x≥1} C.{x|1<x≤2} D.{x|1≤x≤2}4.设全集U为实数集R,M={x|x>2或x<-2},N={x|x≥3或x<1}都是全集U的子集,则图中阴影部分所表示的集合是()A.{x|-2≤x<1} B.{x|-2≤x≤2}C.{x|1<x≤2} D.{x|x<2}5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中元素的个数为()A.1 B.2 C.3 D.46.设全集U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=________.7.设全集U=R,集合A={x|0<x<9},B={x∈Z|-4<x<4},则集合(∁U A)∩B中的元素的个数为________.8.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∁U A={x|2≤x≤5},则a=________.9.设U=R,已知集合A={x|-5<x<5},B={x|0≤x<7},求:(1)A∩B;(2)A∪B;(3)A∪(∁U B);(4)B∩(∁U A).10.设全集U=R,M={x|3a<x<2a+5},P={x|-2≤x≤1},若M⫋∁U P,求实数a的取值范围.【提升“四能”】1.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A=() A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}2.已知M ={x |x <-2或x ≥3},N ={x |x -a ≤0},若N ∩∁R M ≠∅(R 为实数集),则a 的取值范围是________. 3.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.4.设全集U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0}.若(∁U A )∩B =∅,求实数m的值.【拓展延伸】1.设U 为全集,对集合X ,Y ,定义运算“*”:X *Y =∁U (X ∩Y ).对于任意集合X ,Y ,Z ,则(X *Y )*Z 等于( )A .(X ∪Y )∩∁U ZB .(X ∩Y )∪∁U ZC .(∁U X ∪∁U Y )∩ZD .(∁U X ∩∁U Y )∪Z2.已知全集U ={不大于20的素数},若M ,N 为U 的两个子集,且满足M ∩(∁U N )={3,5},(∁U M )∩N ={7,19},(∁U M )∩(∁U N )={2,17},则M =________,N =________.3.某校向50名学生调查对A ,B 事件的态度,有如下结果:赞成A 的人数是这50名学生的35,其余的不赞成;赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A ,B 都不赞成的学生数比对A ,B 都赞成的学生数的13多1人.你能说出对A ,B 都赞成的学生和都不赞成的学生各有多少人吗?培优强基训练—1.3.2【课堂达标】1答案 B解析集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},所以A∩B={2,3},∁U(A∩B)={1,4,5},故选B.2答案 D解析由补集的概念和已知条件可得:∁R B={x|x≥1},又根据交集的定义可知A∩(∁R B)={x|1≤x≤2},故选D.3答案 D解析根据题意,得a2-2a+3=3,且a=2,解得a=2,故选D.4答案 A解析由N∩(∁I M)=∅,知N与∁I M没有公共元素,依据题意画出Venn图,如图所示,可得N⊆M,所以M∪N=M.5答案 B解析解法一:令A={1},B={1,2},U={1,2,3},检验四个选项可知,B错误.故选B.解法二:根据A⊆B⊆U画出Venn图,如图所示,易知A,C,D正确.∵(∁U A)∪(∁U B)=∁U(A∩B),而由A⊆B,知∁U(A∩B)=∁U A≠U,故B错误.【巩固“四基”】1答案 A解析因为U={x|x≥0},P={1},所以∁U P={x|x≥0且x≠1}={x|0≤x<1或x>1}.2答案 C解析∵U={1,2,3,4,5,6,7},A={3,4},B={6,7},∴∁U B={1,2,3,4,5},∴(∁U B)∩A={3,4}.3答案 D解析由A={x|-1≤x≤2},B={x|x<1}可知∁R B={x|x≥1}.∴A∩(∁R B)={x|1≤x≤2}.4答案 A解析阴影部分表示的集合为N∩(∁U M)={x|-2≤x<1}.5答案 B解析A={1,2},B={2,4},所以A∪B={1,2,4},则∁U(A∪B)={3,5},共有2个元素.6答案{x|0<x≤1}解析∵U=R,B={x|x>1},∴∁U B={x|x≤1}.又∵A={x|x>0},∴A∩(∁U B)={x|x>0}∩{x|x≤1}={x|0<x≤1}.7答案 4解析∵U=R,A={x|0<x<9},∴∁U A={x|x≤0或x≥9},又∵B={x∈Z|-4<x<4},∴(∁U A)∩B={x∈Z|-4<x≤0}={-3,-2,-1,0},共4个元素.8答案 2解析∵A={x|1≤x<a},∁U A={x|2≤x≤5},∴A∪(∁U A)=U={x|1≤x≤5},且A∩(∁U A)=∅,∴a=2.9解(1)如图①.A∩B={x|0≤x<5}.(2)如图①.A∪B={x|-5<x<7}.(3)如图②.∁U B={x|x<0或x≥7},∴A∪(∁U B)={x|x<5或x≥7}.(4)如图③.∁U A={x|x≤-5或x≥5},∴B∩(∁U A)={x|5≤x<7}.10解 ∁U P ={x |x <-2或x >1},∵M ∁U P ,∴分M =∅,M ≠∅两种情况讨论. (1)M ≠∅时,如图可得⎩⎨⎧ 3a <2a +5,2a +5≤-2或⎩⎨⎧3a <2a +5,3a ≥1,∴a ≤-72或13≤a <5.(2)M =∅时,应有3a ≥2a +5⇒a ≥5. 综上可知,a ≤-72或a ≥13. 【提升“四能”】1解析:选D.因为A ∩B ={3},所以3∈A ,又(∁U B )∩A ={9},所以9∈A .若5∈A ,则5∉B (否则5∈A ∩B ),从而5∈∁U B ,则(∁U B )∩A ={5,9},与题中条件矛盾,故5∉A .同理1∉A ,7∉A ,故A ={3,9}.2解析:由题意知∁R M ={x |-2≤x <3},N ={x |x ≤a }. 因为N ∩∁R M ≠∅,所以a ≥-2. 答案:a ≥-23解:(1)m =1时,B ={x |1≤x <4}, A ∪B ={x |-1<x <4}. (2)∁R A ={x |x ≤-1或x >3}. 当B =∅,即m ≥1+3m 时, 得m ≤-12,满足B ⊆∁R A ;当B ≠∅时,要使B ⊆∁R A 成立,则⎩⎪⎨⎪⎧m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧m <1+3m ,m >3, 解得m >3.综上可知,实数m 的取值范围是m >3或m ≤-12.4解:由已知,得A ={-2,-1}, 由(∁U A )∩B =∅,得B ⊆A ,因为方程x 2+(m +1)x +m =0的判别式Δ=(m +1)2-4m =(m -1)2≥0,所以B ≠∅. 所以B ={-1}或B ={-2}或B ={-1,-2}. ①若B ={-1},则m =1;②若B ={-2},则应有-(m +1)=(-2)+(-2)=-4,且m =(-2)×(-2)=4,这两式不能同时成立,所以B ≠{-2};③若B ={-1,-2},则应有-(m +1)=(-1)+(-2)=-3,且m =(-1)×(-2)=2,由这两式得m =2.经检验,知m =1,m =2均符合条件. 所以m =1或2.【拓展延伸】 1答案 B解析 依题意得X *Y =∁U (X ∩Y ), (X *Y )*Z =∁U [(X *Y )∩Z ]=∁U [∁U (X ∩Y )∩Z ] ={∁U [∁U (X ∩Y )]}∪(∁U Z )=(X ∩Y )∪(∁U Z ).3解 已知赞成A 的人数为50×35=30,赞成B 的人数为30+3=33,记50名学生组成的集合为U ,赞成A 的学生全体为集合A ,赞成B 的学生全体为集合B . 设对A ,B 都赞成的学生人数为x , 则对A ,B 都不赞成的学生人数为x3+1, 赞成A 而不赞成B 的人数为30-x ,赞成B 而不赞成A 的人数为33-x .用Venn 图表示如图所示.依题意(30-x )+(33-x )+x +⎝ ⎛⎭⎪⎫x 3+1=50,解得x =21.故对A ,B 都赞成的学生有21人,都不赞成的有8人.2.解析:法一:U ={2,3,5,7,11,13,17,19},如图,所以M ={3,5,11,13},N ={7,11,13,19}.法二:因为M ∩(∁U N )={3,5},所以3∈M,5∈M且3∉N,5∉N.又因为(∁U M)∩N={7,19},所以7∈N,19∈N且7∉M,19∉M.又因为(∁U M)∩(∁U N)={2,17},所以∁U(M∪N)={2,17},所以M={3,5,11,13},N={7,11,13,19}.答案:{3,5,11,13}{7,11,13,19}。

2023届高考数学一轮复习讲义:第1讲 集合的概念与运算

第1讲集合的概念与运算1.集合与元素(1)集合元素的三个特征:、、.(2)元素与集合的关系是或关系,用符号或表示.(3)集合的表示法:、、.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号[注意]N为自然数集(即非负整数集),包含0,而N*和N+的含义是一样的,表示正整数集,不包含0.2.集合间的基本关系表示关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)真子集 集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中集合 相等集合A ,B 中元素相同A =B3.集合的基本运算集合的并集集合的交集集合的补集图形 语言符号 语言A ∪B =A ∩B =∁U A =➢考点1 集合的含义与表示[名师点睛]与集合元素有关问题的解题策略(1)研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义. (2)利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合是否满足元素的互异性.2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4(2)设A =⎩⎨⎧⎭⎬⎫2,3,a 2-3a ,a +2a +7,B ={|a -2|,3},已知4∈A 且4∉B ,则a 的取值集合为________.[举一反三]1.(2022·江西·新余四中模拟预测(理))已知集合()(){}20A x a x x a =--<,若2A ∉,则实数a 的取值范围为( )A .()(),12,-∞+∞ B .[)1,2 C .()1,2D .[]1,22.(2022·菏泽模拟)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( ) A .1 B .-1 C .2D .-23.(多选)(2022· 广州一调)已知集合{x |mx 2-2x +1=0}={n },则m +n 的值可能为( )A .0B .12C .1D .24.(2022·福建·模拟预测)设集合{2,1,1,2,3}A =--,{}2|log ||,B y y x x A ==∈ ,则集合B 元素的个数为( )A .2B .3C .4D .55.(2022·武汉校级月考)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.➢考点2 集合的基本关系R N )=( )A .∅B .MC .ND .R(2)[2022·广东阳江月考]已知集合A ={x |y =4-x 2},B ={x |a ≤x ≤a +1},若B ⊆A ,则实数a 的取值范围为( )A .(-∞,-3]∪[2,+∞)B .[-1,2]C .[-2,1]D .[2,+∞)[举一反三]1.(2022·广东广州·一模)已知集合{}11A x x =∈-≤≤Z ,{}02B x x =≤≤,则A B 的子集个数为( )A .2B .3C .4D .62.[2022·湖北武汉摸底]已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3D .43.(2022·山东·潍坊一中模拟预测)已知集合M ,N 是全集U 的两个非空子集,且()U M N ⊆,则( )A .M N ⋂=∅B .M N ⊆C .N M ⊆D .()U N M U ⋃=4.[2021·湖南长沙长郡中学适应性考试]已知集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4}.若A ∩B 只有4个子集,则实数a 的取值范围是( )A .(-2,-1]B .[-2,-1]C .[0,1]D .(0,1]5.[2022·吉林辽源五校期末联考]已知集合M ={x |x -a =0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值是________.➢考点3 集合的基本运算[典例]1.(1)(2021·全国·高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UAB =( )A .{3}B .{1,6}C .{5,6}D .{1,3}(2)(多选)[2022·湖南长沙模拟]已知全集U =R ,集合M ={x |-3≤x <4},N ={x |x 2-2x -8≤0},则( )A .M ∪N ={x |-3≤x <4}B .M ∩N ={x |-2≤x <4}C .(∁U M )∪N =(-∞,-3)∪[-2,+∞)D .M ∩(∁U N )=(-3,-2)2.(1)(2020·高考全国卷Ⅰ)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B ={x |-2≤x ≤1},则a =( )A .-4B .-2C .2D .4(2)[2022·湖南六校联考]集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4[举一反三]1.(2022·河北石家庄·二模)已知集合{3,2,1,0,1}A =---,301x B x Zx +⎧⎫=∈<⎨⎬-⎩⎭,则A B =( )A .[3,1)-B .[3,1]-C .{3,2,1,0,1}---D .{2,1,0}--2.[2022·华南师范大学附属中学月考]已知集合A ={x |x <3},B ={x |x >a },若A ∩B ≠∅,则实数a 的取值范围为( )A .[3,+∞)B .(3,+∞)C .(-∞,3)D .(-∞,3]3.(2020·高考全国卷Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .64.(2022·重庆·二模)已知集合{}{}21,3,5,6,7,8,9,14480A B xx x ==-+∣,则下图中阴影部分表示的集合为( )A .{}1,3,5,7,9B .{}1,3,5,9C .{}1,3,5D .{}1,3,95.(2021·全国·高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( )A .∅B .SC .TD .Z6.[2021·豫北名校联考]设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0},若A ∩B 中恰含有一个整数,则实数a 的取值范围是( )A .⎝⎛⎭⎫0,34 B .⎣⎡⎭⎫34,43 C .⎣⎡⎭⎫34,+∞ D .(1,+∞)7.(2020·浙江·高考真题)设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足:①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T ②对于任意x ,y ∈T ,若x <y ,则yx∈S ; 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素➢考点4 集合中的创新问题[典例] 1.(2022·北京房山·一模)已知U 是非实数集,若非空集合A 1,A 2满足以下三个条件,则称(A 1,A 2)为集合U 的一种真分拆,并规定(A 1,A 2)与(A 2,A 1)为集合U 的同一种真分拆 ①A 1∩A 2=0 ②A 1A 2=U③(1,2)i A i =的元素个数不是i A 中的元素.则集合U ={1,2,3,4,5,6}的真分拆的种数是( ) A .5B .6C .10D .152.[2022·广东六校联考]已知集合A 0={x |0<x <1}.给定一个函数y =f (x ),定义集合A n={y |y =f (x ),x ∈A n -1},若A n ∩A n -1=∅对任意的x ∈N *成立,则称该函数具有性质 “∅”. (1)具有性质“∅”的一个一次函数的解析式可以是________.(2)给出下列函数:①y =1x ;②y =x 2+1;③y =cos π2x +2.其中具有性质“∅”的函数的序号是________.3.[2022·河北保定质检]现有100名携带药品出国的旅游者,其中75人带有感冒药,80人带有胃药,那么对既带感冒药又带胃药的人数统计中,下列说法正确的是( ) A .最多人数是55 B .最少人数是55 C .最少人数是75 D .最多人数是80[举一反三]1.(2022·湖南·雅礼中学一模)已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .302.[2021·四川成都联考]已知集合A ={1,2,3,4,5,6}的所有三个元素的子集记为B 1,B 2,B 3,…,B k ,k ∈N *.记b i 为集合B i (i =1,2,3,…,k )中的最大元素,则b 1+b 2+b 3+…+b k =( )A .45B .105C .150D .2103.[多选][2022·湘赣皖十五校第一次联考]已知集合M ,N 都是非空集合U 的子集,令集合S ={x |x 恰好属于M ,N 中的一个},下列说法正确的是( )A .若S =N ,则M =∅B .若S =∅,则M =NC .若S ⊆M ,则M ⊆ND .∃M ,N ,使得S =(∁U M )∪(∁U N )4.[2022·湖北华大新联盟考试]中国古代重要的数学著作《孙子算经》下卷有题:今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知A ={x |x =3n +2,n ∈N *},B ={x |x =5n +3,n ∈N *},C ={x |x =7n +2,n ∈N *},若x ∈(A ∩B ∩C ),则整数x 的最小值为( ) A .128 B .127 C .37D .235.[2022·山东省实验中学第二次诊断]若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的.请写出满足上述条件的一个有序数组(a ,b ,c ,d )=________,符合条件的全部有序数组(a ,b ,c ,d )的个数是________.6.[2022·山东潍坊重点高中联考]已知U ={a 1,a 2,a 3,a 4},集合A 是集合U 中的两个元素所组成的集合,且同时满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .求集合A .第1讲 集合的概念与运算1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R [注意]N为自然数集(即非负整数集),包含0,而N*和N+的含义是一样的,表示正整数集,不包含0.2.集合间的基本关系表示关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A⫋B(或B⫌A)集合 相等集合A ,B 中元素相同 A =B3.集合的基本运算集合的并集集合的交集集合的补集图形 语言符号 语言A ∪B = {x |x ∈A 或x∈B }A ∩B = {x |x ∈A 且x ∈B }∁U A = {x |x ∈U 且 x ∉A }➢考点1 集合的含义与表示[名师点睛]与集合元素有关问题的解题策略(1)研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义. (2)利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合是否满足元素的互异性.2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4(2)设A =⎩⎨⎧⎭⎬⎫2,3,a 2-3a ,a +2a +7,B ={|a -2|,3},已知4∈A 且4∉B ,则a 的取值集合为________.[解析] (1)将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.(2)因为4∈A ,即4∈⎩⎨⎧⎭⎬⎫2,3,a 2-3a ,a +2a +7,所以a 2-3a =4或a +2a +7=4.若a 2-3a =4,则a =-1或a =4;若a +2a +7=4,即a 2+3a +2=0,则a =-1或a =-2.由a 2-3a 与a +2a +7互异,得a ≠-1.故a =-2或a =4.又4∉B ,即4∉{|a -2|,3}, 所以|a -2|≠4,解得a ≠-2且a ≠6. 综上所述,a 的取值集合为{4}. [答案] (1)A (2){4} [举一反三]1.(2022·江西·新余四中模拟预测(理))已知集合()(){}20A x a x x a =--<,若2A ∉,则实数a 的取值范围为( )A .()(),12,-∞+∞B .[)1,2C .()1,2D .[]1,2【答案】D【解析】因为2A ∉,所以()()2220a a --≥,解得12a ≤≤.故选:D .2.(2022·菏泽模拟)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2解析:选C.因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则ba =-1,所以a=-1,b =1.所以b -a =2.3.(多选)(2022· 广州一调)已知集合{x |mx 2-2x +1=0}={n },则m +n 的值可能为( )A .0B .12C .1D .2解析:选BD.因为集合{x |mx 2-2x +1=0}={n },所以⎩⎪⎨⎪⎧m =0,-2n +1=0或⎩⎪⎨⎪⎧m ≠0,Δ=4-4m =0,n =--22m ,解得⎩⎪⎨⎪⎧m =0,n =12或⎩⎨⎧m =1,n =1,所以m +n =12或m +n =2.故选BD.4.(2022·福建·模拟预测)设集合{2,1,1,2,3}A =--,{}2|log ||,B y y x x A ==∈ ,则集合B 元素的个数为( )A .2B .3C .4D .5【答案】B 【解析】当2x =±时,y =1;当1x =±时,y =0;当x =3时,2log 3y =.故集合B 共有3个元素.故选:B.5.(2022·武汉校级月考)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 解析:由题意得m +2=3或2m 2+m =3, 则m =1或m =-32.当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意; 当m =-32时,m +2=12,而2m 2+m =3,符合题意,故m =-32.答案:-32➢考点2 集合的基本关系R N )=( )A .∅B .MC .ND .R(2)[2022·广东阳江月考]已知集合A ={x |y =4-x 2},B ={x |a ≤x ≤a +1},若B ⊆A ,则实数a 的取值范围为( )A .(-∞,-3]∪[2,+∞)B .[-1,2]C .[-2,1]D .[2,+∞)【解析】 (1)因为M ,N 均为R 的子集,且∁R M ⊆N ,所以N =∁R M ,所以M ∪(∁R N )=M .故选B.(2)集合A ={x |y =4-x 2}={x |-2≤x ≤2},因为B ⊆A ,所以有⎩⎨⎧a ≥-2,a +1≤2,所以-2≤a ≤1. 【答案】 (1)B (2)C [举一反三]1.(2022·广东广州·一模)已知集合{}11A x x =∈-≤≤Z ,{}02B x x =≤≤,则A B 的子集个数为( )A .2B .3C .4D .6【答案】C【解析】由题可知{}1,0,1A =-,所有{}0,1A B =,所有其子集分别是{}{}{},1,0,0,1∅,所有共有4个子集,故选:C2.[2022·湖北武汉摸底]已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3D .4解析:选D 求解一元二次方程,得A ={x |x 2-3x +2=0,x ∈R }={x |(x -1)(x -2)=0,x ∈R }={1,2},易知B ={x |0<x <5,x ∈N }={1,2,3,4}.因为A ⊆C ⊆B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{3,4}的子集个数,即有22=4个,故选D.3.(2022·山东·潍坊一中模拟预测)已知集合M ,N 是全集U 的两个非空子集,且()U M N ⊆,则( )A .M N ⋂=∅B .M N ⊆C .N M ⊆D .()U N M U ⋃=【答案】A 【解析】UN 表示集合N 的补集,因为()U M N ⊆,所以M N ⋂=∅.故选:A4.[2021·湖南长沙长郡中学适应性考试]已知集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4}.若A ∩B 只有4个子集,则实数a 的取值范围是( )A .(-2,-1]B .[-2,-1]C .[0,1]D .(0,1][答案] D [解析] 本题考查根据集合的子集个数求参数的取值.集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4}={x ∈Z |x ≤2},故A ∩B ={x ∈Z |a ≤x ≤2}.因为A ∩B 只有4个子集,所以A ∩B 中元素只能有2个,即A ∩B ={1,2},所以0<a ≤1,故选D.5.[2022·吉林辽源五校期末联考]已知集合M ={x |x -a =0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值是________.解析:由题易得M ={a }.因为M ∩N =N , 所以N ⊆M , 所以N =∅或N =M , 所以a =0或a =±1. 答案:0或1或-1➢考点3 集合的基本运算[典例]1.(1)(2021·全国·高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UAB =( )A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】由题设可得{}U1,5,6B =,故(){}U 1,6A B ⋂=,故选:B.(2)(多选)[2022·湖南长沙模拟]已知全集U =R ,集合M ={x |-3≤x <4},N ={x |x 2-2x -8≤0},则( )A .M ∪N ={x |-3≤x <4}B .M ∩N ={x |-2≤x <4}C .(∁U M )∪N =(-∞,-3)∪[-2,+∞)D .M ∩(∁U N )=(-3,-2)【解析】 (1)方法一:由题意,得A ∪B ={-1,0,1,2},所以∁U (A ∪B )={-2,3},故选A.方法二:因为2∈B ,所以2∈A ∪B ,所以2∉∁U (A ∪B ),故排除B ,D ;又0∈A ,所以0∈A ∪B ,所以0∉∁U (A ∪B ),故排除C ,故选A.(2)由x 2-2x -8≤0,得-2≤x ≤4,所以N ={x |-2≤x ≤4},则M ∪N ={x |-3≤x ≤4},A 错误;M ∩N ={x |-2≤x <4},B 正确;由于∁U M =(-∞,-3)∪[4,+∞),故(∁U M )∪N =(-∞,-3)∪[-2,+∞),C 正确;由于∁U N =(-∞,-2)∪(4,+∞),故M ∩(∁U N )=[-3,-2),D 错误.故选BC.【答案】 (1)A (2)BC2.(1)(2020·高考全国卷Ⅰ)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B ={x |-2≤x ≤1},则a =( )A .-4B .-2C .2D .4(2)[2022·湖南六校联考]集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4【解析】 (1)方法一:易知A ={x |-2≤x ≤2},B ={x |x ≤-a2},因为A ∩B ={x |-2≤x ≤1},所以-a2=1,解得a =-2.故选B.方法二:由题意得A ={x |-2≤x ≤2}.若a =-4,则B ={x |x ≤2},又A ={x |-2≤x ≤2},所以A ∩B ={x |-2≤x ≤2},不满足题意,排除A ;若a =-2,则B ={x |x ≤1},又A ={x |-2≤x ≤2},所以A ∩B ={x |-2≤x ≤1},满足题意;若a =2,则B ={x |x ≤-1},又A ={x |-2≤x ≤2},所以A ∩B ={x |-2≤x ≤-1},不满足题意,排除C ;若a =4,则B ={x |x ≤-2},又A ={x |-2≤x ≤2},所以A ∩B ={x |x =-2},不满足题意.故选B.(2)根据集合并集的概念,可知{a ,a 2}={4,16},故a =4. 【答案】 (1)B (2)D [举一反三]1.(2022·河北石家庄·二模)已知集合{3,2,1,0,1}A =---,301x B x Zx +⎧⎫=∈<⎨⎬-⎩⎭,则A B =( )A .[3,1)-B .[3,1]-C .{3,2,1,0,1}---D .{2,1,0}--【答案】D 【解析】因为30311x x x +<⇒-<<-,所以{}2,1,0B =--,而{3,2,1,0,1}A =---, 所以A B ={2,1,0}--,故选:D2.[2022·华南师范大学附属中学月考]已知集合A ={x |x <3},B ={x |x >a },若A ∩B ≠∅,则实数a 的取值范围为( )A .[3,+∞)B .(3,+∞)C .(-∞,3)D .(-∞,3]解析:选C 因为A ∩B ≠∅,所以结合数轴可知实数a 的取值范围是a <3,故选C. 3.(2020·高考全国卷Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6解析:选C.由题意得,A ∩B ={(1,7),(2,6),(3,5),(4,4)},所以A ∩B 中元素的个数为4,选C.4.(2022·重庆·二模)已知集合{}{}21,3,5,6,7,8,9,14480A B xx x ==-+∣,则下图中阴影部分表示的集合为( )A .{}1,3,5,7,9B .{}1,3,5,9C .{}1,3,5D .{}1,3,9【答案】B【解析】由图可知,图中阴影部分表示()R A B ⋂,由214480x x -+≤,得68x ≤≤, 所以{}68B x x =≤≤,所以{R 6B x x =<或}8x >,因为{}1,3,5,6,7,8,9A =, 所以(){}R1,3,5,9AB =,故选:B5.(2021·全国·高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( )A .∅B .SC .TD .Z【答案】C【解析】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆, 因此,S T T =.故选:C.6.[2021·豫北名校联考]设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0},若A ∩B 中恰含有一个整数,则实数a 的取值范围是( )A .⎝⎛⎭⎫0,34 B .⎣⎡⎭⎫34,43 C .⎣⎡⎭⎫34,+∞D .(1,+∞)[答案] B [解析] A ={x |x 2+2x -3>0}={x |x >1或x <-3},设函数f (x )=x 2-2ax -1,因为函数f (x )=x 2-2ax -1图象的对称轴为直线x =a (a >0),f (0)=-1<0,根据对称性可知,若A ∩B 中恰有一个整数,则这个整数为2,所以有⎩⎪⎨⎪⎧ f (2)≤0,f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,所以⎩⎨⎧a ≥34,a <43,即34≤a <43.故选B. 7.(2020·浙江·高考真题)设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足:①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T ②对于任意x ,y ∈T ,若x <y ,则yx∈S ; 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素 【答案】A 【解析】 首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8S T =,包含4个元素,排除选项 C ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项D ; 若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128S T =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈,若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =,又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p pp p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆.若q T ∈, 则31q S p ∈,故131,1,2,3,4i qp i p ==,故31,1,2,3,4i q p i +==,即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =,此时{}234456711111111,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确. 故选:A .➢考点4 集合中的创新问题[典例] 1.(2022·北京房山·一模)已知U 是非实数集,若非空集合A 1,A 2满足以下三个条件,则称(A 1,A 2)为集合U 的一种真分拆,并规定(A 1,A 2)与(A 2,A 1)为集合U 的同一种真分拆 ①A 1∩A 2=0 ②A 1A 2=U③(1,2)i A i =的元素个数不是i A 中的元素.则集合U ={1,2,3,4,5,6}的真分拆的种数是( ) A .5 B .6C .10D .15【答案】A 【解析】解:由题意,集合U ={1,2,3,4,5,6}的真分拆有{}{}125,1,2,3,4,6A A ==;{}{}121,4,2,3,5,6A A ==;{}{}123,4,1,2,5,6A A ==;{}{}124,5,1,2,3,6A A ==;{}{}124,6,1,2,3,5A A ==,共5种,故选:A.2.[2022·广东六校联考]已知集合A 0={x |0<x <1}.给定一个函数y =f (x ),定义集合A n={y |y =f (x ),x ∈A n -1},若A n ∩A n -1=∅对任意的x ∈N *成立,则称该函数具有性质 “∅”. (1)具有性质“∅”的一个一次函数的解析式可以是________.(2)给出下列函数:①y =1x ;②y =x 2+1;③y =cos π2x +2.其中具有性质“∅”的函数的序号是________.[解析] (1)答案不唯一,合理即可.示例: 对于解析式y =x +1,因为A 0={x |0<x <1},所以A 1={x |1<x <2}, A 2={x |2<x <3},…,显然符合A n ∩A n -1=∅.故具有性质“∅”的一个一次函数的解析式可以是y =x +1. (2)对于①,A 0={x |0<x <1},A 1={x |x >1},A 2={x |0<x <1},…, 依次循环下去,符合A n ∩A n -1=∅.对于②,A 0={x |0<x <1},A 1={x |1<x <2},A 2={x |2<x <5},A 3={x |5<x <26},…,根据函数y =x 2+1的单调性得相邻两个集合不会有交集,符合A n ∩A n -1=∅.对于③,A 0={x |0<x <1},A 1={x |2<x <3},A 2={x |1<x <2},A 3={x |1<x <2}, 不符合A n ∩A n -1=∅.所以具有性质“∅”的函数的序号是①②. [答案] (1)y =x +1 (2)①②3.[2022·河北保定质检]现有100名携带药品出国的旅游者,其中75人带有感冒药,80人带有胃药,那么对既带感冒药又带胃药的人数统计中,下列说法正确的是( ) A .最多人数是55 B .最少人数是55 C .最少人数是75D .最多人数是80解析:选B 设100名携带药品出国的旅游者组成全集I ,其中带感冒药的人组成集合A ,带胃药的人组成集合B .设所携带药品既非感冒药又非胃药的人数为x ,则0≤x ≤20.设以上两种药都带的人数为y .由图可知,x +card(A )+card(B )-y =100.∴x +75+80-y =100,∴y =55+x .∵0≤x ≤20,∴55≤y ≤75,故最少人数是55. [举一反三]1.(2022·湖南·雅礼中学一模)已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,中元素的个数为则A BA.77 B.49 C.45 D.30【答案】C【解析】因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.2.[2021·四川成都联考]已知集合A={1,2,3,4,5,6}的所有三个元素的子集记为B1,B2,B3,…,B k,k∈N*.记b i为集合B i(i=1,2,3,…,k)中的最大元素,则b1+b2+b3+…+b k=()A.45 B.105C.150 D.210[答案]B[解析]本题考查集合的新定义问题.集合A的含有3个元素的子集共有C36=20个,所以k=20.在集合B i(i=1,2,3,…,k)中,最大元素为3的集合有C22=1个;最大元素为4的集合有C23=3个;最大元素为5的集合有C24=6个;最大元素为6的集合有C25=10个,所以b1+b2+b3+…+b k=3×1+4×3+5×6+6×10=105.故选B.3.[多选][2022·湘赣皖十五校第一次联考]已知集合M,N都是非空集合U的子集,令集合S={x|x恰好属于M,N中的一个},下列说法正确的是()A.若S=N,则M=∅B.若S=∅,则M=NC.若S⊆M,则M⊆ND.∃M,N,使得S=(∁U M)∪(∁U N)[答案] ABD [解析]本题考查Venn 图.用Venn 图表示,集合S 为如图1中的阴影部分,对于A 选项,若S =N ,利用S 的Venn 图观察,则有M ∩N =∅,M =∅,故A 选项正确;对于B 选项,若S =∅,则M =N ,故B 选项正确;对于C 选项,反例:如图集合S 为如图2中的阴影部分,N ⊆M ,故C 选项错误;对于D 选项,例如U ={1,2,3,4},M ={1,2,3},N ={4},S ={x |x 恰好属于M ,N 中的一个}={1,2,3,4}=U ,而(∁U M )∪(∁U N )={4}∪{1,2,3}={1,2,3,4}=S ,故D 选项正确,故选ABD.图1 图24.[2022·湖北华大新联盟考试]中国古代重要的数学著作《孙子算经》下卷有题:今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知A ={x |x =3n +2,n ∈N *},B ={x |x =5n +3,n ∈N *},C ={x |x =7n +2,n ∈N *},若x ∈(A ∩B ∩C ),则整数x 的最小值为( ) A .128 B .127 C .37D .23解析:选D ∵求整数的最小值,∴先将23代入检验,满足A ,B ,C 三个集合,故选D.5.[2022·山东省实验中学第二次诊断]若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的.请写出满足上述条件的一个有序数组(a ,b ,c ,d )=________,符合条件的全部有序数组(a ,b ,c ,d )的个数是________. 解析:显然①不可能正确,否则①②都正确;若②正确,则⎩⎪⎨⎪⎧ a =2,b =3,c =1,d =4或⎩⎪⎨⎪⎧ a =3,b =2,c =1,d =4.若③正确,则⎩⎪⎨⎪⎧ a =3,b =1,c =2,d =4.若④正确,则⎩⎪⎨⎪⎧ a =2,b =1,c =4,d =3或⎩⎪⎨⎪⎧ a =3,b =1,c =4,d =2或⎩⎪⎨⎪⎧a =4,b =1,c =3,d =2.所以符合条件的数组共6个. 答案:(3,2,1,4)(填一个正确的即可) 66.[2022·山东潍坊重点高中联考]已知U ={a 1,a 2,a 3,a 4},集合A 是集合U 中的两个元素所组成的集合,且同时满足下列三个条件:①若a1∈A,则a2∈A;②若a3∉A,则a2∉A;③若a3∈A,则a4∉A.求集合A.解:假设a1∈A,则a2∈A.又若a3∉A,则a2∉A,∴a3∈A,与集合A中有且仅有两个元素不符,∴假设不成立,∴a1∉A.假设a4∈A,则a3∉A,则a2∉A,且a1∉A,与集合A中有且仅有两个元素不符,∴假设不成立,∴a4∉A.故集合A={a2,a3},经检验知符合题意.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(时间60分钟,满分80分)
一、选择题(共6个小题,每小题5分,满分30分)
1.已知集合A ={1,2,3,4},B =⎩
⎨⎧⎭
⎬⎫
y |y =12x ,x ∈A ,则A ∩B =( )
A .{1,2,3,4}
B .{1,2} C{1,3} D .{2,4}
2.(2011·威海模拟)如图,I 是全集,A 、B 、C 是它的子集,则阴影部分所表示的集合是( )
A .(∁I A ∩
B )∩
C B .(∁I B ∪A )∩C C .(A ∩B )∩∁I C
D .(A ∩∁I B )∩C 3.(2010·北京宣武模拟)设集合A ={1,2,3,4},B ={3,4,5},全集U =A ∪B ,则集合∁U (A ∩B )的元素个数为( )
A .1个
B .2个
C .3个
D .4个
4.设集合U ={小于7的正整数},A ={1,2,5},B =⎩
⎨⎧⎭
⎬⎫
x |32-x +1≤0,x ∈N ,则A ∩(∁U B )=( )
A .{1}
B .{2}
C .{1,2}
D .{1,2,5}
5.设集合A ={x |y =x 2-4},B ={y |y =x 2-4},C ={(x ,y )|y =x 2-4},则下列关系:①A ∩C =∅;②A =C ;③A =B ;④B =C .其中不.
正确的共有( ) A .1个
B .2个
C .3个
D .4个
6.如图所示的韦恩图中,A 、B 是非空集合,定义A *B 表示阴影部分的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x ,x >0},则A *B 为( )
A .{x |0<x <2}
B .{x |1<x ≤2}
C .{x |0≤x ≤1或x ≥2}
D .{x |0≤x ≤1或x >2}
7.设集合A ={x |x 2-2x +2m +4=0},B ={x |x <0},若A ∩B ≠∅,则实数m 的取值范围为____________.
8.设全集U =A ∪B ={x ∈N *|lg x <1},若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =________.
9.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.
三、解答题(共3小题,满分35分)
10.设集合A={x2,2x-1,-4},B={x-5,1-x,9},若A∩B={9},求A∪B.
11.已知集合A={x|x2+x-2≤0},B={x|2< x+1≤4},设集合C={x|x2+bx+c>0},且满足(A∪B)∩C=∅,(A∪B)∪C=R,求b,c的值。

12.若集合A={x|x2-2x-8<0},B={x|x-m<0}.
(1)若m=3,全集U=A∪B,试求A∩(∁U B);
(2)若A∩B=∅,求实数m的取值范围;
(3)若A∩B=A,求实数m的取值范围.。

相关文档
最新文档