人教版数学七年级下册 9.2 一元一次不等式(实际问题) 测试试题
人教版七年级数学下册 9-2 一元一次不等式(同步练习)

第9章不等式与不等式组9.2一元一次不等式班级:姓名:知识点1一元一次不等式的概念1.下列不等式是一元一次不等式的是()A.x2+x>1B.12x+1>2x+33C.x+y>3D.x()1x+2>3x+12.下列不等式中,是一元一次不等式的有()①3x-7>0;②2x+y>3;③2x2-x>2x2-1;④3>2.A.1个B.2个C.3个D.4个3.若3x2a+3-9>6是关于x的一元一次不等式,则a=.4.若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=.知识点2解一元一次不等式5.不等式3x≤2(x-1)的解集为()A.x≤-1B.x≤-1C.x≤-2D.x≥-26.3x-7≥4(x-1)的解集为()A.x≥3B.x≤3C.x≥-3D.x≤-37.不等式3x+22<x的解集是()A.x<-2B.x<-1C.x<0D.x>28.不等式3(x-1)+4≥2x的解集在数轴上表示为()9.不等式x-5>4x-1的最大整数解是()A.-2B.-1C.0D.110.解不等式14(2-x)≥5的过程是:去分母,得;移项,得,系数化为1,得.11.不等式y-26≥y3+1的解集为.12.请你写出一个满足不等式2x-1<6的正整数x的13.解不等式2(x-1)-3<1,并把它的解集在数轴上表示出来.14.解不等式:2(x-1)<x+1,并求它的非负整数解.15.解不等式x-1≤1+x3,并求其正整数解.16.解不等式2x-13≤3x-46,并把它的解集在数轴上表示出来.17.解不等式2x-13-5x+12≤1,并把它的解集在数轴上表示出来.18.x取什么值时,代数式1-5x2的值不小于代数式3-2x3+4的值.19.已知x=3是关于x的不等式3x-ax+22>2x3的解,求a的取值范围.知识点3列一元一次不等式解决实际问题20.CBA篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计2017—2018赛季全部38场比赛中最少得到57分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(38-x)≥57B.2x-(38-x)≥5721.小颖准备用21元钱买笔和笔记本.已知每支笔3元,每本笔记本2元,她买了4本笔记本,则她最多还可以买支笔()A.1B.2C.3D.422.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折23.我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对道题.24.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.25.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,现安排10辆车,则甲种运输车至少应安排几辆?26.八年级二班的五名同学参加学校组织的数学抽查测试,其中四名同学的考试分数分别为85, 80,82,86,又知他们五人的平均成绩不低于80分,那么第五名同学至少要考多少分?27.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?综合点1一元一次不等式与一元一次方程(组)的综合28.若关于x,y的二元一次方程组{3x+y=1+a,x+3y=3的解满足x+y<2,则a的取值范围是()A.a>2B.a<2C.a>4D.a<429.当m为何值时,关于x的方程(m+2)x-2=1-m(4-x)有:(1)负数解;(2)不大于2的解.综合点2已知一元一次不等式的解集求字母的值30.不等式mx-2<3x+4的解集为x>6m-3,求m的最大整数值.综合点3列一元一次不等式与方程(组)的综合31.为提高饮水质量,越来越多的居民开始选购家用净水器.一商场抓住商机,从厂家购进了A,B 两种型号家用净水器共160台,A型号家用净水350元/台,购进两种型号的家用净水器共用36 000元.(1)A,B两种型号家用净水器各购进了多少台?(2)为使每台B型号的家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,则每台A型号家用净水器的售价至少是多少元?(毛利润=售价-进价)拓展点1阅读题32.阅读理解:我们把a bcd称作二阶行列式,规定它的运算法则为a bcd=ad-bc.如2345=2×5-3×4=-2.如果有23-x1x>0,求x的解集.拓展点2含字母系数的一元一次不等式33.解关于x的不等式:ax-x-2>0.拓展点3方案设计34.为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A,B两种树苗刚好用去1220元,问购进A,B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.第9章不等式与不等式组9.2一元一次不等式答案与点拨1.B(点拨:A 中含未知数项的最高次数是2,C 中含有两个未知数,D 中式子不全是整式,它们都不是一元一次不等式.)2.B(点拨:①③是一元一次不等式,注意③化简后再判断.)3.-1(点拨:2a+3=1,a=-1.)4.1(点拨:|m|=1且m+1≠0,所以m=1.)5.C6.D7.A(点拨:去分母得3x+2<2x,移项得3x-2x<-2,合并同类项得x<-2.)8.A(点拨:不等式3(x-1)+4≥2x 的解集是x ≥-1,大于应向右画,包括-1时,应用实心圆点表示-1这一点,故选A.)9.A(点拨:解不等式得解集为x<-43,所以最大整数解为-2.)10.2-x ≥20-x ≥20-2x ≤-1811.y ≤-812.1,2,3中任何一个都可(点拨:不等式的解集为x<72,其正整数解为1,2,3.)13.去括号得2x-2-3<1,移项、合并同类项得2x<6,系数化为1得x<3.在数轴上把解集表示出来为:14.去括号,得2x-2<x+1,移项、合并同类项,得x<3.因此不等式的非负整数解是0,1,2.15.去分母得3(x-1)≤1+x,去括号得3x-3≤1+x,移项得3x-x ≤1+3,合并同类项得2x ≤4,系数化为1得x ≤2,符合x ≤2的正整数解有1,2.16.去分母,得2(2x-1)≤3x-4.去括号,得4x-2≤3x-4.移项,合并同类项,得x ≤-2.∴不等式的解集为x ≤-2.该解集在数轴上表示如下:17.去分母,得2(2x-1)-3(5x+1)≤6.去括号,得4x-2-15x-3≤6.移项,得4x-15x ≤6+2+3.合并同类项,得-11x ≤11.系数化为1,得x ≥-1.这个不等式的解集在数轴上表示如下:18.由题意得1-5x 2≥3-2x3+4.去分母,得3(1-5x)≥2(3-2x)+24.去括号、移项、合并同类项,-11x ≥27.系数化为1,得x ≤-2711.∴当x ≤-2711时,1-5x 2≥3-2x 3+4.19.因为x=3是关于x 的不等式3x-ax +22>2x 3的解,所以9-3a +22>2,解得a<4.故a 的取值范围是a<4.21.D(点拨:设可买x支笔,则有3x+4×2≤21,即3x+8≤21,3x≤13,x≤133,所以x可取最大的整数为4,她最多可买4支笔.故选D.)22.B(点拨:设可打x折,则有1200x·0.1≥800(1+0.05),解得x≥7.故选B.)23.14(点拨:根据本次竞赛规则可知竞赛得分=10×答对的题数+(-5)×答错(或不答)的题数,得分要超过100分,列出不等式求解即可.设要答对x道题,则10x+(-5)×(20-x)>100,解得x>1313.∵x是整数,∴x=14.)24.3(点拨:设小宏能买x瓶甲饮料,则买乙饮料(10-x)瓶.根据题意,得7x+4(10-x)≤50,解得x≤31 3 .所以小宏最多能买3瓶甲饮料.)25.设甲种运输车安排x辆,则5x+4×(10-x)≥46,解得x≥6.答:甲种运输车至少应安排6辆.26.设第五名同学要考x分,则85+80+82+86+x≥80×5,解得x≥67.答:第五名同学至少要考67分.27.设购买球拍x个,依题意得:1.5×20+22x≤200.解之得:x≤7811.由于x取整数,故x的最大值为7.答:孔明应该买7个球拍.28.D(点拨:将两个方程相加,得4x+4y=4+a,从而有x+y=4+a4,然后解不等式4+a4<2,得a<4.)29.解方程得x=3-4m2.(1)由3-4m2<0得m>34.(2)由3-4m2≤2得m≥-14.30.2(点拨:由题意得m-3<0,即m<3.)31.(1)设A种型号家用净水器购进了x台,则B种型号的净水器购进了(160-x)台.由题意,得150x+350(160-x)=36000.解得x=100.所以160-x=60.所以A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润为z元,则每台B型号家用净水器的毛利润为2z元.由题意,得100z+60×2z≥11000,解得z≥50.150+50=200(元).所以,每台A型号家用净水器的售价至少为200元.32.由题意得2x-(3-x)>0,去括号得:2x-3+x>0,移项、合并同类项得:3x>3,x的系数化为1得:x>1.33.ax-x-2>0,(a-1)x>2.当a-1=0时,ax-x-2>0无解;当a-1>0时,x>2a-1;当a-1<0时,a<2a-1.34.(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得80x+60(17-x)=1220,解得x=10,∴17-x=7.答:购进A种树苗10棵,B种树苗7棵.(2)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得17-x<x,解得x>81 2 .购进A,B两种树苗所需费用为80x+60(17-x)=20x+1020.费用最省则需x取最小整数9,此时17-x=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.。
9.2一元一次不等式(三) 同步练习 2020-2021学年人教版数学七年级下册

9.2一元一次不等式(三)【笔记】对于用不等式解决实际问题,主要是正确分析题意,找出满足条件的不等关系,然后根据不等关系列出不等式.解不等式的应用题,要注意题目中表示不等关系的词语,如“不大于”“不小于”“不超过”“不低于”等.解决实际问题的时候还要注意实际意义.例如材料选用一般是“进一法”.【训练】1.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买( )A. 3支笔B. 4支笔C. 5支笔D. 6支笔2.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A.6折B.7折C.8折D.9折3.西宁市天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( )A.至少20户B.至多20户C.至少21户D.至多21户4.某商店搞促销:某种矿泉水原价每瓶5元,现有两种优惠方案:(1)买一赠一;(2)一瓶按原价,其余一律四折.小华为同学选购,则至少买瓶矿泉水时,第二种方案更便宜.( ) A.5 B.6 C.7 D.85.在抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过厘米.6.张老师带领学生到科技馆参观,门票每张25元,购票时发现所带的钱不足,售票处工作人员告诉他:如果参观人数50人以上(含50人),可以按团体票享受8折优惠,于是张老师买了50张票,结果发现所带的钱还有剩余,那么张老师和他的学生至少有人.7.有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料重20kg,电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多还能搭载捆材料.8.(张家界中考)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗购买棵数比甲种树苗购买棵数的2倍还少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵;(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案.9.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人,售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.10.(绍兴中考)有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元.则所购商品的标价是元.11.某企业为了提高污水处理的能力,决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格、月处理污水量如下表:A型B型价格(万元/台)1210处理污水量(吨/月)240200经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业可能的购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应该选哪种购买方案?请说明理由.12.某商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑进行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若购买超过5台,超过的部分每台按售价的八折销售.某公司一次性从该商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.13.甲、乙两商场以相同价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.顾客到哪家商场购物花费少?参考答案9.2一元一次不等式(三)【训练】1.C2.B3.C4.C5.966.417.428.(1)购买甲种树苗140棵,购买乙种树苗240棵;(2)方案一:不购买甲种树苗,购买乙种树苗10棵;方案二:购买甲种树苗1棵,购买乙种树苗9棵;方案三:购买甲种树苗2棵,购买乙种树苗8棵;方案四:购买甲种树苗3棵,购买乙种树苗7棵.9.设参加旅游的儿童有m人,则成人有(30-m)人.根据题意,得按团体票购买时,总费用为100×80%×30=2400(元).分别按成人票、儿童票购买时,总费用为100(30-m)+50m=(3000-50m)元.①若3000-50m=2400,解得m=12.即当儿童为12人时,两种购票方式花费相同.②若选择购买团体票时花费少,则有3000-50m>2400,解得m<12.即当儿童少于12人时,选择购买团体票花费少.③若选择分别按成人票、儿童票购票时花费少,则有3000-50m<2400,解得m>12.即当儿童多于12人时,选择分别按成人票、儿童票购票花费少.10.100或8511.(1)设购买x台A型污水处理设备,则购买(10-x)台B型污水处理设备,由题意,得.故有3种购买方案:12x+10(10-x)≤105.解得x≤52方案一:购买0台A型污水处理设备,10台B型污水处理设备;方案二:购买1台A型污水处理设备,9台B型污水处理设备;方案三:购买2台A型污水处理设备,8台B型污水处理设备.(2)应选择购买1台A型污水处理设备,9台B型污水处理设备.理由:设购买a台A型污水处理设备,由题意,得240a+200(10-a)≥2040.解得a≥1.当a=1时,需资金12×1+10×9=102(万元);当a=2时,需资金12×2+10×8=104(万元).∵102<104,∴购买1台A型污水处理设备,9台B型污水处理设备.12.(1)设购买A型号笔记本电脑x台时的费用为w元.当x=8时,方案一:w=90%a×8=7.2a,方案二:w=5a+(8-5)a×80%=7.4a,∵7.2a<7.4a,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元.(2)∵该公司采用方案二购买更合算,∴x>5.方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x-5)a×80%=5a+0.5ax-4a=a+0.8ax,令0.9ax>a+0.8ax,解得x>10.∴x的取值范围是x>10.13.(1)当累计购买不超过50元时,在甲、乙商场购物都不享受优惠,且两商场以相同价格出售同样的商品,因此到两商场购物花费一样;(2)当累计购物超过50元而不超过100元时,享受乙商场的购物优惠,不享受甲商场的购物优惠,因此到乙商场购物花费少;(3)当累计购物超过100元时,设累计购物x(x>100)元.①若到甲商场购物花费少,则50+0.95(x-50)>100+0.9(x-100),解得x>150.则累计购物超过150元时,到甲商场购物花费少;②若到乙商场购物花费少,则50+0.95(x-50)<100+0.9(x-100),解得x<150.则累计购物超过100元而不到150元时,到乙商场购物花费少;③若50+0.95(x-50)=100+0.9(x-100),解得x=150.则累计购物为150元时,到甲、乙两商场购物花费一样.。
9.2 一元一次不等式 人教版数学七年级下册同步练习(含解析)

第九章 不等式与不等式组9.2 一元一次不等式基础过关全练知识点1 一元一次不等式1.下列式子中,是一元一次不等式的有( )①3a -2=4a +9;②3x -6>3y +7;③5<32x ;④x 2>1;⑤2x +6>x ;⑥1x +5≤5.A.1个 B.2个 C.3个 D.4个2.【新独家原创】当m = 时,不等式(m -2 023)x |m |-2 022+2 021>0是关于x 的一元一次不等式. 知识点2 一元一次不等式的解法3.(2022辽宁大连中考)不等式4x <3x +2的解集是 ( )A .x >-2B .x <-2C .x >2D .x <24.若关于x 的不等式(a -2)x >2a -5的解集是x <4,则关于y 的不等式2a -5y >1的解集是( )A.y <52 B.y <25 C.y >52 D.y >255.(2021四川自贡中考)请写出不等式x +2>7的一个整数解: .6.若关于x 的不等式2x ―0.53>a 2与5(1-x )<a -20的解集完全相同,则它们的解集为 .7.(2022江苏连云港中考)解不等式2x -1>3x ―12,并把它的解集在数轴上表示出来.8.请根据小明同学解不等式的过程,完成各项任务.解不等式:x+16≥2x―54+1.解:去分母,得2(x+1)≥3(2x-5)+1,①去括号,得2x+2≥6x-5+1,②移项,得2x-6x≥-5+1+2,③合并同类项,得-4x≥-2,④系数化为1,得x≥12,⑤所以不等式的解集为x≥12.任务一:以上解题过程中,从第 步开始出现错误,错误的原因是 ;任务二:请从出现错误的步骤开始,把正确的解答过程写出来;任务三:以上解题过程中,除了开始出现的错误外,还有哪些错误值得注意?知识点3 一元一次不等式的应用9.(2021重庆綦江期末)把一些书分给几名同学,若 ;若每人分11本,则有剩余.依题意,设有x名同学,可列不等式为7(x+9)>11x,则横线上的信息可以是( )A.每人分7本,则剩余9本B.每人分7本,则可多分9个人C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本10.(2022山西中考)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 元.11.【教材变式·P125T2变式】为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?12.(2022广西玉林中考)某果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨,因为龙眼大量上市,价格下跌,所以第二次购买龙眼的价格为0.3万元/吨,已知两次购买龙眼共用了7万元.(1)求两次购买龙眼各多少吨;(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?能力提升全练13.(2022辽宁盘锦中考,5,★☆☆)不等式12x ―1≤7―32x 的解集在数轴上表示为( )A B C D14.(2022山东聊城中考,6,★★☆)关于x ,y 的方程组2x ―y =2k ―3,x ―2y =k 的解中x 与y 的和不小于5,则k 的取值范围为( )A .k ≥8B .k >8C .k ≤8D .k <815.(2022福建福州期末,15,★★☆)在实数范围内规定新运算“△”,其规则是a △b =2a -b ,已知不等式x △k ≥2的解集在数轴上的表示如图所示,则k 的值是 .16.(2021北京东城广渠门中学期中,16,★★☆)已知关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,如图,数轴上的A ,B ,C ,D 四个点中,实数m 对应的点可能是 .17.(2020四川绵阳中考,18,★★★)若不等式x +52>―x ―72的解都能使不等式(m -6)x <2m +1成立,则实数m 的取值范围是 . 18.(2022湖南邵阳中考,23,★☆☆)2022年2月4日至20日第24届冬季奥运会在北京举行.某商店购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11 400元,请分别求出购进“冰墩墩”摆件和挂件的数量;(2)该商店计划将“冰墩墩”摆件的售价定为100元/个,挂件的售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2 900元,则购进的“冰墩墩”挂件不能超过多少个?19.【学科素养·应用意识】(2022江苏宿迁中考,26,★★☆)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动.该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的支付费用为 元,在乙超市的支付费用为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?素养探究全练20.【应用意识】【跨学科·生物】某营养餐公司为学生提供的300克早餐食品中,蛋白质总含量占8%,该早餐食品包括一份牛奶,一份谷物食品和一个鸡蛋(一个鸡蛋的质量约为60 g,蛋白质含量占15%;谷物食品和牛奶的部分营养成分如表所示).牛奶项目每100克(g)能量261千焦(kJ)蛋白质3.0克(g)脂肪3.6克(g)碳水4.5克(g)化合物钙100毫克(mg)谷物食品项目每100克(g)能量 2 215千焦(kJ)蛋白质9.0克(g)脂肪32.4克(g)碳水50.8克(g)化合物钠280毫克(mg)(1)设该份早餐中谷物食品为x克,牛奶为y克,则谷物食品中所含的蛋白质为 克,牛奶中所含的蛋白质为 克;(用含有x,y的式子表示)(2)x= ,y= ;(3)该公司为学校提供的午餐有A,B两种套餐(每天只提供一种):套餐主食(克)肉类(克)其他(克)A15085165B18060160为了膳食平衡,建议合理控制学生的主食摄入量.如果在一周内,学生午餐主食摄入总量不超过830克,那么该校在一周内可以选择A,B套餐各几天?写出所有的方案.(说明:一周按5天计算)答案全解全析基础过关全练1.A ①3a-2=4a+9是等式;②3x-6>3y+7中含有两个未知数,不是一元一次不等式;③5<3的右边不是整式;2x④x2>1中x的次数不是1,不是一元一次不等式;⑤2x+6>x符合一元一次不等式的定义;≤5的左边不是整式.故选A.⑥1x+52.答案-2 023解析 根据一元一次不等式的定义,得|m|-2 022=1且m-2 023≠0,解得m=-2 023.3.D 移项,得4x-3x<2,合并同类项,得x<2.故选D.4.B ∵关于x的不等式(a-2)x>2a-5的解集是x<4,=4,∴a-2<0,2a―5a―2,可得a=32.∴关于y的不等式2a-5y>1即为3-5y>1,其解集为y<25故选B.5.答案6(答案不唯一)解析 解不等式得x>7-2,∵1<2<2,∴5<7-2<6,因此不等式的整数解是大于或等于6的任何整数.6.答案x>4解析 解不等式2x―0.53>a2,得x>3a+14,解不等式5(1-x)<a-20,得x>25―a5.由两个不等式的解集完全相同,得3a+14=25―a5,解得a=5.所以它们的解集为x>4.7.解析 去分母,得4x-2>3x-1,移项,得4x-3x>-1+2,合并同类项,得x>1,将不等式的解集表示在数轴上如下:8.解析 任务一:从第①步开始出现错误,错误的原因是不等式两边都乘12时右边的1漏乘.任务二:正确的解答过程如下:去分母,得2(x+1)≥3(2x-5)+12,去括号,得2x+2≥6x-15+12,移项,得2x-6x≥-15+12-2,合并同类项,得-4x≥-5,系数化为1,得x≤54,所以不等式的解集为x≤54.任务三:去括号时括号内每项都要乘括号前的常数,移项要变号,系数化为1时,不等式两边都乘或除以负数,不等号的方向要改变.9.B 10.答案32解析 设该护眼灯降价x元,根据“以利润率不低于20%的价格降价出×100%≥20%,解得x≤32,故答案售”列一元一次不等式,得320―x―240240为32.11.解析 (1)设该参赛同学一共答对了x道题,则答错了(25-1-x)道题,依题意得4x-(25-1-x)=86,解得x=22.答:该参赛同学一共答对了22道题.(2)设参赛者答对y道题,则答错(25-y)道题,依题意得4y-(25-y)≥90,解得y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.12.解析 (1)设第一次购买龙眼x吨,则第二次购买龙眼(21-x)吨,由题意得0.4x+0.3(21-x)=7,解得x=7,∴21-x=21-7=14.答:第一次购买龙眼7吨,第二次购买龙眼14吨.(2)设把y吨龙眼加工成桂圆肉,则把(21-y)吨龙眼加工成龙眼干,由题意得10×0.2y+3×0.5(21-y)≥39,解得y≥15,∴至少需要把15吨龙眼加工成桂圆肉.答:至少需要把15吨龙眼加工成桂圆肉.能力提升全练13.C ∵解不等式12x ―1≤7―32x ,移项,得12x +32x ≤7+1,合并同类项,得2x ≤8,系数化为1,得x ≤4,∴解集在数轴上表示如下:故选C .14.A 把两个方程相减,可得x +y =k -3,根据题意得k -3≥5,解得k ≥8.所以k 的取值范围是k ≥8.故选A .15.答案 -4解析 根据题图知,不等式的解集是x ≥-1.∵x △k =2x -k ≥2,解得x ≥2+k 2,∴2+k 2=-1,∴k =-4.故答案是-4.16.答案D解析 2x -1>3+mx ,移项、合并同类项得(2-m )x >4,∵关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,∴2-m <0,∴m >2,∵数轴上的A ,B ,C ,D 四个点中,只有点D 表示的数大于2,∴实数m 对应的点可能是点D.17.答案 236≤m ≤6解析 解不等式x +52>―x ―72得x >-4,根据题意得,当x >-4时,不等式(m -6)x <2m +1恒成立,①当m-6=0,即m=6时,不等式(m-6)x<2m+1可化为0<13,恒成立,符合题意;②当m-6≠0时,要满足题意,需不等式(m-6)x<2m+1的不等号方向与其解集的不等号方向不同,∴m-6<0,即m<6,∴不等式(m-6)x<2m+1的解集为x>2m+1m―6,∵x>-4都能使x>2m+1m―6成立,∴-4≥2m+1m―6,∴-4m+24≤2m+1,∴m≥236,∴236≤m<6.综上所述,m的取值范围是236≤m≤6.18.解析 (1)设购进“冰墩墩”摆件x个,购进“冰墩墩”挂件y个.依题意得x+y=180,80x+50y=11 400,解得x=80,y=100.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180-m)个,依题意得(60-50)m+(100-80)(180-m)≥2 900,解得m≤70.答:购进的“冰墩墩”挂件不能超过70个.19.解析 (1)∵10×30=300(元),300<400,∴在甲超市的支付费用为300元.在乙超市的支付费用为300×0.8=240(元).故答案为300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的支付费用为10x元,在乙超市的支付费用为0.8×10x=8x(元),10x>8x.当x>40时,在甲超市的支付费用为400+0.6(10x-400)=(6x+160)元,在乙超市的支付费用为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.素养探究全练20.解析 (1)谷物食品中所含的蛋白质为9%x克,牛奶中所含的蛋白质为3%y克.故答案为9%x;3%y.(2)依题意,列方程组为9%x+3%y+60×15%=300×8%,x+y+60=300,解得x=130, y=110.故答案为130;110.(3)设该学校一周内共有a天选择A套餐,则有(5-a)天选择B套餐.依题意,得150a+180(5-a)≤830,解得a≥73.方案如表所示.方案A套餐B套餐方案13天2天方案24天1天方案35天0天。
人教版七年级数学下册9.2一元一次不等式同步测试(含答案)

绝密★启用前9.2一元一次不等式班级:姓名:一、单项选择题1.已知两个不等式的解集在数轴上如图表示,由这两个不等式构成的不等式组的解集为()A.x1B.x 1C.3 x≤1D.x32.若实数2是不等式3x a4<0 的一个解,则 a 可取的最小正整数是()A.1B.2C.3D.43.若对于 x 的不等式mx+1 > 0的解集是 x1.则对于 x 的不等式(m1)x 1 m 的解集是()5A.x 2B.x22D.x2 33C.x334.不等式的解集在数轴上表示正确的选项是()A.B.C.D.5.若是对于的方的解,则对于的不等式的最大整数解为()A. 1B. 2C.3D.46.符号 [ x] 为不超出 x 的最大整数,如 [2.8]2,[ 3.8] 4 .对于随意实数x,以下式子中错误的是()A. [ x] x B. 0 x [ x] 1C. [ x 1] [ x] 1D. [ x y] [ x] [ y]7.不等式2x 53 x 3 的解集中,正整数解的个数是()A.1 个B.2 个C.3 个D.4 个满()A . xaa C . x100a 100aB . x100 aD . x100 a100 a100 a二、填空题9.不等式 2x+9> 3( x+4)的最大整数解是 _____.10.在二元一次方程 12x y 8 中,当 y 0时, x 的取值范围是 _____.11.若 (m 1)x 2m 1 1>5 是对于 x 的一元一次不等式,则该不等式的解集是__________.12.若式子 3x 5的值大于 3 ,则 x 的取值范围是 __________.13. x 的1与 5 的和不大于 3,用不等式表示为 ______________214.假如对于 x 的不等式 x < a +5 和 2x < 4 的解集同样,则a =_____.三、解答题15.解不等式,并把解集在数轴上表示出来.1x2x 7 .2316.某大型商业中心开业,为吸引顾客,特在一指定地区搁置一批按摩休闲椅,供顾客有偿体验, 收费以以下图:( 1)若在此按摩椅上连续歇息了1 小时,需要支付多少元?( 2)某人在该椅前一次性花费18 元,那么他在该椅子上最多歇息了多久?( 3)张先生到该商场会见一名客人,结果客人见告暂时有事,估计4.5 小时后才能到来;那么假如张先生要在该休闲椅上歇息直至客人到来,他起码需要支付多少钱?一、单项选择题1.不等式 1x 2x 8的正整数解有()A . 1 个B . 2 个C .3 个D .无数多个2.对于 x 的一元一次不等式组的解集在数轴上的表示以下图,则不等式组的解集是()A . x1B . x 3C . 1 x 3D . 1 x 33.若代数x 91的值不小于x 11的值,则 x 的取值范围是()2317 17 A . x >37B . x ≥﹣ 37C .x >D .x ≥554.有一本书共有 300 页,小明要在 10 天内(包含第 10 天)把它读完,他前 5 天共读了 100 页,从第 6 天起的后 5 天中每日要起码读多少页?设从第 6 天起每日要读 x 页,依据题意得不等式为 ()A . 5× 100+5x > 300B . 5× 100+5x ≥ 300C .100+5x > 300D .100+5x ≥ 3005.甲在市集上先买了3 只羊,均匀每只 a 元,稍后又买了 2 只,均匀每只羊 b 元,以后他以每只ab2元的价钱把羊全卖给了乙,结果发现赔了钱,赔钱的原由是()A . a bB . a bC . a bD .与 a 、 b 大小没关4x 5)6.不等式1的正整数解有(12A .2 个B .3 个C .4 个D .5 个7.以下说法正确的选项是()A . x =1 是不等式- 2x <1 的解集B . x = 3 是不等式- x < 1 的解集C . x >- 2 是不等式1x 1的解集2D .不等式- x < 1 的解集是 x <- 18.若不等式组的解集为 -1≤ x ≤3,则图中表示正确的选项是( )A .B .C .D .二、填空题9.若 (2a-1)x<2a-1 的解集是 x>1 ,则 a 的取值范围是 _______.10.甲乙两队进行篮球抗衡赛,竞赛规则规定每队胜一场得 3 分,平一场得1 分,负一场得 0 分, 两队一共竞赛了 10 场,甲队保持不败,得分不低于24分,甲队起码胜了___________场.11.已知 4a+b=2,且 b≤6,则 a 的取值范围是 _______ .12.不等式2x 1 6 的全部正整数解之和为__________.13.使代数式13x的值不小于﹣7且不大于9的x的最小整数值是_____.5三、解答题14.解以下不等式,并把它们的解集在数轴上表示出来.( 1)5x15 4x13( 2)y 12 y 51 6415.为美化校园,某学校将要购进A、 B 两个品种的树苗,已知一株 A 品种树苗比一株 B 品种树苗多 20 元,若买一株 A 品种树苗和 2 株 B 品种树苗共需 110 元.( 1)问 A、 B 两种树苗每株分别是多少元?( 2)学校若花销不超出4000 元购入 A、B 两种树苗,已知 A 品种树苗数目是 B 品种树苗数目的一半,问此次至多购置 B 品种树苗多少株?参照答案1-5.ACAAC6-8.DCC9. -4210. x>311.x612.x 8 3x13.+53214. -315. x≤﹣ 4,解集在数轴上略.16.( 1) 12 元;( 2) 90 分钟;( 3) 69 元 .1-5.BDBDC6-8.CCD1 9. a<.2 10. 7 11. a≥-1 12. 6 13.﹣1414.( 1)x5 28 ;(2)y415.(1) A 种树苗每株50 元, B 种树苗每株30 元;( 2)此次至多购置 B 品种树苗72 株.。
人教版七年级下《9.2实际问题与一元一次不等式》同步练习含答案

一元一次不等式组(总分:100分 时间45分钟)一、选择题(每题4分,共32分)1、下列不等式组中,解集是2<x <3的不等式组是( )A 、⎩⎨⎧>>23x xB 、⎩⎨⎧<>23x xC 、⎩⎨⎧><23x xD 、⎩⎨⎧<<23x x2、在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( )A 、a <12B 、a <0C 、a >0D 、a <-123、不等式组10235x x +⎧⎨+<⎩≤,的解集在数轴上表示为( )4、不等式组31025x x +>⎧⎨<⎩的整数解的个数是( )A 、1个B 、2个C 、3个D 、4个5、在平面直角坐标系内,P (2x -6,x -5)在第四象限,则x 的取值范围为( )A 、3<x <5B 、-3<x <5C 、-5<x <3D 、-5<x <-36、已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( )A 、①与②B 、②与③C 、③与④D 、①与④7、如果不等式组x a x b >⎧⎨<⎩无解,那么不等式组的解集是( ) A.2-b <x <2-a B.b -2<x <a -2 C.2-a <x <2-b D.无解8、方程组43283x m x y m +=⎧⎨-=⎩的解x 、y 满足x >y ,则m 的取值范围是( ) A.910m > B.109m > C.1910m > D.1019m > 二、填空题(每题4分,共32分)x x x x A B C D9、若y 同时满足y +1>0与y -2<0,则y 的取值范围是______________.10、不等式组3010x x -<⎧⎨+⎩≥的解集是.11、不等式组20.53 2.52x x x -⎧⎨---⎩≥≥的解集是. 12、若不等式组⎩⎨⎧->+<121m x m x 无解,则m 的取值范围是.13、不等式组15x x x >-⎧⎪⎨⎪<⎩≥2的解集是_________________14、不等式组2x x a>⎧⎨>⎩的解集为x >2,则a 的取值范围是_____________.15、若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x <1,那么(a +1)(b -1)的值等于________. 16、若不等式组4050a x x a ->⎧⎨+->⎩无解,则a 的取值范围是_______________.三、解答题(每题9分,共36分)17、解下列不等式组(1)328212x x -<⎧⎨->⎩ (2)572431(1)0.54x x x -≥-⎧⎪⎨--<⎪⎩(3)2x <1-x ≤x +5 (4)3(1)2(9)34140.50.2x x x x -<+⎧⎪-+⎨-≤-⎪⎩18、解不等式组3(21)42132 1.2x xxx⎧--⎪⎪⎨+⎪>-⎪⎩≤,把解集表示在数轴上,并求出不等式组的整数解.19、求同时满足不等式6x-2≥3x-4和2112132x x+--<的整数x的值.20、若关于x、y的二元一次方程组533x y mx y m-=-⎧⎨+=+⎩中,x的值为负数,y的值为正数,求m的取值范围.参考答案1、C2、D3、C4、B5、A6、D7、A8、D9、1<y<2 10、-1≤x<311、-14≤x≤4 12、m>2 13、2≤x<5 14、a<2 15、-6 16、a≤117、(1)31023x<<(2)无解(3)-2<x<13(4)x>-3 18、2,1,0,-119、不等式组的解集是27310x≤<-,所以整数x为020、-2<m<0.5。
人教版七年级数学下册《9.2实际问题与一元一次不等式》同步练习【含答案】

人教版七年级数学下册《9.2实际问题与一元一次不等式》同步练习【含答案】实际问题与一元一次不等式(1)1. 若x 的与4的差不小于x 的2倍加上5所得的和,则可列不等式为 ( ) A . B .C .D . 2.小亮准备用自己节省的零花钱买一台英语复读机.他现在已存有45元.计划从现在起以后每个月节省30元,直到他至少有300元为止,设x 个月后他至少有300元,则关于x 的不等式是 ( )A .30x -45≥300B .30x +45≥300C .30x -45≤300D .30x +45≤3003. 不等式的解集在数轴上表示正确的是 ( )4. 不等式2x ―5<5―2x 的正整数解有 ( )A .1个B .2个C .3个D .4个5. 不等式的解集是 ;不等式的正整数解为 . 6. 若不等式的解集为,则的取值范围是 . 7.解下列不等式,并把它们的解集在数轴上表示出来:(1); (2).8.已知关于x 的方程5(x -1)=3a +x -11,当a 为何值时,方程的解是正数?1314253x x ->+14253x x +>+14253x x -≥+14253x x +≥+113x +≥1512x ->721x ->()31a x ->13x a <-a ()233x x +<-()1112x x ---≤2 0 2 0 2 0 D . 0 A .B .C .1.芳芳上学期期末考试中语文、数学的平均分为87分,但语文、数学、英语三科平均分不低于90分,则芳芳的英语成绩至少是 ( )A .97分B .96分C .95分D .94分2. 学校运动会长跑比赛中,张华跑在前面,离终点100m 时,在他身后10m 的李明想以4m/s 的速度冲刺超过张华,假设这时张华需以x m/s 的速度冲刺,才能在到达终点时始终保持领先位置,则下列满足题意的不等式为 ( )A .>100 B .<100 C .≥100 D .≤100 3. 某商品进价为800元,售价为1200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率(利润率=×100%)不低于5%,则至少需打( ) A .六折 B .七折 C .八折 D .九折4. 一个两位数,其个位数字比十位数字大5,若这个两位数小于36,那么满足条件的两位数是 .5. 某软件公司开发出一种图书管理软件,前期投入的开发、广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元.如果每套软件定价700元,那么软件公司至少要售出 套软件才能确保不亏本.6.一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120 m 3后,又要求提前2天完成掘土任务,问以后几天内,平均每天至少要挖掘多少土方?7.某商店进了100台彩电,每台进价为2000元.进货后市场情况较好,每台以2200元的零售价销售,用了不长的时间就销售了40台,后来出现滞销的情况.年底将至,商场为了减少库存加快流通,决定对剩下的60台打折促销.问在零售价每台2200元的基础上最低打几折,商场才能使全部彩电(100台)的销售总利润率不低于4%?1104x 1104x 1104x 1104x 售价进价进价1. 已知x ,y 分别满足不等式2x -3≤5(x -3)与,则x 与y 的大小关系是 ( )A .x <yB .x >yC .x ≤yD .x ≥y2. 若关于x 的方程x -2+3k =的根是负数,则k 的取值范围是 ( ) A .k > B .k ≥ C .k < D .k ≤ 3. 某种圆珠笔零售价为每支2元,凡购买2支以上(包括2支),商场推出两种优惠销售办法,第一种:一支圆珠笔按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.若在购买相同数量的圆珠笔的情况下,要使第一种方法比第二种方法得到的优惠多,则至少需要买圆珠笔( )A .5支B .4支C .3支D .2支4. 小颖家每月水费都不少于15元.自来水公司的收费标准如下:若每户每月用水不超过5m 3,则每立方米收费1.8元;若每户每月用水超过5m 3,则超出部分每立方米收费2元.小颖家每月用水量至少是 m 3.5. 现用甲、乙两种运输车将46t 抗旱物资运往灾区,甲种车每辆载重5t ,乙种车每辆载重4t ,安排车辆不超过10辆,在每辆车都满载而又不超载的情况下,甲种运输至少需要安排 辆.6. 某次数学测验,共有16道选择题,评分办法是:答对一题得6分,答错一题倒扣2分,不答则不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?7. 某人10点10分离家去赶11点整的火车,已知他家离火车站10公里,他离家后先以3公里/小时的速度走了5分钟,然后立即乘公共汽车去车站,问公共汽车每小时至少行多少公里才能不误当次火车?11163y y -+->3x k +34343434实际问题与一元一次不等式(1)1.C 2.A 3.C 4.B 5.;1,2 6. 7.(1);(2)x ≥-1 8.a >2实际问题与一元一次不等式(2)1.B 2.A 3.B 4.16,27 5.100 6.80m 3 7.设余下的60台打x 折,则2200×x×60≥2000×(1+40%)×100-2200×40,解得:x ≥0.9,即最低打九折实际问题与一元一次不等式(3)1.B 2.A 3.B 4.8 5.6 6.设要答对道题才能在60分以上,则6x ―2(16―x )>60,x >11,又0≤x ≤15,x 是整数,∴x=127.设公共汽车每小时走x 公里才能不误火车,则≥10,解得:x≥1315x <-3a <1-<x x 1455053606060x ⎛⎫⨯+- ⎪⎝⎭。
人教版数学七年级下册第九章 9.2一元一次不等式习题练习(附答案)
人教版数学七年级下册第九章 9.2一元一次不等式习题练习(附答案)一、选择题1.若关于x 、y 的二元一次方程组{3x −y =−1−a,x −3y =3的解满足x -y >-2,则a 的取值范围是( ) A .a <4B . 0<a <4C . 0<a <10D .a <102.若不等式ax -2>0的解集为x <-2,则关于y 的方程ay +2=0的解为( )A .y =-1B .y =1C .y =-2D .y =23.小明用100元钱去购买笔记本和钢笔共30件,如果每枝钢笔5元,每个笔记本2元,那么小明最多能买多少枝钢笔.( )A . 11B . 12C . 13D . 144.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计),某人从甲地到乙地经过的路程是x 千米,出租车费为21.5元,那么x 的最大值是( )A . 11B . 8C . 7D . 55.初三的几位同学拍了一张合影作留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为( )A . 至多6人B . 至少6人C . 至多5人D . 至少5人6.定义运算:a *b ,当a >b 时,有a *b =a ,当a <b 时,有a *b =b ,如果(x +3)*2x =x +3,那么x 的取值范围是( )A .x <3B .x >3C .x <1D . 1<x <37.不等式|x -2|>1的解集是( )A .x >3或x <1B .x >3或x <-3C . 1<x <3D . -3<x <3二、填空题8.关于x 的方程3(x +2)=k +2的解是正数,则k 的取值范围是________.9.若-3是关于x 的方程x−a 3-2−x 4=1的解,则x−a 3-2−x 4≥1的解集是__________.10.为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,最多用____________资金购买书桌、书架等设施.11.一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是_________. 12.若关于x 的不等式(a -2)x >a -2解集为x <1,化简|a -3|=______.三、解答题13.已知方程组{x −y =2a,2x +3y =5−a的解为非负数,求整数a 的值. 14.若关于x 的方程2x -3m =2m -4x +4的解不小于78-1−m 3,求m 的最小值.15.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4:3,单价和为42元.(1)甲、乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,问甲种票最多买多少张?16.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为________.(2)解不等式|x -3|+|x +4|≥9;(3)若|x -3|+|x +4|≥a 对任意的x 都成立,求a 的取值范围.17.解不等式:5x+12-x−24>5x−16+x−33.答案解析1.【答案】D【解析】在关于x 、y 的二元一次方程组{3x −y =−1−a①,x −3y =3②中, ①+②,得4x -4y =2-a ,即x -y =12-a 4,∵x -y >-2,∴12-a 4>-2,解得a <10,故选D.2.【答案】D【解析】ax -2>0,移项,得ax >2,∵解集为x <-2,则a =-1,则ay +2=0,即-y +2=0,解得y =2.故选D.3.【答案】C【解析】设买x 支钢笔,则笔记本有(30-x )本,则有5x +2(30-x )≤100,即3x ≤40,解得x ≤1313.因此最多能买13支钢笔.故答案为13.4.【答案】B【解析】根据题意得8+2.6(x -3)≤21.5,解得x ≤8.19,∵不足1千米按1千米计,∴x 的最大值是8.故选B.5.【答案】B【解析】设参加合影的同学人数为x 人,则有5+0.5x <1.5x ,解得x >5,∵x 取正整数,∴参加合影的同学人数至少为6人.故选B.6.【答案】A【解析】∵(x +3)*2x =x +3,∴x +3>2x ,x <3,故选A.7.【答案】A【解析】∵|x -2|>1,∴x -2>1或x -2<-1;所以解集为x >3或x <1;故选A.8.【答案】k >4【解析】由方程3(x +2)=k +2去括号移项,得3x =k -4,∴x =k−43, ∵关于x 的方程3(x +2)=k +2的解是正数,∴x =k−43>0,∴k >4. 9.【答案】x ≥-3【解析】把x =-3代入方程x−a 3-2−x 4=1,可得a =-394, 把a =-394代入x−a 3-2−x 4≥1,解得x ≥-3,故答案为x ≥-3.10.【答案】7 500元【解析】设用于购买书桌、书架等设施的资金为x 元,则购买书籍的有(30 000-x )元, 根据题意得30 000-x ≥3x ,解得x ≤7 500.即最多用7 500元购买书桌、书架等设施;故答案是7 500元.11.【答案】80【解析】设以后几天平均每天完成x 土方.由题意得:3x ≥300-60,解得x ≥80答:以后几天平均至少要完成的土方数是80土方.故答案为80.12.【答案】3-a【解析】∵关于x 的不等式(a -2)x >a -2解集为x <1,∴a -2<0,即a <2,∴原式=3-a .故答案为3-a .13.【答案】解:{x −y =2a①,2x +3y =5−a②,①×3+②,得5x =6a +5-a ,即x =a +1≥0,解得a ≥-1;②-①×2,得5y =5-a -4a ,即y =1-a ≥0,解得a ≤1;则-1≤a ≤1,即a 的整数值为-1,0,1.【解析】用加减消元法解方程组,求出x 和y (x 和y 均为含有a 的代数式),再根据x 、y 的取值即可列出关于a 的不等式组,即可求出a 的取值范围,进一步即可求解.14.【答案】解:关于x 的方程2x -3m =2m -4x +4的解为x =5m+46, 根据题意,得5m+46≥78-1−m 3,去分母,得4(5m +4)≥21-8(1-m ),去括号,得20m +16≥21-8+8m ,移项,合并同类项,得12m ≥-3,系数化为1,得m ≥-14.所以当m ≥-14时,方程的解不小于78-1−m 3,m 的最小值为-14. 【解析】首先求解关于x 的方程2x -3m =2m -4x +4,即可求得x 的值,根据方程的解的解不小于78-1−m 3,即可得到关于m 的不等式,即可求得m 的范围,从而求解.15.【答案】解:(1)设甲票价为4x 元,乙为3x 元,∴3x +4x =42,解得x =6,∴4x =24,3x =18, 答:甲乙两种票的单价分别是24元、18元;(2)设甲种票有y 张,则乙种票(36-y )张,根据题意得24y +18(36-y )≤750,解得y ≤17,答:甲种票最多买17张.【解析】(1)设甲票价为4x元,乙为3x元,根据单价和为42元得到关于x的一元一次方程,解方程得x的值,然后分别计算4x与3x即可;(2)设甲种票有y张,则乙种票(36-y)张,根据购买的钱不超过750元得到不等式,求出解集中的最大整数即可.16.【答案】解:(1)方程|x+3|=4的解就是在数轴上到-3这一点,距离是4个单位长度的点所表示的数,是1和-7.故解是1和-7;(2)由绝对值的几何意义知,该方程表示求在数轴上与3和-4的距离之和为大于或等于9的点对应的x的值.在数轴上,即可求得x≥4或x≤-5.(3)|x-3|+|x+4|即表示x的点到数轴上与3和-4的距离之和,当表示对应x的点在数轴上3与-4之间时,距离的和最小,是7.故a≤7.【解析】(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;(2)不等式|x-3|+|x+4|≥9表示到3与-4两点距离的和,大于或等于9个单位长度的点所表示的数;(3)|x-3|+|x+4|≥a对任意的x都成立,即求到3与-4两点距离的和最小的数值.17.【答案】解:去分母得6(5x+1)-3(x-2)>2(5x-1)+4(x-3),去括号得30x+6-3x+6>10x-2+4x-12,移项得30x-3x-10x-4x>-2-12-6-6,合并同类项,得13x>-26,系数化为1,得x>-2.【解析】利用不等式的基本性质,即可求得原不等式的解集.。
2020-2021学年七年级数学人教版下册9.2一元一次不等式(实际应用)(含答案)
9.2一元一次不等式(实际应用)一、单选题1.缤纷节临近,小西在准备爱心易物活动中发现班级同学捐赠的一个布偶的成本为60元,定价为90元,为使得利润率不低于5%,在实际售卖时,该布偶最多可以打( )折. A .8B .7C .7.5D .8.52.妈妈将某服饰店的促销活动内容告诉爸爸后,爸爸假设某一商品的定价为x 元,并列出关系式为0.8(2x ﹣100)<1500,则下列哪一项可能是妈妈告诉爸爸的内容( ) A .买两件等值的商品可减100元,再打2折,最后不到1500元 B .买两件等值的商品可打2折,再减100元,最后不到1500元 C .买两件等值的商品可减100元,再打8折,最后不到1500元 D .买两件等值的商品可打8折,再减100元,最后不到1500元3.王老师每天从甲地到乙地锻炼身体,甲、乙两地相距1.4千米,已知他步行的平均速度为80米/分,跑步的平均速度为200米/分,若他要在不超过10分钟的时间内从甲地到达乙地,至少需要跑步( )分钟? A .4B .5C .6D .74.一辆匀速行驶的汽车在8点20分的时候距离某地60km ,若汽车需要在9点以前经过某地,设汽车在这段路上的速度为x (/km 小时),列式表示正确的是( ) A .60x >B .4060x >C .2060x <D .2603x > 5.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本3元,每支钢笔5元,求小明最多能买几支钢笔.设小明买了x 支钢笔,依题意可列不等式为( ) A .()3530100x x +-≤B .()3305100x x -+≤C .()5301003x x -≤+D .()5100330x x ≤-+6.在世界杯足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分.若小组赛中某队的积分为5分,则该队必是( ) A .两胜一负B .一胜两平C .一胜一平一负D .一胜两负7.某校要购买一批羽毛球拍和羽毛球,现有经费850元,已知羽毛球拍150元/套,羽毛球30元/盒,若该校购买了4套羽毛球拍,x 盒羽毛球,则下列不等式列式正确的是( ) A .150304x +⨯≤850B .150304850x +⨯<C .150430x ⨯+≤850D .150430850x ⨯+<8.张老师每天从甲地到乙地锻炼身体,甲、乙两地相距14千米,已知他步行的平均速度为80米/分,跑步的平均速度为200米/分,若他要在不超过10分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式( ) A .80x+200(10-x)≤1.4 B .80x+200(10-x)≤1400C .200x+80(10-x)≥1.4D .200x+80(10-x)≥14009.太原市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( ) A .至少20户B .至多20户C .至少21户D .至多21户10.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分 D .某参赛选手得分可能为负数二、填空题11.某超市从厂家以每件50元的价格购进一批商品,该超市可以自行定价,但物价局限定每件商品加价不能超过售价的20%,则这批商品的售价不能超过_________元.12.迪士尼乐园开门前已经有400名游客在排队检票.检票开始后,平均每分钟又有120名游客前来排队.已知一个检票口每分钟能检票15人,若要使排队现象在开始检票10分钟内消失,则至少开放___个检票口.13.一个工程队原定在10天内至少要挖土3600m ,前两天一共完成了3120m ,由于工程调整工期,需要提前两天完成挖土任务,则以后的几天内每天至少要挖土__________3m.14.小红网购了一本数学拓展教材《好玩的数学》.两位小伙伴想知道书的价格,小红告诉他们这本书的价格是整数并让他们猜,小曹说:“至少29元”,小强说:“至多21元,小红说:“你们两个人都猜错了。
人教版七年级数学下册9.2:一元一次不等式(一元一次不等式的应用)同步测试
9.2.2一元一次不等式的应用同步测试一、选择题1.2x+1是不小于-3的负数,表示为()A.-3≤2x+1≤0 B.-3<2x+1<0B.C.-3≤2x+1<0 D.-3<2x+1≤02.现用甲、乙两种运输车将46t抗旱物资运往灾区,甲种运输车载重5t,乙种运输车载重4t,安排车辆不超过10辆,则甲种运输车至少应安排()A.4辆 B.5辆 C.6辆 D.7辆3.不等式2x-1≥3x一5的正整数解的个数为( )A.1 B.2 C.3 D.44.不等式的负整数解有()A.1个 B.2个 C.3个 D.4个5.已知关于x的不等式23->-的解集如图所示,则ax aA.0B.1-C.1 D.26.3个连续自然数的和小于15,这样的自然数共有()A.2组B.3组C.4组D.5组7.在一次“数学与生活”知识竞赛中,竞赛题共26道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于70分得奖,那么得奖至少应选对()道题.A. 22B. 21C. 20D. 198.某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品()A. 9件B. 10件C. 11件D. 12件9.甲、乙两人从相距24km的A、B两地沿着同一条公路相向而行,甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,那么甲的速度应()A. 小于8km/hB. 大于8km/hC. 小于4km/hD. 大于4km/h10.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()A.至多6人B.至少6人 C.至多5人D.至少5人二、填空题11.当k 时,代数式(k-1)的值不小于代数式1-的值.12.用20元钱买钢笔和铅笔,如果钢笔每支5元,铅笔每支5角,已知买了11支铅笔,那么最多还可以买钢笔_____支.13.不等式3x﹣2≤5x+6的所有负整数解的和为________14.甲、乙两队进行足球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分.两队一共比赛了10场,甲队保持不败,得分超过22分,则甲队至少胜了___ 场.15.某人10∶10离家赶11∶00的火车,已知他家离车站10公里,他离家后先以3公里/时的速度走了5分钟,然后乘公共汽车去车站,公共汽车每小时至少走______公里才能不误当次火车.16.幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有件.三、综合题17.小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?18.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各是多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.19.红星公司要招聘A、B两个工种的工人150人,A、B两个工种的工人的月工资分别为600元和1 000元,现要求B工种的人数不少于A工种人数的2倍,那么招聘A 工种工人多少时,可使每月所付的工资最少?此时每月工资为多少元?20.某校举行庆祝“十七大”的文娱汇演,评出一等奖5个,二等奖10个,三等奖25个.学校决定给获奖的学生发奖品,同一等次的奖品相同,并且只能从下表所列物品中选取一件:(1)如果获奖等次越高,奖品单价就越高,那么学校最少要花多少钱买奖品?(2)学校要求一等奖奖品单价是二等奖奖品单价的5倍,二等奖奖品单价是三等奖奖品单价的4倍,在总费用不超过1 000元的前提下,有几种购买方案?花费最多的一种方案需多少钱?9.2.2一元一次不等式的应用同步测试答案一、选择题1.C2.C3.D4.A5.C6.C7.B8.C9.B 10.B二、填空题11.x ≥. 12. 2 13.-10 14.7 15.13; 16.152.三、简答题17.解:设小华行走剩下的一半路程的平均速度为x 千米/分.由题意得12x ≥(1-12)×2.4,解得x ≥0.1.即小华行走剩下的一半路程的平均速度至少到达0.1千米/分.18.解:(1)设榕树和香樟树的单价各是a 元,b 元.由题意得20,32340,b a a b -=⎧⎨+=⎩解得60,80.a b =⎧⎨=⎩答:榕树和香樟树的单价各是60元,80元.(2)设购买榕树x 棵,则购买香樟树(150-x)棵.由题意得()1.5x,60x 80150x 10840,x ⎧⎪⎨+-⎪⎩≤150-≤解得58≤x ≤60.∵x 为整数,∴x=58,59,60.即共有3种方案:购买榕树58棵,则购买香樟树92棵;购买榕树59棵,则购买香樟树91棵;购买榕树60棵,则购买香樟树90棵.19.招聘A 工种工人为50人时,可使每月所付的工资最少,此时每月工资为130000元.20.解:(1)由题意,可将一、二、三等奖的奖品定为相册、笔记本、钢笔即可.此时所需费用为5×6+10×5+25×4=180(元);(2)设三等奖的奖品单价为x 元,则二等奖奖品单价应为4x 元,一等奖奖品单价为20x 元,由题意应由5×20x +10×4x +25×x ≤1000,解得x ≤6.06(元).故x 可取6元、5元、4元.故4x 依次应为24元,20元,16元,20x 依次应为120元、100元、80元.再看表格中所提供各类奖品单价可知,120元、24元、6元以及80元、16元、4元这两种情况适合题意,故有两种购买方案,方案一:奖品单价依次为120元、24元、6元,所需费用为990元;方案二:奖品单价依次为80元、16元、4元,所需费用为660元.从而可知花费最多的一种方案需990元.。
人教版初中数学七年级下册《9.2 一元一次不等式》同步练习卷(5)
人教新版七年级下学期《9.2 一元一次不等式》同步练习卷一.选择题(共16小题)1.某商家出售某种商品,标价为360元,比进价高出80%,为了吸引顾客,又进行降价处理,若要使售后利润率不低于20%(利润率=×100%),则最多可降价()A.80元B.160元C.100元D.120元2.小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为()A.210x+90(18﹣x)<2.1B.210x+90(18﹣x)≥2100C.210x+90(18﹣x)≤2100D.210x+90(18﹣x)≥2.13.在数轴上表示不等式3x≥x+2的解集,正确的是()A.B.C.D.4.不等式﹣2x+6>0的正整数解有()A.无数个B.0个C.1个D.2个5.某乒乓球馆有两种计费方案,如下图表.李强和同学们打算周末去此乒乓球馆连续打球4小时,经服务生测算后,告知他们包场计费方案会比人数计费方案便宜,则他们参与包场的人数至少为()A.9B.8C.7D.66.不等式+1<的负整数解有()A.1个B.2个C.3个D.4个7.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1B.a<1C.a>﹣1D.a>18.解不等式的过程如下:①去分母,得3x﹣2≤11x+7,②移项,得3x﹣11x≤7+2,③合并同类项,得﹣8x≤9,④系数化为1,得.其中造成错误的一步是()A.①B.②C.③D.④9.某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小英得分不低于90分.设她答对了x道题,则根据题意可列出不等式为()A.10x﹣5(20﹣x)≥90B.10x﹣5(20﹣x)>90C.10x﹣(20﹣x)≥90D.10x﹣(20﹣x)>9010.三个连续自然数的和小于11,这样的自然数组共有()A.1组B.2组C.3组D.4组11.一元一次不等式2x+1≥3的最小整数解为()A.﹣2B.﹣1C.1D.212.某商品的进价是500元,标价为750元,商店要求以利润不低于5%的售价打折出售,此商品最低可以打()A.6折B.7折C.8折D.9折13.我们把不相等的两个实数a,b中较大的实数a记作max{a,b}=a,例如:max{2,3}=3,max{﹣1,﹣2}=﹣1,那么关于x的方程max{x,2x}=3x+1的解是()A.x=B.x=C.x=D.x=﹣14.某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品()A.9件B.10件C.11件D.12件15.若|4﹣2m|=2m﹣4,那么m的取值范围是()A.不小于2B.不大于2C.大于2D.等于216.x与5的和的一半是负数,用不等式表示为()A.x+>0B.(x+5)≥0C.(x+5)>0D.(x+5)<0二.填空题(共20小题)17.用不等式表示“比x的5倍大1的数不小于4”:.18.不等式>1的解集是.19.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为20.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,这批电话手表至少有块.21.一元一次不等式﹣x≥2x+3的最大整数解是.22.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打折.23.已知:3(5x+2)+5<4x﹣6(x+1),化简:|3x+1|﹣|1﹣3x|=.24.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价元出售该商品.25.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对道题,成绩才能在60分以上.26.现规定一种新的运算:=ad﹣bc,≤18,则x的取值范围.27.若3﹣2x<﹣6+x,化简:|x﹣2|﹣|2﹣x|=.28.不等式4x﹣6≥7x﹣1的最大整数解是.29.若不等式≥4x+6的解集为a≤﹣4,则a的值为.30.已知关于x的方程x+m=3(x﹣2)的解是正数,则m的取值范围.31.当x时,代数式的值为正数.32.如图所示的程序中,要使输出值y大于70,则输入的最小正整数x是.33.已知﹣1≥x﹣,求|x﹣1|﹣|x+3|的最小值.34.一列火车共有n节车厢,每节车厢有108个座位,在春运的某天,这列火车上有m个人,其中有一些人没有座位,上述关系可用不等式表示为.35.用不等式表示“a的3倍与16的差是一个非负数”.36.当x时,代数式2x﹣5的值为0,当x时,代数式2x﹣5的值不大于0.三.解答题(共14小题)37.“小麦绕村苗郁郁,柔桑满陌椹累累”宋朝诗人陆游在《闲咏》诗中咏诵的“小麦”是我省北方某实验区种植的重要经济作物.据相关部门公布的信息:我省2018年实验区内种植“专用品种小麦”和“一般品种小麦”共2600万亩,其中“一般品种小麦”的种植面积比“专用品种小麦”的种植面积的3倍还多200万亩.请回答下列问题(1)求我省2018年“专用品种小麦”和“一般品种小麦”的种植面积;(2)若我省“专用品种小麦”每亩产量是300千克,要保证我省小麦的总产量不低于1100万吨,则“一般品种小麦”的亩产量至少是多少千克?38.解不等式:3﹣≥,并把解集在数轴上表示出来.39.某公司为了更好治理污水质,改善环境,决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少1万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过78万元,你认为该公司有哪几种购买方案;(3)在(2)间的条件下,若每月要求处理的污水量不低于1620吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.40.某商场销售每个进价为150元和120元的A、B两种型号的足球,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A种型号的足球最多能采购多少个?(3)在(2)的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.41.某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知1个篮球和2个足球共需116元;2个篮球和3个足球共需204元(1)求购买1个篮球和1个足球各需多少元?(2)若学校准备购进篮球和足球共40个,并且总费用不超过1800元,则篮球最多可购买多少个?42.合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?43.解不等式1﹣≤,并把解集在数轴上表示出来.44.若不等式3(x+1)﹣1<4(x﹣1)+3的最小整数解是方程x﹣mx=6的解,求m2﹣2m﹣11的值.45.为提高饮水质量,越来越多的居民选购家用净水器.我市腾飞商场抓住商机,从厂家购进了A、B两种型号家用净水器共100台,A型号家用净水器进价是150元/台,B型号家用净水器进价是250元/台,购进两种型号的家用净水器共用去19000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这100台家用净水器的毛利润不低于5600元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)46.某学校为了庆祝国庆节,准备购买一批盆花布置校园.已知1盆A种花和2盆B种花共需13元;2盆A种花和1盆B种花共需11元.(1)求1盆A种花和1盆B种花的售价各是多少元?(2)学校准备购进这两种盆花共100盆,并且A种盆花的数量不超过B种盆花数量的2倍,请求出A种盆花的数量最多是多少?47.某超市电器销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(1)求A、B两种型号的电风扇的销售价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能请给出采购方案.若不能,请说明理由.48.为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.49.为了提倡低碳经济,某公司为了更好得节约能源,决定购买节省能源的10台新机器.现有甲、乙两种型号的设备供选择,其中每台的价格、工作量如下表:(1)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;(2)在(1)的条件下,若每月要求产量不低于2040吨,为了节约资金,请你设计一种最省钱的购买方案.50.x取哪些非负整数时,的值大于与1的差.人教新版七年级下学期《9.2 一元一次不等式》2019年同步练习卷参考答案与试题解析一.选择题(共16小题)1.某商家出售某种商品,标价为360元,比进价高出80%,为了吸引顾客,又进行降价处理,若要使售后利润率不低于20%(利润率=×100%),则最多可降价()A.80元B.160元C.100元D.120元【分析】设可降价x元,根据利润率=×100%结合售后利润率不低于20%,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:设可降价x元,根据题意得:×100%≥20%,解得:x≤120.故选:D.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.2.小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为()A.210x+90(18﹣x)<2.1B.210x+90(18﹣x)≥2100C.210x+90(18﹣x)≤2100D.210x+90(18﹣x)≥2.1【分析】设骑车x分钟,根据题意列出不等式解答即可.【解答】解;设骑车x分钟,可得:210x+90(18﹣x)≥2100,故选:B.【点评】此题考查一元一次不等式的应用,关键是根据题意找出不等关系列出不等式.3.在数轴上表示不等式3x≥x+2的解集,正确的是()A.B.C.D.【分析】首先移项,再合并同类项,把x的系数化为1可得到不等式的解集,再根据解集画出数轴即可.【解答】解:3x≥x+2,移项得:3x﹣x≥2,合并同类项得:2x≥2,把x的系数化为1得:x≥1,在数轴上表示为:,故选:A.【点评】此题主要考查了解一元一次不等式,以及用数轴表示不等式的解集,关键是掌握:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.4.不等式﹣2x+6>0的正整数解有()A.无数个B.0个C.1个D.2个【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣6,系数化为1,得:x<3,则不等式的正整数解为2,1,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.某乒乓球馆有两种计费方案,如下图表.李强和同学们打算周末去此乒乓球馆连续打球4小时,经服务生测算后,告知他们包场计费方案会比人数计费方案便宜,则他们参与包场的人数至少为()A.9B.8C.7D.6【分析】设共有x人,分别计算选择包场和选择人数的费用,然后根据选择包场计费方案会比人数计费方案便宜,列不等式求解.【解答】解:设共有x人,若选择包场计费方案需付:50×4+5x=5x+200(元),若选择人数计费方案需付:20×x+(4﹣2)×6×x=32x(元),∴5x+200<32x,解得:x>=7.∴至少有8人.故选:B.【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.6.不等式+1<的负整数解有()A.1个B.2个C.3个D.4个【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:x﹣9+2<3x﹣2,移项、合并,得:﹣2x<5,系数化为1,得:x>﹣,∴不等式的负整数解为﹣2、﹣1,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1B.a<1C.a>﹣1D.a>1【分析】根据不等式的性质3:不等式两边除以同一个负数时,不等式的方向改变,可知a+1<0,由此得到a满足的条件.【解答】解:由原不等式可得(1+a)x>1+a,两边都除以1+a,得:x<1,∴1+a<0,解得:a<﹣1,故选:A.【点评】本题考查了不等式的解集及不等式的性质,根据解集中不等式的方向改变,得出a+1<0是解题的关键.8.解不等式的过程如下:①去分母,得3x﹣2≤11x+7,②移项,得3x﹣11x≤7+2,③合并同类项,得﹣8x≤9,④系数化为1,得.其中造成错误的一步是()A.①B.②C.③D.④【分析】根据等式的基本性质即可作出判断.【解答】解:去分母,得3x﹣2≤11x+7,移项,得3x﹣11x≤7+2,合并同类项,得﹣8x≤9,系数化为1,得x≥﹣.故选:D.【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.9.某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小英得分不低于90分.设她答对了x道题,则根据题意可列出不等式为()A.10x﹣5(20﹣x)≥90B.10x﹣5(20﹣x)>90C.10x﹣(20﹣x)≥90D.10x﹣(20﹣x)>90【分析】小英答对题的得分:10x;小英答错或不答题的得分:﹣5(20﹣x).不等关系:小英得分不低于90分.【解答】解:设她答对了x道题,根据题意,得10x﹣5(20﹣x)≥90.故选:A.【点评】此题主要考查了由实际问题抽象出一元一次不等式,抓住关键词语,找到不等关系是解题的关键.10.三个连续自然数的和小于11,这样的自然数组共有()A.1组B.2组C.3组D.4组【分析】设最小的自然数是x,根据三个连续自然数的和小于11,可列出不等式.【解答】解:设最小的自然数是x,x+x+1+x+2<11x<2.x可以为0或1或2.所以有三组.故选:C.【点评】本题考查理解题意的能力,关键是设出最小的自然数,根据和小于11,列出不等式求出可能情况.11.一元一次不等式2x+1≥3的最小整数解为()A.﹣2B.﹣1C.1D.2【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:∵2x≥2,∴x≥1,则不等式的最小整数解为x=1,故选:C.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.某商品的进价是500元,标价为750元,商店要求以利润不低于5%的售价打折出售,此商品最低可以打()A.6折B.7折C.8折D.9折【分析】设可以打x折出售,根据题意可得:折后价﹣进价≥5%的利润,据此列不等式求解.【解答】解:设可以打x折出售,由题意得,750×0.1x﹣500≥500×0.05,解得:x≥7.即:最低可以打7折出售.故选:B.【点评】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.13.我们把不相等的两个实数a,b中较大的实数a记作max{a,b}=a,例如:max{2,3}=3,max{﹣1,﹣2}=﹣1,那么关于x的方程max{x,2x}=3x+1的解是()A.x=B.x=C.x=D.x=﹣【分析】根据新定义分x>2x、2x>x两种情况,分别列出方程求解即可.【解答】解:①当x>2x,即x<0时,有:x=3x+1,解得:x=﹣;②当2x>x,即x>0时,有2x=3x+1,解得:x=﹣1(不合题意);综上,关于x的方程max{x,2x}=3x+1的解是﹣,故选:B.【点评】本题主要考查对新定义的理解及解分式方程的能力,由新定义会分类讨论是前提,准确解分式方程及方程的解的取舍是关键.14.某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品()A.9件B.10件C.11件D.12件【分析】购买5件需要15元,27元超过15元,则购买件数超过5件,设可以购买x件这样的商品,根据:5件按原价付款数+超过5件的总钱数≤30,列出不等式求解即可得.【解答】解:设可以购买x(x为整数)件这样的商品.3×5+(x﹣5)×3×0.8≤30,解得x≤11.25,则最多可以购买该商品的件数是11,故选:C.【点评】此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.15.若|4﹣2m|=2m﹣4,那么m的取值范围是()A.不小于2B.不大于2C.大于2D.等于2【分析】由于4﹣2m与2m﹣4互为相反数,那么已知条件|4﹣2m|=2m﹣4即为一个数的绝对值等于它的相反数,根据绝对值的定义可知4﹣2m≤0,解此不等式即可求出m的取值范围.【解答】解:∵|4﹣2m|=2m﹣4,∴4﹣2m≤0,解得m≥2.故选:A.【点评】本题考查了绝对值的定义及一元一次不等式的解法,根据绝对值的定义得到4﹣2m≤0是解题的关键.16.x与5的和的一半是负数,用不等式表示为()A.x+>0B.(x+5)≥0C.(x+5)>0D.(x+5)<0【分析】理解:负数值小于0.【解答】解:由题意知.故选D.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.二.填空题(共20小题)17.用不等式表示“比x的5倍大1的数不小于4”:5x+1≥4.【分析】理解:不小于4就是大于等于4.【解答】解:由题意可知5x+1≥4.故答案是:5x+1≥4.【点评】考查了由实际问题抽象出一元一次不等式.要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.18.不等式>1的解集是x>10.【分析】根据解一元一次不等式得基本步骤依次计算可得.【解答】解:去分母,得:x﹣8>2,移项,得:x>2+8,合并同类项,得:x>10,故答案为:x>10.【点评】本题考查了解一元一次不等式:有分母先去分母,再去括号,然后进行移项,把含未知数的项移到不等式的左边,再进行合并同类项,最后把未知数的系数化为1可得到不等式的解集.19.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为x>﹣1【分析】根据题意判断出6﹣m的正负,求出不等式的解集即可.【解答】解:∵m>6,∴6﹣m<0,不等式解集为x>﹣1,故答案为:x>﹣1【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.20.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,这批电话手表至少有105块.【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,550×60+500(x﹣60)>55000,解得x>104.故这批电话手表至少有105块,故答案为:105.【点评】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.21.一元一次不等式﹣x≥2x+3的最大整数解是﹣1.【分析】首先移项,然后合并同类项,系数化为1,即可求得不等式的解.【解答】解:移项得:﹣x﹣2x≥3即﹣3x≥3,解得x≤﹣1,∴不等式﹣x≥2x+3的最大整数解是﹣1,故答案为:﹣1【点评】本题考查了解一元一次不等式,一元一次不等式的整数解的应用,能根据不等式的基本性质求出不等式的解集是解此题的关键.22.某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打8.8折.【分析】设打x折,则售价是500×元.根据利润率不低于10%就可以列出不等式,求出x的范围.【解答】解:要保持利润率不低于10%,设可打x折.则500×﹣400≥400×10%,解得x≥8.8.故答案是:8.8.【点评】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.23.已知:3(5x+2)+5<4x﹣6(x+1),化简:|3x+1|﹣|1﹣3x|=﹣2.【分析】去括号出15x+6+5<4x﹣6x﹣6,移项、合并同类项得到17x<﹣17,求出x<﹣1,去绝对值符号得出﹣(3x+1)﹣(1﹣3x),求出即可.【解答】解:3(5x+2)+5<4x﹣6(x+1),∵去括号得:15x+6+5<4x﹣6x﹣6,移项得:15x﹣4x+6x<﹣6﹣6﹣5,合并同类项得:17x<﹣17,∴x<﹣1,∴|3x+1|﹣|1﹣3x|,=﹣(3x+1)﹣(1﹣3x),=﹣3x﹣1﹣1+3x,=﹣2,故答案为:﹣2.【点评】本题考查了绝对值和解一元一次不等式的应用,关键是根据x的范围去掉绝对值符号,当x<﹣1时,|3x+1|﹣|1﹣3x|,=﹣(3x+1)﹣(1﹣3x),注意:负数的绝对值等于它的相反数,正数的绝对值等于它本身,0的绝对值是0,24.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价6元出售该商品.【分析】先设最多降价x元出售该商品,则降价出售获得的利润是22.5﹣x﹣15元,再根据利润率不低于10%,列出不等式即可.【解答】解:设降价x元出售该商品,则22.5﹣x﹣15≥15×10%,解得x≤6.故该店最多降价6元出售该商品.故答案为:6.【点评】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.25.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对12道题,成绩才能在60分以上.【分析】找到关键描述语,进而找到所求的量的等量关系.得到不等式6x﹣2(15﹣x)>60,求解即可.【解答】解:设答对x道.故6x﹣2(15﹣x)>60解得:x>所以至少要答对12道题,成绩才能在60分以上.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.26.现规定一种新的运算:=ad﹣bc,≤18,则x的取值范围x≤8.【分析】根据新定义规定的运算规则列出不等式,解不等式即可得.【解答】解:根据题意知﹣10﹣4(1﹣x)≤18,﹣10﹣4+4x≤18,4x≤18+10+4,4x≤32,x≤8,故答案为:x≤8.【点评】本题主要考查解一元一次不等式,解题的关键是根据新定义列出关于x的不等式及解不等式的步骤.27.若3﹣2x<﹣6+x,化简:|x﹣2|﹣|2﹣x|=0.【分析】先求出不等式的解集,再去掉绝对值符号,即可求出答案.【解答】解:解3﹣2x<﹣6+x得x>3,∴|x﹣2|﹣|2﹣x|=x﹣2﹣(x﹣2)=0,故答案为:0.【点评】本题考查了解一元一次不等式和绝对值,能正确去掉绝对值符号是解此题的关键.28.不等式4x﹣6≥7x﹣1的最大整数解是﹣2.【分析】先求出不等式的解集,然后求其最大整数解.【解答】解:∵不等式4x﹣6≥7x﹣1的解集是x≤﹣,∴不等式的最大整数解是﹣2.故答案为﹣2.【点评】本题考查了一元一次不等式的解法,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.29.若不等式≥4x+6的解集为a≤﹣4,则a的值为22.【分析】先求出不等式的解集,根据已知得出关于a的方程,求出即可.【解答】解:≥4x+6,2x﹣a≥12x+18,﹣10x≥18+a,x≤,∵不等式的解集为a≤﹣4,∴=﹣4,解得:a=22,故答案为:22.【点评】本题考查了解一元一次不等式和解一元一次方程,能得出关于a的方程是解此题的关键.30.已知关于x的方程x+m=3(x﹣2)的解是正数,则m的取值范围m>﹣6.【分析】求出方程的解,根据方程的解是正数得出3+m>0,求出即可.【解答】解:x+m=3(x﹣2),∴x+m=3x﹣6,∴﹣2x=﹣6﹣m,∴x=3+m,∵方程的解是正数,∴3+m>0,∴m>﹣6.即m的取值范围是m>﹣6,故答案为m>﹣6.【点评】本题考查了解一元一次不等式和一元一次方程的应用,关键是求出方程的解进而得出不等式.31.当x>时,代数式的值为正数.【分析】根据题意列出不等式,求出不等式的解集即可.【解答】解:根据题意得:>0,解得:x>,故答案为:>.【点评】本题考查了解一元一次不等式,能根据题意列出不等式是解此题的关键.32.如图所示的程序中,要使输出值y大于70,则输入的最小正整数x是21.【分析】根据题意列出不等式,求出不等式的最小整数解即可.【解答】解:根据题意得:4x﹣11>70,x>20.25,∴x的最小整数为21,故答案为:21.【点评】本题考查了一元一次不等式的整数解的应用,能根据题意列出不等式是解此题的关键.33.已知﹣1≥x﹣,求|x﹣1|﹣|x+3|的最小值﹣3.【分析】解不等式得出x的范围,由绝对值的性质分类讨论,根据一次函数的性质得出其最小值.【解答】解:解不等式得x≤,令y=|x﹣1|﹣|x+3|,当x<﹣3时,y=1﹣x+x+3=4,当﹣3<x≤时,y=1﹣x﹣x﹣3=﹣2x﹣2,∵y随x的增大而减小,∴当x=时,y取得最小值,最小值为﹣3,故答案为:﹣3.【点评】本题主要考查解一元一次不等式、绝对值的性质及一次函数的性质,根据绝对值性质分类讨论并熟练掌握一次函数的性质是解题的关键.34.一列火车共有n节车厢,每节车厢有108个座位,在春运的某天,这列火车上有m个人,其中有一些人没有座位,上述关系可用不等式表示为108n<m.【分析】直接利用一列火车共有n节车厢,每节车厢有108个座位,得出总的座位数为:108n,进而利用这列火车上有m个人,其中有一些人没有座位,得出不等关系.【解答】解:由题意可得:108n<m.故答案为:108n<m.【点评】此题主要考查了由实际问题抽象出一元一不等式,正确表示出座位数是解题关键.35.用不等式表示“a的3倍与16的差是一个非负数”3a﹣16≥0.【分析】理解:差是一个非负数,即差应大于或等于0.【解答】解:根据题意,得3a﹣16≥0.【点评】读懂题意,抓住关键词语,弄清运算的先后顺序,不等关系,才能把文字语言。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.2 一元一次不等式(实际问题) 测试题一、选择题1.毛笔每支2元,钢笔每支5元,现有的购买费用不足20元,则购买毛笔和钢笔允许的情况是 ( )A .5支毛笔,2支钢笔B .4支毛笔,3支钢笔C .0支毛笔,5支钢笔D .7支毛笔,1支钢笔2.小明用100元钱去购买三角板和圆规共30件,已知三角板每副2元,每个圆规5元,那么小明最多能买圆规 ( )A .12个B .13个C .14个D .15个3.某风景区招待所有一两层客房,底层比二层少5间,一旅行团共有48人,若全部安排住 底层,每间住4人,房间不够;而每间住5人,有的房间未住满;若全部安排住二层,每 间住3人,房间也不够;每间住4人,有的房间未住满.这家招待所的底层共有房间 ( )A .9间B .10间C .11间D .12间4.一个两位数,某个位数字比十位数字大2,已知这个两位数不小于20,不大于40,那么这个两位数是多少?为了解决这个问题,我们可设个位数字为x ,那么可列不等式( ).A .20≤10(x-2)+x ≤40B .20<10(x-2)+x <40C .20≤x-2+x ≤40D .20≤10x+x-2≤405.张红家离学校1600米,一天早晨由于有事耽误,结果吃完饭时只差15分钟就上课,忙中出错,出门时又忘了带书包,结果回到家又取书包共用3分钟,只好坐小汽车去上学,小汽车的速度是36千米/时,小汽车行驶了1分30秒时又发生堵车,她等了半分钟后,路还没有畅通,于是下车又开始步行,问:张红步行速度至少是( )时,才不至于迟到.A .60米/分B .70米/分C .80米/分D .90米/分6.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆B .5辆C .6辆D .7辆二、填空题7.若5m >,试用m 表示出不等式(5)1m x m x ->-+的解集 .8.有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收0.8万元,若要使总收入不低于15.6万元,则至多只能安排_______人种甲种蔬菜.9.某种肥皂零售价每块2元,对于购买两块以上(含两块),商场推出两种优惠销售办法:第一种为一块按原价,其余按原价的七折优惠;第二种为全部按原价的八折优惠.在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少需要购买肥皂______块.10.韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油.现有A 、B 两个出租车队,A 队比B 队少3辆车.若全部安排A 队的车,每车坐5人,车不够,每辆坐6人,有的车未坐满.若全部安排乘B 队的车,每辆车坐4人,车不够;每辆车坐5人,有的车未坐满.A 队有出租车__________辆.11.发电厂派汽车去拉煤,已知大货车每辆装10吨,小货车每辆装5吨,煤场共有煤152吨,现派20辆汽车去拉,其中大货车x 辆,要一次将煤拉回电厂,至少需派多少辆大货车?列式为_______________________________________________________.12.一艘轮船上午6:00从长江上游的A地出发,匀速驶往下游的B地,于11:00到达B 地,计划下午13:00从B地匀速返回,如果这段江水流速为3km/h,且轮船在静水中的往返速度不变,那么该船至少以 km/h的速度返回,才能不晚于19:00到达A地.三、解答题13.在杭州市中学生篮球赛中,小方共打了10场球(每场得分均为整数).他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高.如果他所参加的10场比赛的平均得分超过18分.(1)用含x的代数式表示y;(2)小方在前5场比赛中,总分可达到的最大值是多少?(3)小方在第10场比赛中,得分可达到的最小值是多少?14.某公司为了扩大经营,决定购进6台机器用于生产某种活塞,现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示,经过预算,本次购买机(2)若该公司购进的6台机器的日生产能力不低于380个,那么为了节约资金应选择哪种方案?15.某单位计划10月份组织员工到杭州旅游,人数估计在10~25人之间,甲、乙两旅行社的服务质量都较好,且组织到杭州旅游的价格都是每人200元,该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠;乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠,问该单位怎样选择,可使其支付的旅游总费用较少?16.某村为解决村民出行难的问题,村委会决定将一条长为1200m的村级公路硬化,并将该项工程承包给甲、乙两工程队来施工.并将该项工程承包给甲、乙两工程队来施工,若甲、乙两队做需12天完成此项工程;若甲队先做了8天后,剩下的由乙队单独做还需18天才能完工.(1)问甲、乙两队单独完成此项工程各需多少天?(2)又已知甲队每施工一天需要费用2万元,乙队每施工一天需要费用1万元,要使完成该工程所需费用不超过35万元,则乙工程队至少要施工多少天?【答案与解析】一、选择题1.【答案】D ;【解析】代入验证.2.【答案】B ;【解析】设买圆规x 件,由题意得:52(30)x x +-≤100,得x ≤1133,且x 为正整数,所以x 最大取13.3.【答案】B ; 【解析】设底层有房间x 间,由题意得:4485483(5)484(5)48x x x x <⎧⎪>⎪⎨+<⎪⎪+>⎩得:39115x <<,又x 为正整数,所以10x =.4.【答案】A ;5.【答案】B ;【解析】设张红步行速度x 米/分才不至于迟到,由题意可列不等式引11[153(1)]22x --+g ≥1160060012-⨯,化简得10x ≥700,x ≥70,故选B . 6.【答案】C ;【解析】解:设甲种运输车安排x 辆,乙种运输车安排y 辆,根据题意得,解得:x≥6, 故至少甲要6辆车.故选C .二、填空题7.【答案】14m x m-<-; 【解析】因为5m >,所以450m m -<-<,原不等式可化为:(4)1m x m ->-,两边同除以(4m -),得 14m x m -<- 8.【答案】4;【解析】设安排x 人种甲种蔬菜,可得30.52(10)0.8x x ⨯+-⨯≥15.6,得x ≤4.9.【答案】4;【解析】解:设要使第一种办法比第二种办法得到的优惠多,需要购买肥皂x 块,则:2+0.7•2(x-1)<0.8•2x, 得:x >3.最少需要购买肥皂4块时,第一种办法比第二种办法得到的优惠多.10.【答案】10;11.【答案】10x + 5 (20 –x ) ≥152;12.【答案】33;【解析】解:设船xkm/h 的速度返回,根据题意得出:6(x ﹣3)≥5(x+3)解得:x≥33,∴该船至少以33km/h 的速度返回,才能不晚于19:00到达A 地.故答案为:33.三、解答题13.【解析】解:(1)因为前5场比赛的平均得分为x ,则前5场比赛的得分之和为5x ,故有522151219568999x y x ++++==+. (2)依题意: y-x >0, 则有:56899x x +>,解得:x <17. 所以小方前5场比赛中总分的最大值应为:17×5-1=84(分).(3)由题意,小方在这10场比赛中得分至少为18×10+1=181(分).设他在第10场比赛中的得分为S .则有84+(22+15+12+19)+S ≥181,解得S ≥29.答:小方在第10场比赛中的得分的最小值为29分.14.【解析】解:(1)设购买甲种机器x 台,乙种机器(6-x )台.由题意,得7x+5(6-x)≤34.解不等式,得x ≤2,故x 可以取0,l ,2三个值,所以,该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台;方案二:购买甲种机器1台,购买乙种机器5台;方案三:购买甲种机器2台,购买乙种机器4台;(2)按方案一购买机器,所耗资金为30万元,日生产量6×60=360(个);按方案二购买,所耗资金为1×7+5×5=32(万元),日生产量为1×100+5×60=400(个),按方案三购买,所耗资金为2×7+4×5=34(万元);日生产量为2×100+4×60=440(个).因此,选择方案二既能达到生产能力不低于380(个),又比方案三节约2万元资金,故应选择方案二.15.【解析】解:设该单位到杭州旅游的人数为x 人,选择甲旅行社所需费用为y 甲元;选择乙旅行社所需费用为y 乙元,则2000.75150y x x =⨯=甲,y =乙200(x-l)×0.8=160x-160,y y -乙甲=150x-160x+160=160-10x .(1)若160-10x >0,即x <16时,y y >乙甲;(2)若160-10x =0,即x =16时,y y =乙甲;(3)若l60-10x <0,即x >16时,y y 乙甲.∴当旅游人数为16人时,选择甲、乙两旅行社中任何一家都行. 当旅游人数在10~15人之间时,选择乙旅行社,当旅游人数在17~25人之间时,选择甲旅行社.16.【解析】解:(1)设甲单独做需要用x 天,乙单独做需要y 天,根据题意可得:, 解得:.答:甲单独做需要用20天,乙单独做需要30天;(2)甲的工效:1200÷20=60,乙的工效:1200÷30=40,∵2×20=40>35,∴设乙需要做a 天,由题意可得: 2×+a≤35,解得:a≥15.答:乙工程队至少要施工15天.。