张力减径机的动力学和运动学的分析
SRM615_12机架单独传动微张力减径机组分析

I !&&&& JKLM.NDLMOPQI
#&&&&&&&&&&&& RS
使用 =821)%>)! 机架单独传动 三 辊 微 张 力 减 径机组对无缝钢管进行最后一道工序的减径,定径 精度高,调整方便,为大直径无缝钢管企业的技术 改造提供了设备造型参考。
液压系统主要由液压站、阀台和管道、管接头 及塑料管夹等附件组成,是减径机组的专用配套设 备,用来驱动减径机中各液压执行元件使其按照一
主机座的结构形式为 B 形 。B 形 机 座 是 焊 接 的整体结构,具有加工精度高、安装调试方便、 刚性好的特点。传动轴装置、快速水接头装置、 锁紧缸装置、导卫装置等都装配在其上。
:A@A:’’’ 0234./
机架快速更换是衡量微张力减径机组水平的 重要指标,该机架采用了双小车结构,换辊时间 也缩短到 60!9’,45 。机架更换装置由左右小车、传 动装置、机架推拉装置、轨道组成。机架更换既 可单独更换,也可成组或全部更换。两个小车各 可存放一套全部的机架。小车的移动由传动装置
随着工艺和电控技术的飞跃发展国内新上的大直径无缝钢管热轧生产线多数采用了单独传动微张力减径机组这些单独传动微张力减径机组用于将轧管后的荒管经再加热除鳞后进一步轧制主要生产高精度的石油油套管等高附加值产品
河北冶金
!"#
(太原市通泽成套设备有限公司,山西 太原
)*))(+ )
/01 介绍了 !"#$%&,%( 机架单独传动微张力减径机组的设备组成,并对该机组的结构及特点作了详细
$+!+1&&& 456789:;
张力减径机双电机传动系统的分析

组合方式 见 3 。该 系统是由两个普通定轴齿轮传 动 d 和 r 与差动齿轮传动 A3c , 2  ̄ (组合 而成的封 L b3 3) 闭行 星齿轮传动系统 。然后导 出差动机构齿轮传
动 运动 学 方 程式 ,设差 动机 构 的 3个 基本 构 件 ,
收 稿 日期 :0 1 0 — 4 修 回 日期 :0 10 — 5 2 1- 8 1 ; 2 1- 9 1
㈤
将 ( )式代人 ()式 ,可得 2 4
/ d:一 / . 。 。
,
3 张力减径机双 电机传动系统的传动效率的计算
() 5 张 力 减 径机 双 电机传 动 系 统 是 由两 个 主 动 构件
/ :一 / : . Z 将 ( )式代人 ( )式 ,可得 3 6
∞z / 们=一 正 zz -
() 6
同时输入功率 ,当转化机构的啮合功率 t (广 t = n n)为正值时 ,表明电机 1 为主动构件 ,摩擦损失
( _e 1 3
,
可 变化
ll a
+
b - O) 3 3 c
 ̄ ,=r3 JJ o i o, b 3
将 差 动机 构 传动 运 动 代 入 上式 可得 以: ,
同样 ,可 得 内齿
。
矩 关系 式 。
学 的普遍 关 系 式 3: — b l
3 r p
能独立渊速的单独传动方式 ( 单独电气调速系统和
液 压 差动 捌 速 系统 ) ,到 2 纪 7 代 ,出现 了 0世 0年
双电机集 中变速传动 的张力减径机传动系统… 张
力 减 径 机 传 动 系 统 由传 动 电机 和 叠 加 传 动 电机 组
r寸 “
张力减径机理论资料

计算管端增厚的方法很多,我认为德国 Meer 厂和考克斯公司的的方法是较为
实用的计算方法。
德国 Meer 厂计算方法介绍如下。
1》 已 知
机 架 间 距 (m): A
毛管 外 径(mm):D0、毛管壁厚(mm):S0;
钢管 外 径(mm):D 、钢管壁厚(mm):S
2》 计 算
1) 延 伸 系 数
µ= S0*(D0- S0)/[ S*(D- S)]
3
△ D= (D0- D)/D0 Zm— — 所 有 机 架 中 钢 管 总 的 平 均 张 力 系 数
3、 减 径 的 几 个 工 艺 问 题
3、1 管端增厚
1) 产生管端增厚的机理和特征
在 钢 管 头 部 出 了 第 一 机 架 但 还 没 有 进 入 第 二 机 架 时 ,这 一 段 钢 管 就 没 有 张 力 的
2) 毛 管 壁 厚 系 数
ν 0= S0/D0
3) 钢 管 壁 厚 系 数
ν = S/D
4) 平 均 壁 厚 系 数
ν m=[(ν0+ν)/2+(S0+S)/(D0+D)]/2
4
5) 减 径 率
ρ = 1- D/D0
6) 轴 向 对 数 变 形
Φ e= LN(µ)
7) 切 向 对 数 变 形
Φ t= LN((D- S)/(D0- S0))
δ i= 1- (1- ρ i)ε ε = [2Zi(ν i-1- 1)+ (1- ν i-1)]/[Zi(1- ν i-1)- (2- ν i-1)] δ i— — 第 机 架 中 钢 管 的 相 对 减 壁 量
δ i= (Si-1- Si)/Si-1 ρ i— — 第 机 架 中 钢 管 的 相 对 减 径 量
张力减径的工艺原理及主要问题

包头钢铁职业技术学院学生毕业论文论文题目:张力减径的工艺原理及主要问题专业:冶金班级:冶金一班学生:李咏光指导教师:魏宁日期: 2010年3月31日目录摘要 (1)关键词 (1)引言 (1)1 张力减径机技术的发展 (1)2 张力减径机的作用 (1)2.1张力减径机的形式 (2)3 钢管定径、减径的工艺原理 (3)3.1 张力减径的优点、缺点 (3)3.2三辊定径、减径机减径与二辊定径减径机相比 (4)3.3张力径机的孔型 (5)3.4张力减径机与微张力减径机的不同 (8)3.5 管材热扩径方法 (8)4张力减径时管端偏厚的原因 (10)4.1影响张力减径机管端增厚的因素 (10)4.2影响管内多边形的因素 (11)结语 (11)参考文献 (12)张力减径机的工艺原理及主要问题摘要:简介了三辊定径机定径和减径的作用及形式,提出了定减径机工作时常出现的问题,进行了三辊定减径机和两辊定减径机的比较。
关键词:定减径机;壁厚;斜轧;张力引言:在无缝钢管生产的三大机组——穿孔机组、轧管机组、定减径机组中,人们一直十分关注轧管机的研究,先后开发出自动轧管机组、顶管机组、新型顶管机组(CPE)、三辊轧管机组、连轧管机组(包括浮动芯棒MM、限动芯棒MPM和半浮动芯棒连轧管机组等)、AccuRoll轧管机组、改进型三辊轧管机组。
但对于穿孔机组,仅在20世纪80年代初才提出菌式穿孔机。
而定减径机一直使用二辊式和三辊式,直到20世纪90年代初才提出三辊可调式定径机技术。
新型三辊可调式定径机技术是为满足现代钢管生产高效、优质、低耗的要求而开发的,它的开发成功也为无缝钢管的生产注入新的活力。
1张力减径机技术的发展张减工艺主要特点是边连续多机架二辊或三辊无芯棒纵轧,采用适当的孔型系使毛管外径减缩,通过机架系列中轧辊速比的调节获得预定的壁厚变化。
20世纪40年代无缝管机组被美国和西欧所用,这时的张减机都是二辊式,到了20世纪50年代,西德曼乃斯曼公司成功地奕用了三辊式张力减径机,从而代替了二辊式。
张力减径机钢管内六方成因分析

张力减径机钢管内六方成因分析武建兵;郭继保;董少峰【摘要】从理论上分析了张力减径机内六方产生的原因, 并运用有限元法模拟的内六方在张力减径机轧制中形成的过程, 提出了内六方的预防措施.%This paper analyzes the causes of the six party in the tension reducing mill, using the process of the six part is formed by finite element method, then put forward the prevention measures.【期刊名称】《科技创新与生产力》【年(卷),期】2015(000)011【总页数】3页(P94-95,98)【关键词】张力减径机;内六方;模拟【作者】武建兵;郭继保;董少峰【作者单位】太原通泽重工有限公司, 山西太原 030032;太原通泽重工有限公司, 山西太原 030032;太原通泽重工有限公司, 山西太原 030032【正文语种】中文【中图分类】TG333钢管内六方是经过减径机连续轧出的钢管,形成外径为圆形,而钢管壁厚由于沿圆周方向不均匀,使内圆变为近似六边形形状的断面。
张力减径机机组在生产厚壁钢管时(S/D>0.12),如果不采用合理的工艺措施,会形成严重的内六方,使钢管产品不合格。
参考文献 [1]到 [4]对内六方的产生做了一些研究,研究指出,形成钢管内六方的主要原因是由于轧件在轧制过程,横向受力不均导致沿孔型周边方向金属径向流动不均及相临机架孔型相互交替180°布置引起。
本文采用理论分析及三维有限元方法分析内六方产生的原因及过程。
荒管在轧制变形过程中,是逐架被轧制过去的,选择中间具有代表性的一架机架进行分析说明。
轧辊沿圆周方向120°均匀分布,单个孔槽左右对称,且孔型为椭圆形。
如图1所示,钢管在轧制过程中,由于孔型为椭圆形,孔槽顶部A处的压下量最大,B处次之,C处最小或没有压下量。
张力减径内六方成因分析及解决方法

张力减径内六方成因分析及解决方法罗登高【摘要】分析了无缝钢管在张力减径时内六方产生的原因及影响因素,重点分析了温度不均匀对内六方的影响,并结合现有工艺条件提出多种减少直至消除内多边形的措施.【期刊名称】《机械研究与应用》【年(卷),期】2012(000)003【总页数】2页(P145-146)【关键词】无缝钢管;张力减径;内六方【作者】罗登高【作者单位】衡阳华菱钢管有限公司,湖南衡阳421001【正文语种】中文【中图分类】TH121 引言张力减径作为热轧无缝钢管生产的最后一道热变形工序,该工艺的目的是应用相互紧靠机串列的轧机机架使钢管进行连续加工,在加工时通过适当的轧制序列使钢管外径递减(轧辊如图1所示),同时利用该机架序列中辊速比率的可变调节,使钢管壁厚按预定变化。
该工序还可消除前道工序(如穿孔、连轧等)轧制过程中造成的荒管外径不一(同一根或同一批),以提高热轧成品管的外径精度和圆度。
但根据目前的生产情况,该工艺存在先天缺陷,即:加工后钢管内孔并不是所希望的圆,而是一种内多边形,近似于正六边形,简称为“内六方”。
2 内六方的形成原因产生内六方的直接原因是钢管在张减过程中,沿钢管孔型周边壁厚的变化是不均匀的。
减径管的内六方是由减径时沿孔型周边金属径向流动不均匀及相邻两机架孔型的辊缝相互交替所引起的。
某钢管厂在生产48.3×9.5的成品管时内六方较严重,如图1所示。
图1 钢管内六方示意图3 张力减径过程中的传热分析文献[1]中,作者通过分析轧辊对钢管的压力沿周向分布不均,钢管经多机架不均匀变形的积累,形成内六方[1-2]。
这里主要分析钢管温度分布不均匀对内六方的影响。
由于接触传热的复杂性,一般将接触传热用经验公式qj=hj(T-Tf)表示,等式中qj为接触换热热流,hj为等效接触导热系数,影响接触换热的所有因素都通过该系数考虑,T为钢管表面温度,Tf为与钢管接触的轧辊表面温度。
考虑钢管张力减径时,接触压力变化很大,而轧辊、钢管的表面粗糙度以及环境气体或介质可认为统计意义上的不变,这样对于具体的轧制过程,可以认为接触传热过程仅受接触压力的影响,即接触换热系数仅是接触压力的函数[3],根据经验得出:其中:pj为接触压力;h0,kj均为常数。
无缝钢管张力减径过程内六方产生的模拟分析

无缝钢管张力减径过程内六方产生的模拟分析作者:于辉减新良杜凤山汪飞雪张力减径是热轧无缝钢管或焊管生产的一种加工方法,张力减径机(SRM)作为关键设备直接影响产品的成材率。
张力减径(简称张减)过程的金属变形发生在三维空间,受到孔型形状、道次减径量、机架间距等多种因素的影响,容易在钢管内部形成内六方缺陷。
为此,国内外有关学者做了许多研究工作,大多对内六方进行定性讨论,认为内六方是横向壁厚累加的结果,并从工艺上制定了一些相应的控制措施,但未从金属流动的角度对横向壁厚变化进行定量的分析研究。
本文针对某钢管公司18机架张减机组试轧产品出现内六方的状况,利用MSC.Marc软件进行三维热力藕合有限元建模分析,并与实测数据进行对比,验证模型的准确性。
通过研究钢管张减过程的金属变形,定量分析了各机架的横向壁厚分布,探讨内六方产生的原因,为提高无缝钢管产品质量具有重要指导作用。
1 有限元模型建立1.1 张减过程描述在热轧无缝钢管时,连轧荒管经过再加热炉加热到900一1000℃,高压水除鳞后,进人张减机组轧制。
张减时钢管内部不带芯棒,依次通过各机架孔型,对钢管进行连续加工,在减径的同时实现减壁。
张减机组的轧辊大多是椭圆孔型,构成孔型的3个轧辊曲面呈210阵列布置,奇数机架与偶数机架互成60°交替排列。
因此,张减机组孔型配置是否合理,是影响产品质量的主要因素之一。
1.2 热边界条件确定张减时管坯表面存在热传导、热对流和热辐射三类边界条件川,由于对流所产生的热损失所占比例较小,可将其与辐射统一作为一个边界条件处理,写为:管坯初始温度950 ℃,环境温度取20 ℃,轧辊温度取100℃。
在确定热边界条件时,对流和辐射的等效换热系数取150w/(m2·℃),管坯与轧辊的接触换热系数取20kW/(m2·℃),变形功转换系数取0.9,摩擦功转换系数取0.9。
1.3 几何模型的建立每个机架轧辊孔型的几何特点是孔型曲面为相对于轧辊轴线对称的旋转面,因此可以取与钢管对应的半个轧辊曲面作为研究对象,把管坯的计算模型减少到整个截面的六分之一,在此基础上建立全系统有限元连轧模型。
张力减径机的动力学和运动学的分析

张力减径机的动力学和运动学的分析文章主要对三辊式张力纱线减径机进行分析,主要分析张力减径机的动力学和运动学原理,通过对张力减径机的速度分析、转速分析和速度控制来分析张力减径机特征,通过对张力减径机受力分析、轧制压力和轧制力矩进行分析张力减径机的动力学特征分析。
张力减径机是现代化的生产机组,其作用和优越性使其在大规模无缝钢管生产中不可缺少。
随着我国钢管工业的发展似已张力减径机组正被广泛运用。
对三辊式张力减径机进行分析,该机组是90年代研制的,具有许多独特的其优点。
以下分析张力减径机的运动学和动力学原理。
1.张力减径机的运动学特征1.1.运动学特征在张力减径的过程中会,要求各个机架的延伸对数和轧辊圆周协调一致,同时决定连轧机工作的基本条件要求通过每个机架的金属的秒流量相等。
在所有的机架即便充满金属全部而C不等于0的情况下,对于每对轧辊在任意瞬间都遵守秒流量、相等的原则,这种相等可通过轧辊和塑料之间的滑移达到。
因此当C不等于0时,发生变动减径机任何一个机架中的变形条件发生变化,中同辐花影响其余机架中的变形条件,但由于连轧过程本身存在着相适应,自相调整的过程,因此即使在这种相互作用的关系中减径过程仍然能够在任一瞬间保持秒流量相等。
但是当差别较大时,必然会造成严重的拉势必钢和推钢,轻者不能获得所需的钢管尺寸,重者连轧过程不能建立,甚至出现事故,因此较为准确的计算各机架转速是很重要的。
1.2.冲击力减径机的速度控制当轧管转速确定后,必须采用适当的方法进行测定以控制轧辊的速度。
无论是单独传动还是集体传动的张力速度机都要将减径控制在一定水平以内才能保证正确的张力。
2.张力减径机的声学分析2.1.张力减径过程中的外作用力的分析张力减径实际上是无芯棒连轧。
符合圆孔型中轧管时的外作用力关系。
按力学原理,轧制给予金属的外力主要是正压力(垂直于工具表面)放电以及相对运动而产生的振动(垂直于正压力)。
如果上所考虑沿孔槽宽度上各部位的受力情况就要多样的多,不过还是两个力——正压力和摩擦力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
张力减径机的动力学和运动学分析
文章主要对三辊式张力减径机进行分析,主要分析张力减径机的
动力学和运动学原理,通过对张力减径机的速度分析、转速分析和速
度控制来分析张力减径机运动学特征,通过对张力减径机受力分析、
张力减径机轧制压力和轧制扭矩动态特性分析。
张力减径机是现代化的生产机组,它的功能和优越性使其在大型
无缝钢管生产中不可或缺。
随着我国钢管工业的发展张力减径机组正
被广泛运用。
对三辊式张力减径机进行分析,该机组是90年代研制的,具有许多独特的优点。
以下分析张力减径机的运动学和动力学原理。
1.张力减径机的运动特性
1.1.运动学特征
在张力减径的过程中,要求各个机架的延伸系数和轧辊圆周协调
一致,同时,决定连续轧机运行的基本条件要求通过每个机架的第二
股金属流相等。
在所有的机架都充满金属而C不等于0的情况下,对于每对轧辊
在任意瞬间都遵守秒流量、相等的原则,这种相等可通过轧辊和金属
之间的滑移达到。
因此当C不等于0时,减径机任何一个机架中的变
形条件发生变化,都会影响其余机架中的变形条件,但由于连轧过程
本身存在着相适应,自相调整的过程,因此,即使在这种相互作用的
复杂关系中,还原过程仍然可以在任何时刻保持第二个流相等。
但是
当差别较大时,必然会造成严重的拉钢和推钢,轻者不能获得所需的
钢管尺寸,重者连轧过程不能建立,甚至出现事故,因此较为准确的
计算各机架转速是很重要的。
1.2.张力减径机的速度控制
当轧管转速确定后,必须采用适当的方法进行测定以控制轧辊的
速度。
无论拉伸减径机是单独驱动还是整体驱动,速度必须控制在一
定水平内,以确保正确的张力。
2.张力减径机的动态分析
2.1.张力减径过程中的外力分析
张力减径实际上是无芯棒连轧。
符合圆孔型中轧管时的外作用力关系。
按力学原理,轧制工具对金属施加的外力主要是正压力(垂直于工具表面)以及相对运动而产生的摩擦力(垂直于正压力)。
考虑每个零件沿孔槽宽度的应力条件要复杂得多,不过还是两个力——正压力和摩擦力。
如果认为在稳定过程中运动是均匀的,也就是说没有加速或减速,那么按照静力平衡条件,作用于金属的所有外力的矢量总和等于0。
2.2.张力系数的确定
在拉伸减径力学分析中计算平均单位压力和总轧制力时,需要计算这些未知数。
2.3.滚动扭矩的计算
2.3.1.滚动扭矩的计算
计算管子的张力减径时的轧制力矩,轧制扭矩可根据切向接触力确定,轧制扭矩可根据能耗确定,但效果都不是很好。
2.3.2.电机功率计算
通过对张力减径机的运动特性和动力学分析与计算,分析了设备整体的运行能力、设备运行过程中的变形和设备运行速度的控制。
通过分析在今后设备的使用,保养,而如何使设备充分发挥其性能,生产出最好的产品起到了很大的作用。
计算结果符合现场实际情况,在今后的运转和计算中可以借鉴应用。