最小二乘法曲线拟合原理

合集下载

最小二乘法原理

最小二乘法原理

最小二乘法原理1. 概念 最小二乘法多项式曲线拟合,根据给定的m 个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。

2. 原理给定数据点pi(xi,yi),其中i=1,2,…,m 。

求近似曲线y= φ(x)。

并且使得近似曲线与y=f(x)的偏差最小。

近似曲线在点pi 处的偏差δi= φ(xi)-yi ,i=1,2,...,m 。

常见的曲线拟合方法:1. 是偏差绝对值最小11min (x )y m mi i i i i φδφ===-∑∑ 2. 是最大的偏差绝对值最小min max (x )y i i i iφδϕ=- 3. 是偏差平方和最小2211min ((x )y )m mii i i i φδϕ===-∑∑ 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

推导过程:1. 设拟合多项式为:01...k k y a a x a x =+++2. 各点到这条曲线的距离之和,即偏差平方和如下:22011(...)m k i i k i i R y a a x a x =⎡⎤=-+++⎣⎦∑ 3. 为了求得符合条件的a 值,对等式右边求ak 偏导数,因而我们得到了:0112(...)0m k i k i i y a a x a x =⎡⎤--+++=⎣⎦∑0112(...)0m k ik i i y a a x a x x =⎡⎤--+++=⎣⎦∑……..0112( 0k k i k i i y a a x a x x =⎡⎤--+++=⎣⎦∑4. 将等式简化一下,得到下面的式子01111...n n nki k ii i i i a n a x a x y ===+++=∑∑∑ 21011111...n n n nk i ik i i i i i i i a x a x a x y x +====+++=∑∑∑∑ ……12011111...n n n nkk k k ii k i i i i i i i a x a x a x y x +====+++=∑∑∑∑ 5. 把这些等式表示成矩阵形式,就可以得到下面的矩阵:11102111111121111.........n n n k i i i i i i n n n n k i i i i i i i i i n n n n k k k k k i i i i i i i i i n x x y a a x x x x y a x x x x y ===+====+====⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑∑∑∑∑∑∑∑ 6. 将这个范德蒙矩阵化简后得到:011112221...1...1...k k k k n n n a y x x a y x x a y x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦。

最小二乘拟合 原理

最小二乘拟合 原理

最小二乘拟合原理
最小二乘拟合是一种常用的数学方法,用于找到一条曲线或者函数来最好地拟合一组具体的数据点。

它的原理是通过最小化数据点与拟合曲线之间的误差平方和,来确定曲线的参数。

首先,我们假设拟合曲线是通过一个函数表示的,例如一个多项式函数或者指数函数。

然后我们用该函数来预测每个数据点的值,并计算预测值与真实值之间的差距,即误差。

为了找到最佳拟合曲线,我们需要找到使得误差平方和最小的参数。

最小二乘拟合的关键思想在于将误差平方和作为一个目标函数,并使用数学优化方法来找到使得该目标函数最小化的参数。

通常情况下,最小二乘拟合会使用普通最小二乘法(Ordinary Least Squares,OLS)来求解参数。

OLS方法通过求解目标函数对参数的偏导数,并令其等于零,来得到参数的解析解。

这样就可以找到使得误差平方和最小的参数。

然而,在某些情况下,目标函数可能不具备解析解,或者解析解存在但不易计算。

这时候,可以使用数值优化方法来近似求解参数。

常用的数值优化方法包括梯度下降法、牛顿法等。

最小二乘拟合的一个重要应用是线性回归分析。

线性回归模型假设拟合曲线是一个线性函数,通过最小二乘拟合可以求解出最佳的线性参数。

线性回归分析在统计学和机器学习中经常被用于建立预测模型。

总而言之,最小二乘拟合是一种常用的数学方法,可以用于寻找最佳拟合曲线或函数。

通过最小化数据点与拟合曲线之间的误差平方和,我们可以求解出最佳拟合参数,从而得到一个最优的拟合结果。

最小二乘法拟合原理

最小二乘法拟合原理

最小二乘法拟合原理最小二乘法是一种常用的数学方法,用于寻找一组数据的最佳拟合曲线或者最佳拟合函数。

它的原理是通过最小化实际观测数据与拟合曲线之间的残差平方和,来确定最佳拟合曲线的参数。

这个方法在实际应用以及科学研究中非常常见,下面将详细介绍最小二乘法的拟合原理。

在介绍最小二乘法之前,我们首先需要了解线性回归模型。

线性回归是一种常见的数据拟合手段,它基于以下假设:给定自变量X和因变量Y,存在一个线性关系Y=aX+b。

其中,a称为斜率,b称为截距。

当我们拥有一组数据(X1,Y1),(X2,Y2),(X3,Y3),...,(Xn,Yn)时,最小二乘法通过找到最佳的a和b,使得方程Y=aX+b最好地拟合这组数据。

它通过最小化每个观测点的残差来确定最佳拟合曲线。

残差是指实际观测值与拟合值之间的差异。

对于每一个观测点(Xi,Yi),其拟合值为Yi'=aXi+b,残差为Ri=Yi-Yi',即实际观测值与拟合值的差。

S=∑(Yi-Yi')²=∑(Yi-aXi-b)²为了找到最佳的a和b,我们需要求解方程S对a和b的偏导数,并令其等于0。

求解a和b的偏导数得到以下两个方程:∂S/∂a=0∂S/∂b=0对第一个方程求解可以得到:∂S/∂a=-2∑(Yi-aXi-b)Xi=0进一步整理可以得到:∑YiXi-a∑(Xi)²-b∑(Xi)=0对第二个方程求解可以得到:∂S/∂b=-2∑(Yi-aXi-b)=0进一步整理可以得到:∑Yi - a∑(Xi) - nb = 0其中,n为观测点的数目。

解这个方程组,我们可以得到a和b的值,从而确定最佳拟合曲线的方程Y=aX+b。

最小二乘法还可以用于非线性的数据拟合。

对于非线性拟合,我们可以假设一个非线性的函数模型,例如Y=f(X,θ),其中θ是待拟合的参数。

然后,通过最小化残差平方和来确定最佳的θ值。

方法类似于线性拟合,其中拟合值变为Yi'=f(Xi,θ),残差为Ri=Yi-Yi'。

最小二乘法曲线拟合-原理及matlab实现

最小二乘法曲线拟合-原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。

因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。

原理:给定数据点},...2,1,0),,{(m i y x i i =。

求近似曲线)(x ϕ。

并且使得近似曲线与()x f 的偏差最小。

近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。

常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

推导过程:1. 设拟合多项式为:kk x a x a a x +++=...)(10ϕ2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了:.......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。

MATLAB实现:MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。

调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。

x 必须是单调的。

矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。

最小二乘拟合原理

最小二乘拟合原理

最小二乘拟合原理
最小二乘拟合(Least squares fitting)是一种常用的数据拟合方法,它通过将观测数据点与拟合函数的最小垂直距离的平方和最小化来确定最佳拟合曲线或平面。

最小二乘法的核心原理是寻找最小化误差的最优解,即使得拟合曲线与原始数据的离散程度最小。

最小二乘拟合是基于以下假设:
1. 假设数据之间的噪声是服从高斯分布的,也就是正态分布。

2. 假设数据点之间是独立的。

最小二乘法的目标是找到一个函数的参数,使得该函数与给定的一组数据点的误差最小。

这里的误差是指拟合函数与真实数据点之间的差异。

通过最小二乘法,我们可以找到最佳拟合函数的参数,使得拟合函数与观测数据的残差平方和最小化。

具体而言,最小二乘法可以应用于各种拟合问题,例如线性回归、多项式拟合和非线性拟合。

对于线性回归问题,最小二乘法可以通过解析解或数值优化方法(如梯度下降)来求解最佳拟合直线的参数。

需要注意的是,最小二乘法在某些情况下可能会受到极值点的影响,导致过拟合或欠拟合的问题。

因此,在使用最小二乘法进行数据拟合时,需要合理选择拟合函数的形式,并对拟合结果进行评估和验证。

第5章-1 曲线拟合(线性最小二乘法)讲解

第5章-1 曲线拟合(线性最小二乘法)讲解
a ∑xi2 +b ∑xi= ∑xi yi a ∑xi+bn=∑ yi
求所需系数,得到方程: 29.139a+17.9b=29.7076 17.9a+11b=18.25
通过全选主元高斯消去求得:
a=0.912605
b=0.174034
所以线性拟合曲线函数为: y=0.912605x+0.174034
练习2
根据下列数据求拟合曲线函数: y=ax2+b
x 19 25 31 38 44 y 19.0 32.3 49.0 73.3 97.8
∑xi4 a + ∑xi2 b = ∑xi 2yi
∑xi2 a + n b = ∑yi
7277699a+5327b=369321.5 5327a+5b=271.4
曲线拟合的最小二乘法
1.曲线拟合的意思
Y
.
.
.
.
y=ax+b y=ax2+bx+c
X
y=ax+b y=ax2+bx+c 就是未知函数的拟合曲线。
2最小二乘法原理
观测值与拟合曲线值误差的平方和为最小。
yi y0 y1 y2 y3 y4…… 观测值 y^i y^0 y^1 y^2 y^3 y^4…… 拟合曲线值
拟合曲线为: y=(-11x2-117x+56)/84
x
yHale Waihona Puke 1.61 1.641.63 1.66
1.6 1.63
1.67 1.7
1.64 1.67
1.63 1.66
1.61 1.64
1.66 1.69
1.59 1.62

基于最小二乘原理的分段曲线拟合法

基于最小二乘原理的分段曲线拟合法

基于最小二乘原理的分段曲线拟合法是一种常用的曲线拟合方法,它可以将曲线分成若干段,每一段都用一个简单的函数模型来拟合数据点,从而得到整条曲线的拟合结果。

本文将介绍基于最小二乘原理的分段曲线拟合法的原理、算法和应用,并探讨该方法的优缺点和改进方向。

1. 基本原理基于最小二乘原理的分段曲线拟合法的基本原理是将整条曲线分成若干段,每一段用一个简单的函数模型来拟合数据点。

假设有n个数据点(xi, yi),我们希望用一个分段函数模型y=f(x)来拟合这些数据点。

分段函数模型可以表示为:y = f1(x), x∈[x1, x2]y = f2(x), x∈[x2, x3]...y = fk(x), x∈[xk, xn]其中f1(x), f2(x), ..., fk(x)分别是每一段的函数模型。

我们的目标是找到使得拟合误差最小的分段函数模型,即最小化残差平方和:minimize Σ(yi - fi(xi))^2, i=1, 2, ..., n2. 算法基于最小二乘原理的分段曲线拟合法的算法通常采用迭代优化的方法来求解。

具体步骤如下:(1)初始化分段点,可以均匀地将曲线分成若干段,或者根据数据点的分布情况来选择分段点;(2)对每一段的函数模型进行参数估计,可以用最小二乘法或其他优化方法来求解每一段的最佳参数;(3)计算拟合曲线的残差平方和;(4)根据残差平方和的大小来更新分段点,可以合并相邻的段或者分割某一段;(5)重复步骤(2)-(4),直到满足停止条件为止。

3. 应用基于最小二乘原理的分段曲线拟合法在实际中有着广泛的应用。

在工程领域中,分段曲线拟合可以用来对传感器采集的数据进行平滑处理和趋势分析;在经济学领域中,可以用来对经济指标的变化趋势进行拟合和预测。

4. 优缺点基于最小二乘原理的分段曲线拟合法有着一些优点和缺点。

其优点在于可以较好地拟合非线性曲线,并且可以灵活地调整分段点来适应数据的变化。

然而,该方法也存在一些缺点,例如对初始分段点的选择敏感,容易陷入局部最优解,且对噪声数据比较敏感。

最小二乘法拟合原理

最小二乘法拟合原理

最小二乘拟合在物理实验中经常要观测两个有函数关系的物理量。

根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。

这类问题通常有两种情况:一种是两个观测量x 与y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是x 与y 之间的函数形式还不知道,需要找出它们之间的经验公式。

后一种情况常假设x 与y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。

一、最小二乘法原理在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x ,而把所有的误差只认为是y 的误差。

设x 和y 的函数关系由理论公式y =f (x ;c 1,c 2,……c m ) (0-0-1)给出,其中c 1,c 2,……c m 是m 个要通过实验确定的参数。

对于每组观测数据(x i ,y i )i =1,2,……,N 。

都对应于xy 平面上一个点。

若不存在测量误差,则这些数据点都准确落在理论曲线上。

只要选取m 组测量值代入式(0-0-1),便得到方程组y i =f (x ;c 1,c 2,……c m ) (0-0-2)式中i =1,2,……,m.求m 个方程的联立解即得m 个参数的数值。

显然N<m 时,参数不能确定。

在N>m 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得m 个参数值,只能用曲线拟合的方法来处理。

设测量中不存在着系统误差,或者说已经修正,则y 的观测值y i 围绕着期望值 <f (x ;c 1,c 2,……c m )> 摆动,其分布为正态分布,则y i 的概率密度为()()[]⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--=22212,......,,;exp 21i mi i i i c c c x f y y p σσπ,式中i σ是分布的标准误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最小二乘法曲线拟合原理
最小二乘法曲线拟合是一个重要的数值分析方法,它是通过最小二乘法对样本点与直线或曲线之间的关系进行拟合和分析,从而估算出一个函数的一组参数。

最小二乘法曲线拟合是一种经典的数值分析方法,可以用来拟合函数和曲线,估算出参数,预测数据,分析函数,优化模型,甚至可以分析复杂多变量函数。

最小二乘法曲线拟合的核心方法是使用最小二乘法把拟合的曲
线拟合到观察到的数据,通过求解方程的最小二乘法,把一系列的观察数据点拟合为最小二乘法曲线,计算出拟合曲线的最佳系数,满足拟合效果的最佳拟合曲线。

最小二乘法曲线拟合的核心目标是通过计算拟合曲线的最小均
方误差(SSE)、平均均方误差(MSE)、最大均方误差(MAXE)等方法,使拟合曲线与观察数据点之间的差距最小,从而求解出最佳拟合曲线系数。

最小二乘法曲线拟合具有很强的解析性,可以用数学计算方法快速求解,可以满足各种不同应用场景的需求,因而被广泛应用于科学研究、工程设计、市场分析等领域。

最小二乘法曲线拟合最常见的应用场景有:根据观察数据拟合和估计函数的参数;分析函数的性质;优化模型的能力;预测数据等等。

当应用最小二乘法拟合函数时,首先需要把观察数据用直线或曲线拟合,然后使用极小化残差平方和的方法,来求解参数,这是一个典型的最优化问题,利用一般最优化算法来求解,如梯度下降算法、
牛顿法等。

此外,在应用最小二乘法曲线拟合的过程中,还可以考虑几种情况,比如样本数据受到误差的影响,具有某种偏差性;偏差是否服从正态分布;样本数据的分布是否同分布;拟合曲线的拟合是否收敛,参数计算是否准确等等。

总之,最小二乘法曲线拟合是一种重要的数值分析方法,可以用来拟合函数和曲线、估算参数、预测数据、优化模型等。

在应用最小二乘法曲线拟合时,需要考虑一些影响因素,比如样本数据受到误差的影响、偏差是否服从正态分布等,因此,它是一种有效的数值分析方法。

相关文档
最新文档