高一数学文理分班考试试题含解析 试题
湖南长沙2024年新高一入学分班考数学模拟练习及答案

高一入学暨分班检测模拟试卷数学一、选择题:本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.1. 已知 aa 是 √13 的小数部分,则 aa (aa +6) 的值为A. √13B. 4C. 4−√13D. 3√13−62. 如果一个多边形的内角和是它外角和的 4 倍, 那么这个多边形的边数为A. 6B. 8C. 9D. 103.已知点()3,2P a a −−在第二象限,则a 的取值范围在数轴上表示正确的是( )A. B.C. D.4.如果外切的两圆1O 和2O 的半径分别为2和4,则半径为6,且与1O 和2O 都相切的圆有( )A.4个B.5个C.6个D.7个 5.122022,,x x x …是2022个由1和1−组成的数,122022.202x x x ++…+=,则()()()22212202211.1x x x −+−+…+−=( ) A.2021 B.4042 C.3640 D.4842 6.某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”,“沙漏”漏完前,客人所点菜需全部上桌,否则该桌免费用餐).“沙漏"是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm ,高是6cm ;圆柱体底面半径是3cm ,液体高是7cm .计时结束后如图(2)所示,求此时“沙漏"中液体的高度为( )的A.2cmB.3cmC.4cmD.5cm7.如果不等式组�4xx −aa ≥03xx −bb <0 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的组合情况(aa ,bb )共有( )种.A .12B .7C .9D .168.定义:平面直角坐标系中,点(),P x y 的横坐标x 的绝对值表示为x ,纵坐标y 的绝对值表示为y ,我们把点(),P x y 的横坐标与纵坐标的绝对值之和叫做点(,)P x y 的折线距离,记为M x y =+(其中的“+”是四则运算中的加法).若拋物线21y ax bx ++与直线y x =只有一个交点M ,已知点M 在第一象限,且24M ≤≤,令2242022t b a =−+,则t 的取值范围为( )A.20182019t ≤≤B.20192020t ≤≤C.20202021t ≤≤D.20212022t ≤≤二、填空题:本题共44分,共16分.9. 设点 PP (xx ,yy ) 在第二象限内,且 |xx |=3,|yy |=2 ,则点 PP 关于原点的对称点为___.10.若关于 xx 的分式方程 xx xx−2+2mm 2−xx =2mm 无解,则m 的值为___________. 11.正比例函数12y x =−与反比例函数2k y x=的图像相交于A B 、两点,已知点A 的横坐标为1,当12y y >时,x 的取值范围是___________.12.如图,ABC 中,10,8,6AB BC AC ===,点P 在线段AC 上,以P 为圆心,PA 长为半径的圆与边AB 相交于另一点D ,点Q 在直线BC 上,且DQ 是P 的切线,则PQ 的最小值为___________.三、解答题:本题共4小题,共52分.应写出文字说明、证明过程或演算步骤.13.如图,在同一坐标系中,直线1:1l y x =−+交x 轴于点P ,直线2:3l y ax =−过点P .(1)求a 的值;(2)点M N 、分别在直线12,l l 上,且关于原点对称,说明:点(),A x y 关于原点对称的点A ′的坐标为(),x y −−,求点M N 、的坐标和PMN 的面积.14.如图,在△ABC 中,D 在边AC 上,圆O 为锐角△BCD 的外接圆,连结CO 并延长交AB 于点E .(1)若∠DBC =α,请用含α的代数式表示∠DCE ;(2)如图2,作BF ⊥AC ,垂足为F ,BF 与CE 交于点G ,已知∠ABD =∠CBF .①求证:EB =EG ;②若CE =5,AC =8,求FG +FB 的值.15.)如图,将两个全等的直角三角形△ABD 、△ACE 拼在一起(图1),△ABD 不动.(1)若将△ACE 绕点A 逆时针旋转,连接DE ,M 是DE 的中点,连接MB 、MC (图2),证明:MB =MC .(2)若将图1中的CE 向上平移,∠CAE 不变,连接DE ,M 是DE 的中点,连接MB 、MC (图3),判断并直接写出MB 、MC 的数量关系.(3)在(2)中,若∠CAE 的大小改变(图4),其他条件不变,则(2)中的MB 、MC 的数量关系还成立吗?说明理由.16.在平面直角坐标系中,抛物线2:22(0)l y x mx m m −−−>与x 轴分别相交于A B 、两点(点A 在点B 的左侧),与y 轴相交于点C ,设抛物线l 的对称轴与x 轴相交于点N ,且3OC ON =.(1)求m 的值;(2)将抛物线l 向上平移3个单位,得到抛物线l ′,设点P Q 、是抛物线l ′上在第一象限内不同的两点,射线PO QO 、分别交直线2y =−于点P Q ′′、,设P Q ′′、的横坐标分别为P Q x x ′′、,且4P Q x x ′′⋅=,求证:直线PQ 经过定点.常考答案一、选择题:本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1. 【答案】:B2 【答案】D.3. 【答案】C4. 【答案】B5 【答案】C6. 【答案】B7 【答案】A .8. 【答案】C二、填空题:本题共4小题,每小题4分,共16分.9.【答案】(3,-2)10.【答案】m 的值为1或1/211.【答案】{1x x <−或}01x <<12.【答案】4.8三、解答题:本题共4小题,共52分.应写出文字说明、证明过程或演算步骤.13.【答案】(1)3(2)1313,,,2222M N −− ,32PMN S = 【解析】 【分析】(1)由直线1l 求出点P 的坐标,再将点P 的坐标代入2l 方程中可求出a 的值;(2)由题意设(),1M x x −+ ,则(),1N x x −−,再将点N 的坐标代入直线2l 中可求出x ,从而可求得,M N 两点的坐标,进而可求出PMN 的面积.【小问1详解】对于直线1:1l y x =−+,当0y =时,1x =, 所以()1,0P因为直线2:3l y ax =−过点()1,0P , 所以03a =−,得3a =,【小问2详解】由3a =得,2:33l y x =− 设(),1M x x −+ ,则(),1N x x −−.又(),1N x x −−在2:33l y x =−上, 所以133x x −=−−,解得12x =−, 则1313,,,2222M N −−所以1313322222PMNS OP OP =⋅+⋅= . 14.【答案】【分析】(1)根据圆周角定理即可解决问题;(2)①结合(1)利用三角形内角和定理即可解决问题;②作EM ⊥BE ,EN ⊥AC ,证明四边形EMFN 为矩形,再根据线段的和差即可解决问题.【解答】(1)解:如图,连结OD ,∵∠DOC =2∠DBC =2α,又∵OD =OC ,∴∠DCE=90°﹣α;(2)①证明:∵∠ABD=∠CBF,∴∠EBG=∠ABD+∠DBF=∠CBF+∠DBF=∠DBC,设∠DBC=α,由(1)得:∠DCE=90°﹣α,∵BF⊥AC,∴∠FGC=∠BGE=α,∴∠EBG=∠EGB,∴EB=EG;②解:如图,作EM⊥BE,EN⊥AC,由①得:∠EBG=α,∠ACE=90°﹣α,∵BF⊥AC∴∠A=90°﹣α,∴AE=CE=5,∵EN⊥AC,AC=8,∴CN=4,∴EN=3,∵EM⊥BF,NF⊥BF,EN⊥AC,∴四边形EMFN为矩形,∴EN=MF=3,∵EB=EG,EM⊥BG,∴BM=GM,∴FG+FB=FM﹣MG+FM+BM=2FM=6.15.【分析】(1)连接AM,根据全等三角形的对应边相等可得AD=AE,AB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用“边角边”证明△ABM和△ACM全等,根据全等三角形对应边相等即可得证;(2)延长DB、AE相交于E′,延长EC交AD于F,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB∥AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC∥AD,根据两直线平行,同位角相等求出∠BCM =∠BAD ,然后求出∠MBC =∠BCM ,再根据等角对等边即可得证;(3)延长BM 交CE 于F ,根据两直线平行,内错角相等可得∠MDB =∠MEF ,∠MBD =∠MFE ,然后利用“角角边”证明△MDB 和△MEF 全等,根据全等三角形对应边相等可得MB =MF ,然后根据直角三角形斜边上的中线等于斜边的一半证明即可.【解答】证明:(1)如图2,连接AM ,由已知得△ABD ≌△ACE ,∴AD =AE ,AB =AC ,∠BAD =∠CAE ,∵MD =ME ,∴∠MAD =∠MAE ,∴∠MAD ﹣∠BAD =∠MAE ﹣∠CAE ,即∠BAM =∠CAM ,在△ABM 和△ACM 中,�AAAA =AAAA ∠AAAABB =∠AAAABB AABB =AABB ,∴△ABM ≌△ACM (SAS ),∴MB =MC ;(2)MB =MC .理由如下:如图3,延长DB 、AE 相交于E ′,延长EC 交AD 于F ,∴BD =BE ′,CE =CF ,∵M 是ED 的中点,B 是DE ′的中点,∴MB ∥AE ′,∴∠MBC =∠CAE ,同理:MC ∥AD ,∴∠BCM =∠BAD ,∵∠BAD =∠CAE ,∴∠MBC =∠BCM ,∴MB =MC ;解法二:如图3中,延长CM 交BD 于点T .∵EC ∥DT ,∴∠CEM =∠TDM ,在△ECM 和△DTM 中,�∠AACCBB =∠TTTTBB CCBB =TTBB ∠CCBBAA =∠TTBBTT , ∴△ECM ≌△DTM (ASA ),∴CM =MT ,∵∠CBT =90°,∴BM =CM =MT .(3)MB =MC 还成立.如图4,延长BM 交CE 于F ,∵CE ∥BD ,∴∠MDB =∠MEF ,∠MBD =∠MFE , 又∵M 是DE 的中点,∴MD =ME ,在△MDB 和△MEF 中,�∠BBTTAA =∠BBCCMM ∠BBAATT =∠BBMMCC BBTT =BBCC,∴△MDB ≌△MEF (AAS ),∴MB =MF ,∵∠ACE =90°,∴∠BCF =90°,∴MB =MC .16.【答案】(1)1m =;(2)证明见解析【解析】【分析】(1)由顶点式求得对称轴,由0x =处函数值求得C 点坐标,根据3OC ON =列方程求解即可;(2)设点,P Q ,结合原点可得直线PO QO 、的解析式,再由2y =−可得点Q P ′′、横坐标,由4P Q x x ′′⋅=可得()1212230x x x x −++=;设直线PQ 的解析式为y mx n =+,与l ′联立之后可得122x x m +=+,12x x n =−,代入()1212230x x x x −++=求得21n m =−−,继而求出答案【小问1详解】解:依题意得:22()2y x m m m =−−−−, ∴抛物线的对称轴为直线x m =,ON m m ∴==,在222y x mx m −−−中,令0x =,则2y m =−−, ()0,2C m ∴−−,22OC m m ∴=−−=+, 3OC ON = ,23m m ∴+=,解得1m =;【小问2详解】将1m =代入抛物线l 得223y x x =−−, 如图,将抛物线l 向上平移3个单位后得到拋物线2:2l y x x ′=−, 点P Q 、是拋物线l ′上在第一象限内不同的两点,∴设点()()22111222,2,,2P x x x Q x x x −−, 由()()22111222,2,,2P x x x Q x x x −−分别可求得:()()122,2OP OQ y x x y x x =−=− 点P Q ′′、在直线2y =−上,∴点1222,2,,222P Q x x −−−−′′ −−, 4p Q x x ′′⋅=1222422x x −−∴⋅=−−,即()()12221x x −−=, 整理得()1212230x x x x −++=, 设直线PQ 的解析式为y mx n =+,与l ′联立得: 222,2,y x x x x mx n y mx n =−−=+ =+ , 整理得()220x m x n −+−=, 由根与系数的关系可得:12122,x x m x x n +=+=−, ()1212230x x x x −++= ,()2230n m ∴−−++=, 21n m ∴=−−,∴直线PQ 的解析式为()21,21y mx m y m x =−−=−−, ∴当2x =时,1y =−,∴直线PQ 经过定点()2,1−。
湖南省长郡中学2020-2021学年高一入学分班考试数学试题 答案和解析

湖南省长郡中学2020-2021学年高一入学分班考试数学试题答案和解析湖南省长郡中学高一入学分班考试数学试题一、单选题1.已知方程组$\begin{cases} x+y=-7-a \\ x-y=1+3a\end{cases}$的解x为非正数,y为非负数,则a的取值范围是()。
A。
$-2<a\leq3$ B。
$-2\leq a<3$ C。
$-2<a<3$ D。
$a\leq-2$2.已知$a^2+b^2=6ab$,且$a>b>0$,则$\dfrac{a+b}{a-b}$的值为()。
A。
2 B。
$\pm2$ C。
$2\sqrt{2}$ D。
$\pm2\sqrt{2}$3.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转,若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为()。
A。
$\dfrac{1}{3}$ B。
$\dfrac{2}{3}$ C。
$\dfrac{1}{9}$ D。
$\dfrac{1}{6}$4.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便,原理是:如对于多项式$x-y$,因式分解的结果是$(x-y)(x+y)(x^2+y^2)$,若取$x=9$,$y=9$时,则各个因式的值是:$x-y=0$,$xy=81$,$x^2+y^2=162$,于是就可以把“”作为一个六位数的密码,对于多项式$x-xy$,取$x=20$,$y=10$时,用上述方法产生的密码不可能是()。
A。
B。
C。
D。
5.如果四个互不相同的正整数$m,n,p,q$,满足$(5-m)(5-n)(5-p)(5-q)=4$,那么$m+n+p+q=$()。
A。
24 B。
21 C。
20 D。
226.若$x_1,x_2$($x_1<x_2$)是方程$(x-a)(x-b)=1$($a<b$)的两个根,则实数$x_1,x_2,a,b$的大小关系为()。
2020-2021学年高一数学上学期期中文理分班考试试题

2020-2021学年高一数学上学期期中文理分班考试试题一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}5,4,3,2,1{=U ,}3,2,1{=A ,}4,2{=B ,则图中阴影部分所表示的集合是 ( ) A.}4{B.}4,2{C.}5,4{D.}4,3,1{2.下列各组函数是同一函数的是( )①3()2f x x =-与()2g x x x =-;②()f x x =与2()g x x =;③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--. A.①② B.①③ C.③④ D.①④ 3.设120.7a =,120.8b =,3log 0.7c =,则( )A .c b a <<B .c a b <<C .a b c <<D .b a c << 4.已知函数()11fx x +=+,则函数()f x 的解析式为( )A.()2f x x =B. ()()211f x x x =+≥ C. ()()2221f x x x x =-+≥ D. ()()221f x x x x =-≥5.设25a bm ==,且112a b+=,则m =( ) A .10 B .10 C .20 D .1006.方程330x x --=的实数解落在的区间是( )A .[1,0]-B .[0,1]C .[1,2] D.[2,3]7.函数()f x 是定义域为R 的奇函数,当0x ≥时,()22xf x x b =++(b 为常数),则(1)f -=( )A. 3-B. 3C.1-D. 18.若函数)(x f 为奇函数,且在),0(+∞上是增函数,又0)2(=f ,则0)()(<--xx f x f 的解集为( )A .)2,0()0,2(⋃-B .)2,0()2,(⋃--∞C .),2()2,(+∞⋃--∞D .),2()0,2(+∞⋃-9.已知函数⎩⎨⎧>+≤=0),1ln(,0,)(3x x x x x f ,若)()2(2x f x f >-,则实数x 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1)10.函数(){}min 2,2f x x x =-,其中{},min ,,a a ba b b a b ≤⎧=⎨>⎩,若动直线m y =与函数)(x f y =的图像有三个不同的交点,它们的横坐标分别为1x 、2x 、3x ,则321x x x ++的取值范围是( )A .()326,2-B .()13,2+ C .()324,0- D .()328,4-二、填空题:本大题共5小题,每小题4分,满分20分. 11.函数21)(--=x x x f 的定义域为 . 12.幂函数()32221----=m m x m m y 当()+∞∈,0x 时为减函数,则实数m 的值为 .13.函数)10(33≠>+=-a a ay x 且的图象恒过定点__________.14.已知函数)32(log )(22--=x x x f ,则)(x f 的减区间为 . 15.已知函数()lg 1f x x =-,下列命题中所有正确的序号是 . (1)函数()f x 的值域为R ;(2)函数()f x 在(),1-∞单调递减,在()1,+∞单调递增;(3)函数()f x 的图象关于y 轴对称; (4)函数(1)f x +为偶函数.三、解答题:本大题共4小题,满分40分.解答须写出文字说明,证明过程和演算步骤. 16.(本小题满分10分) 计算:(1)已知32121=+-xx ,求22122x x x x --+-+-的值;(2)23)2(lg )1000lg 8(lg 5lg ++17.(本小题满分10分) 已知函数()211x f x x -=+,[]3,5x ∈. (1)判断函数()f x 在[]3,5上的单调性,并证明; (2)求函数()f x 的最大值和最小值.18.(本小题满分10分)已知函数2()f x x ax =+的最小值不小于1-, 且13()24f -≤-. (1)求函数()f x 的解析式;(2)函数()f x 在[],1m m +的最小值为实数m 的函数()g m ,求函数()g m 的解析式.19. (本小题满分10分)已知函数)1(log )(+=x x f a ,)1(log )(x x g a --=. (1)当10<<a 时,解不等式0)()(2≥+x g x f ;(2)当1>a ,)1,0[∈x 时,总有m x g x f ≥+)()(2恒成立,求实数m 的取值范围.数学答案(满分100分 时间90分钟)一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的 ACBCA CAADD二、填空题:本大题共5小题,每小题4分,满分20分.11. [)()+∞⋃,22,1 12. 2 13.(3,4) 14.(-∞,-1) 15.1, 2,4三、解答题:本大题共4小题,满分40分.解答须写出文字说明,证明过程和演算步骤. 16.(本小题满分10分) 16.解 (1)原式=9(2)原式=5lg 32lg 35lg 2lg 32lg 3)32lg 3(5lg 22++=++ =3)5lg 2(lg 35lg 32lg 35lg 3)5lg 2(lg 2lg 3=+=+=++17.(本小题满分10分) 17.解:(1)函数()f x 在[]3,5上单调递增. 证明:设任意1x ,2x ,满足1235x x ≤<≤. ()()121212212111x x f x f x x x ---=-++…………2分 12211221121111x x x x x x -+--+=++()()()1212311x x x x -=++…………4分1235x x ≤<≤,110x ∴+>,210x +>,120x x -<.()()120f x f x ∴-<即()()12f x f x <.()211x f x x -∴=+在[]3,5上为增函数.…………6分 (2)()()min 23153314f x f ⨯-===+;…………8分 ()()max 25135512f x f ⨯-===+.…………10分18. (本小题满分10分) 18.解:(1)22()()24a a f x x =+-2min1224a y a ∴=-≥-∴-≤≤(1)........2分113()2424a f =-≤-, 2a ∴≥(2).......... 4分 由(1)(2)知2a = ......... 5分(2)2()2f x x x =+函数图象的对称轴为1x =-11m +≤-时,即2m ≤-时,2min (1)43y f m m m =+=++ .........6分 1m ≥-时,2min ()2y f m m m ==+ .......... 7分 11m m <-<+时,即21m -<<-时,min (1)1y f =-=- ......... 8分综上2243,2()1,212,1m m m g m m m m m ⎧++≤-⎪=--<<-⎨⎪+≥-⎩............ 10分19. (本小题满分10分) 19.解(1)0)()(2≥+x g x f )1(log )1(log 2x x a a -≥+∴10<<a ⎪⎩⎪⎨⎧-≤+>->+∴)1()1(01012x x x x 01≤<-∴x}01{≤<-∴x x -----------4分(2)当1>a ,)1,0[∈x 时,总有m x g x f ≥+)()(2恒成立即x x m a -+≤1)1(log 2在1>a ,)1,0[∈x 时恒成立令xx x F a -+=1)1(log )(2则min )(x F m ≤令)10(1)1(2<≤-+=x x x u 令x t -=1 则]1,0(∈t 即44)2()(2-+=-=tt t t t u ,]1,0(∈t所以44)2()(2-+=-=tt t t t u 在]1,0(∈t 上单调递减 所以 1)1()(min ==u t u 即0=x 时,1min =u 又因为1>a 所以当0=x 时,01log )(min ==a x F所以0≤m ∴实数m 的取值范围是]0,(-∞ ----------10分【感谢您的阅览,下载后可自由编辑和修改,关注我 每天更新】。
2022新高一入学分班考数学试卷12套(含答案)

D.不能确定
α
β
B
D
C
10.如图为由一些边长为 1cm 正方体堆积在桌面形成的立方体的三视图,则该立方体露在外面部分的表面积是
________ cm2。
正视图 A. 11 B.15
左视图 C.18
俯视图 D.22
第Ⅱ卷(答卷)
二. 填空题(本大题共 5 小题, 小题 4 分,共 20 分)
11.函数 y
形 S3 ,以此类推,则 S2006 为(
A.是矩形但不是菱形; C.既是菱形又是矩形;
) B. 是菱形但不是矩形; D.既非矩形又非菱形.
9.如图 ,D 是直角△ABC 斜边 BC 上一点,AB=AD,记∠CAD= ,∠ABC= .若 10 ,则 的度数是 (
)
A
A.40
B. 50
C. 60
W=
20 30
2x 1 x
8
1 x 82
82
12
14
8
1 8
x
82
2x
40
1 x 6 6 x 11 12 x 16
化简得
W=
1 18
x2 x2
14 2x
1
26
x 6 6 x
11
………………10
分
8
1 8
x2
4x
48
12 x 16
①当 W= 1 x 2 14 时,∵ x ≥0,函数 y 随着 x 增大而增大,∵1≤ x ≤6 8
4
1
5
2
x
①
2 x 1 6 x
②
由①得:x>-1
由②得: x 4
所以原不等式组的解集为: 1 x 4
区高一新生入学分班考试数学试题及答案

区高一新生入学分班考试数学试题及答案高一新生入学分班考试数学试题总分:150分,时长:120分钟第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列运算正确的是()。
A。
a·a=aB。
a÷a4=a2C。
a3+a3=2a6D。
(a3)2=a62.一元二次方程2x2-7x+k=0的一个根是x1=2,则另一个根和k的值是()A。
x2=1,k=4B。
x2=-1,k=-4C。
x2=2/3,k=6D。
x2=-2/3,k=-63.如果关于x的一元二次方程x-kx+2=0中,k是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率P=()A。
2/3B。
1/2C。
1/3D。
1/64.二次函数y=-x2-4x+2的顶点坐标、对称轴分别是()A。
(-2,6),x=-2B。
(2,6),x=2C。
(2,-6),x=-2D。
(-2,-6),x=25.已知关于x的方程5x-4+a=0无解,4x-3+b=0有两个解,3x-2+c=0只有一个解,则化简a-c+c-b-a-b的结果是()A。
2aB。
2bC。
2cD。
06.在物理实验课上,XXX用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()见原图)7.下列图中阴影部分的面积与算式|3/1|+(4/2)+2-1的结果相同的是(见原图)8.已知四边形S1的两条对角线相等,但不垂直,顺次连结S1各边中点得四边形S2,顺次连结S2各边中点得四边形S3,以此类推,则S2006为()A。
是矩形但不是菱形;B。
是菱形但不是矩形;C。
既是菱形又是矩形;D。
既非矩形又非菱形。
9.如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β。
2024-2025学年第一学期杭州学军中学新高一分班考 数学卷(含答案)

学军中学新高一分班考数学卷一、选择题:本大题有8个小题,每小题3分,共24分。
1. 下列四个命题:①平分弦的直径垂直于弦;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧。
其中真命题的个数有()A. 1个B. 2个C. 3个D. 4个2. 如图,在2014年的体育中年高考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A. 28,28,1B. 28,27.5,3C. 28,28,3D. 28,27.5,13. 已知方程组{3x−2y=3a−42x−3y=2a−1的解满足x>y,则a的取值范围是()A. a>1B. a<1C. a>5D. a<54. 如图,在直角△BAD中,延长斜边BD到点C,使BD=2DC,连接AC,tanB=53,则tan∠CAD的值是()A. 33B. 35C. 13D. 155. 如图,在Rt△ABC中,AC=4,BC=3,∠ACB=90°,四边形DEFG、GHIJ均为正方形,点E在AC上,点I在BC上,J为边DG的中点,则GH的长为()A. 1921B. 1 C. 6077D. 1802596. 如图,正方形OABC的一个顶点O是平面直角坐标系的原点,顶点A,C分别在y轴和x轴上,P为边OC上的一个动点,且BP⊥PQ,BP=PQ,当点P从点C运动到点O时,可知点Q始终在某函数图象上运动,则其函数图象是()A. 线段B. 圆弧C. 抛物线的一部分D. 不同于以上的不规则曲线7. 如图,以点M(-5,0)为圆心,4为半径的圆与x轴交于A,B两点,P是☉M上异于A,B的一动点,直线PA,PB分别交y轴于点C,D,以CD为直径的☉N与x轴交于点E,F则EF的长为()A. 42B. 43C. 6D. 随P点位置而变化8. 已知二次函数图象的对称轴为x=1,且过点A(3,0)与B(0,1.5),则下列说法中正确的是()①当0≤x≤22+1时,函数有最大值2;②当0≤x≤22+1时,函数有最小值-2;③P是第一象限内抛物线上的一个动点,则△PAB面积的最大值为32;④对于非零实数m,当x>1+1m 时,y都随着x 的增大而减小。
2024年秋季高一入学分班考试数学试题与答案

(考试时间:120分钟 试卷满分:1502024年秋季高一入学分班考试数学试题分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若集合{}1,2,3A =,{}2,3,4B =,则A B = ( ) A .{}1,2,3,4 B .{}1,4C .{}2,3D .∅22x =−,则x 的值可以是( )A .2−B .1−C .1D .23.“2x =”是“24x =”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.已知二次函数2y ax bx c ++的图象的顶点坐标为(2,1)−,与y 轴的交点为(0,11),则( )A .3,12,11a b c ==−=B .3,12,11a b c === C .3,6,11a b c ==−= D .1,4,11a b c ==−= 5.把2212x xy y −++分解因式的结果是( ) A .()()()112x x y x y +−++ B .()()11x y x y ++−− C .()()11x y x y −+−−D .()()11x y x y +++−6.已知命题p :1x ∃>,210x ,则p ¬是( ) A .1x ∀>,210x B .1x ∀>,210x +≤ C .1x ∃>,210x +≤ D .1x ∃≤,210x +≤7.函数y =) A .[]3,3−B .()3,1(1,3)−∪C .()3,3−D .()(),33,−∞−+∞8.若实数a b ,且a ,b 满足2850a a −+=,2850b b −+=,则代数式1111b a a b −−+−−的值为( ) A .-20B .2C .2或-20D .2或20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9.下列坐标系中的曲线或直线,能作为函数()y f x =的图象的是( )A .B .C .D .10.下列命题中是全称量词命题并且是真命题的是( ) A .x ∀∈R ,2210x x ++≥ B .x ∃∈N ,2x 为偶数 C .所有菱形的四条边都相等 D .π是无理数11.下列结论中,错误的结论有( )A .()43y x x =−取得最大值时x 的值为1 B .若1x <−,则11x x ++的最大值为-2C .函数()f x =的最小值为2D .若0a >,0b >,且2a b +=,那么12a b+的最小值为3+三、填空题:本题共3小题,每小题5分,共15分.12.若多项式3x x m ++含有因式22x x −+,则m 的值是 .13.不等式20ax bx c ++>的解集是(1,2),则不等式20cx bx a ++>的解集是(用集合表示) . 14.对于每个x ,函数y 是16y x =−+,22246y x x =−++这两个函数的较小值,则函数y 的最大值是 .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.(13分)解下列不等式:(1)2320x x −+−≥; (2)134x x −+−≥; (3)11.21x x −≤+16.(15分)设全集R U =,集合{}|15Ax x =≤≤,集合{|122}B x a x a =−−≤≤−.(1)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围; (2)若命题“x B ∀∈,则x A ∈”是真命题,求实数a 的取值范围.17.(15分)已知集合{}{}210,20A x ax B x x x b =−==−+=.(1)若{}3A B ∩=,求实数,a b 的值及集合,A B ; (2)若A ≠∅且A B B ∪=,求实数a 和b 满足的关系式.18.(17分)已知22y x ax a =−+.(1)设0a >,若关于x 的不等式23y a a <+的解集为{},12|A Bx x =−≤≤,且x A ∈的充分不必要条件是x B ∈,求a 的取值范围;(2)方程0y =有两个实数根12,x x , ①若12,x x 均大于0,试求a 的取值范围;②若22121263x x x x +=−,求实数a 的值.19.(17分)我国是用水相对贫乏的国家,据统计,我国的人均水资源仅为世界平均水平的14.因此我国在制定用水政策时明确提出“优先满足城乡居民生活用水”,同时为了更好地提倡节约用水,对水资源使用进行合理配置,对居民自来水用水收费采用阶梯收费.某市经物价部门批准,对居民生活用水收费如下:第一档,每户每月用水不超过20立方米,则水价为每立方米3元;第二档,若每户每月用水超过20立方米,但不超过30立方米,则超过部分水价为每立方米4元;第三档,若每户每月用水超过30立方米,则超过部分水价为每立方米7元,同时征收其全月水费20%的用水调节税.设某户某月用水x立方米,水费为y元.(1)试求y关于x的函数;(2)若该用户当月水费为80元,试求该年度的用水量;(3)设某月甲用户用水a立方米,乙用户用水b立方米,若,a b之间符合函数关系:247530=−+−.则当b a a两户用水合计达到最大时,一共需要支付水费多少元?一、单项选择题:本题共8小题,每小题5分,共402024年秋季高一入学分班考试数学答案分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1 2 3 4 5 6 7 8 CDBADBCA二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9 10 11 BDACABCD三、填空题:本题共3小题,每小题5分,共15分. 12.2 13.1|12x x <<6四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 16.(13分)【解析】(1)2320x x −+−≥可化为2320,(1)(2)0x x x x −+≤∴−−≤, 所以解为1 2.x ≤≤(3分)(2)当1x <时,不等式可化为134x x −+−+≥,此时不等式解为0x ≤; 当13x ≤≤时,不等式可化为134x x −−+≥,此时不等式无解; 当3x >时,不等式可化为134x x −+−≥,此时不等式解为4x ≥; 综上:原不等式的解为0x ≤或4x ≥.(9分) (3)原不等式可化为211021x x x +−+≥+,(11分)与()()2120210x x x ++≥+≠同解, 所以不等式的解为:2x ≤−或12x >−.(13分)16.(15分)【解析】(1)由“x A ∈”是“x B ∈”的充分不必要条件,得A B ,(2分)又{}|15Ax x =≤≤,{|122}B x a x a =−−≤≤−,因此12125a a −−< −≥ 或12125a a −−≤ −> ,解得7a ≥,所以实数a 的取值范围为7a ≥.(7分)(2)命题“x B ∀∈,则x A ∈”是真命题,则有B A ⊆,(9分) 当B =∅时,122a a −−>−,解得13a <,符合题意,因此13a <;(11分)当B ≠∅时,而{}|15{|122}A x x B x a x a =≤≤=−−≤≤−,, 则11225a a ≤−−≤−≤,无解,(14分) 所以实数a 的取值范围13a <.(15分)17.(15分)【解析】(1)若{}3∩=A B , 则{}{}2310,320x ax x x x b ∈−=∈−+=,(2分) 所以310,960a b −=−+=,解得1,33a b ==−,(4分) 所以{}{}{}{}2110103,2301,33A x ax x x B x xx =−==−===−−==−,综上:1,33a b ==−,{}{}3,1,3A B ==−;(7分)(2)若A ≠∅,则0a ≠,此时{}110A x ax a=−==,(9分) 又A B B ∪=,所以A B ⊆, 即{}2120x x x b a ∈−+=,(12分)所以2120440b a ab −+= ∆=−≥ , 所以实数a 和b 满足的关系式为212b a a=−+.(15分)18.(17分)【解析】(1)由23y a a <+,得2223x ax a a a −+<+, 即22230x ax a −−<,即()()30x a x a −+<, 又0a >,∴3a x a −<<,即{}|3A x a x a =−<<,(3分)∵x A ∈的充分不必要条件是x B ∈,∴B 是A 的真子集,则0132a a a >−<− > ,解得0123a a a> > >,则1a >, 即实数a 的取值范围是1a >.(6分) (2)方程为220y x ax a =−+=, ①若12,x x 均大于0则满足21212440200a a x x a x x a ∆=−≥ +=> => ,解得10a a a a ≥≤> > 或, 故1a ≥,即a 的取值范围为1a ≥.(10分)②若22121263x x x x +=−,则()2121212263x x x x x x +−=−, 则()21212830x x x x +−+=,即24830a a −+=,(13分) 即()()21230a a −−=,解得12a =或32a =, 由0∆≥,得1a ≥或0a ≤. 所以32a =,即实数a 的值是32.(17分)19.(17分)【解析】(1)因为某户该月用水x 立方米, 按收费标准可知, 当020x <≤时,3y x =;当2030x <≤时,()203420420y x x ×+−−;当30x >时,[2034(3020)7(30)] 1.28.4132y x x =×+×−+−×=−.(5分)所以3,020420,20308.4132,30x x y x x x x <≤=−<≤ −>(6分)(2)由题可得,当该用户水费为80元时,处于第二档,所以42080x −=, 解得25x =. 所以该月的用水量为25立方米.(10分) (3)因为247530b a a =−+−,所以()2248530244646a b a a a +=−+−=−−+≤.(13分)当24a =时,()46max a b +=,此时22b =.(15分)所以此时两户一共需要支付的水费是4242042220144y =×−+×−=元.(17分)。
2024年秋季高一新生入学分班考试数学模拟卷-解析版

2024年秋季高一新生入学分班考试数学模拟卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列计算过程正确的是()A .()2211a a +=+B .()21x x x x +÷=+C=D .()()22444a b a b a b -+=-2.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/小时)情况,则下列关于车速描述错误的是()A .平均数是23B .中位数是25C .众数是30D .方差是129【答案】D 【分析】根据平均数、中位数、众数和方差的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】A 、这组数据的平均数是(10×3+20×2+30×4+40×1)÷(3+2+4+1)=23,故本选项正确;B 、共有10辆车,则中位数是第5和6个数的平均数,则中位数是(20+30)÷2=25,故本3.一副三角板如图所示摆放,若直线a b ,则1∠的度数为()A .10︒B .15︒C .20︒D .25︒【答案】B 【分析】根据平行公理及平行线的性质即可得答案.【详解】过点B 作MN a ∥,∵a b ,∴MN a b ∥∥,∴1NBA ∠=∠,NBE CEB ∠=∠,∵BEC 是等腰直角三角形,∴45BEC ∠=︒,∴45NBE ∠=︒,∵ABF △直角三角形,60ABF ∠=︒,∴14560ABF ABN NBE ∠=∠+∠=∠+︒=︒,∴115∠=︒,故选:B .【点睛】本题考查平行线的知识,解题的关键是掌握平行线的性质,平行公理.4.下图是甲乙丙三位同学在一次长跑练习中所用时间与路程之间的函数图像,其中最先到达终点和平均速度最快的分别是()A .甲和乙B .甲和丙C .丙和甲D .丙和乙【答案】B 【分析】直接观察图像即可判断谁先到达终点,直线倾斜度越大即直线越陡,则速度越快.【详解】观察图像可知甲最先到达终点,丙最后到达终点,表示乙的直线倾斜度最小,表示丙的直线倾斜度最大,故丙的速度最快.故选B.【点睛】本题主要考查了根据一次函数图像解决实际问题,在路程与时间的关系图中,比例系数k 表示速度,k 越大,直线越陡,则表示速度越快,掌握以上知识是解题的关键.5.如图,已知正方形ABCD 的边长为1,连接AC 、BD ,CE 平分ACD ∠交BD 于点E ,则DE 长()A .12B .12C 1D .12【答案】C四边形ABCD 是正方形,AC BD ∴⊥,CE 平分ACD ∠交BD EO EF ∴=,正方形ABCD 的边长为2AC ∴=,1222CO AC ∴==,∵22,CF CE EF CO =-22CF CO ∴==,1EF DF DC CF ∴==-=222DE EF DF ∴=+=故选:C .6.如图,抛物线2y ax bx c =++与x 轴交于A 、B 两点,与轴交于点C ,且OA OC =,M是抛物线的顶点,三角形AMB 的面积等于1,则以下结论:①2404b ac a-<;②10ac b -+=;③()3228b a -=;④c OA OB a ⋅=-,其中正确的结论是()A.②④B.①②④C.①③④D.①②③④7.如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm,当AB的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cm B.40cm C.42cm D.45cm【答案】A=,O离地面的距离为h,【分析】本题考查相似的性质和判定,设长边OA a=,短边OB b由相似的性质得到OA、OB和OH之间的关系并求解,即可解题.=,O离地面的距离为h,【详解】解:设长边OA a=,短边OB b根据相似得:8.已知函数2(0)(0)x x y x x ⎧≤=⎨>⎩,若,a x b m y n ≤≤≤≤则下列说法正确的是()A .当1n m -=时,b a -有最小值B .当1n m -=时,b a -无最大值C .当1b a -=时,n m -有最小值D .当1b a -=时,n m -有最大值由图可知:当0x ≤时,y 随x 的增大而减小,当当0a b ≤≤时,22,m b n a ==,当1n m -=时,即:221a b -=,∴()()1a b a b -+=,∴1b a a b-=-+,当a b +的值越小,小值,当0a b <≤时,,m a n b ==,当1n m -=时,1b a -=,当0a b <<时,0m =,1n m -=时,1n =,当1a =-,综上:当1n m -=时,b a -有最大值,无最小值,故选项A ,B 错误;当0a b ≤≤时,22,m b n a ==,当1b a -=时,即:()()()22n m a b a b a b a b -=-=+-=-+,∴当a b +越小时,n m -的值越大,即n m -没有最大值,当0a b <≤时,,m a n b ==,当1b a -=时,1-=-=n m b a ;当0a b <<时,0m =,当1b a -=时,x a =和x b =的函数值相同时,n m -的值最小,综上:当1b a -=,n m -有最小值,无最大值;故选项C 正确,D 错误.故选C .9.在同一坐标系中,若直线2y x =-+与直线4y kx =-的交点在第一象限,则下列关于k 的判断正确的是()A .10k -<<B .12k -<<C .0k >D .2k >故选:D .10.如图,四边形ABCD 是O 的内接四边形,AB AD =,对角线AC 、BD 相交于点E ,GH 是直径,GH AC ⊥于点F ,AF AB =.若AE a =,则BC CD ⋅的值是()A .26a B .29a C .212a D .218a二、填空题11.2023年10月,“中国空间站”入选了2023年全球十大工程成就.空间站离地球的距离约为400000米,数据400000用科学记数法可表示为.12.如图,把一个转盘分成四等份,依次标上数字1,2,3,4,若连续自由转动转盘两次,指针指向的数字分别记作,a b ,把,a b 作为点A 的横、纵坐标.则点(),A a b 在函数2y x =的图象上的概率为.由图可知,连续自由转动转盘两次,指针指向的数字的所有等可能的结果共有使得点(),A a b 在函数2y x =的图象上的结果有2则点(),A a b 在函数2y x =的图象上的概率为P =故答案为:18.【点睛】本题考查了一次函数的应用、利用列举法求概率,正确画出树状图是解题关键.13.如果2310x x -+=,则2212x x +-的值是【答案】5【分析】将二次根式的被开方数和一元二次方程同时进行化简,然后再将二次根式进行化简.【详解】解:方程x 2-3x+1=0中,当x=0时,方程左边为将方程两边同除以x ,则有:x-3+1x =0,即13x x+=,∴原式=22211244x x x x ⎛⎫++-=+- ⎪⎝⎭=234-故答案为:5.14.如图,在菱形纸片ABCD 中,1AB =,=60B ∠︒,将菱形纸片沿折痕EF 翻折,使点D 落在AB 的中点G 处,则DE 的长为.G 是AB 中点,12AG ∴=, 四边形ABCD 是菱形,AB 1AD AB ∴==,1AE x ∴=-,∵=60B ∠︒120BAD ∴∠=︒,∴=60MAE ∠︒9030MEA MAE ∠=︒-∠=︒ ,三、解答题15.如图,ABC 内接于O ,AB AC =,ADC △与ABC 关于直线AC 对称,AD 交O 于点E .(1)求证:CD 是O 的切线.(2)连接CE ,若1cos 3D =,6AB =,求CE 的长.【答案】(1)证明见解析(2)4【分析】(1)如图所示,连接OC ,连接AO 并延长交BC 于F ,根据等边对等角得到A ABC CB =∠∠,再证明AF BC ⊥,得到90ACF CAF ∠+∠=︒,由OA OC =,得到OAC OCA ∠=∠,由轴对称的性质可得ACB ACD ∠=∠,即可证明90ACD OCA ∠+∠=︒,从而证明CD 是O 的切线;(2)由轴对称的性质得B D ∠=∠,CD BC =,再由圆内接四边形对角互补推出,CED D ∠=∠,得到CE CD BC ==,解Rt ABF ,求出2BF =,则24BC BF ==,即可得到4CE BF ==.(2)解:由轴对称的性质得B D ∠=∠,CD ∵四边形ABCE 是圆内接四边形,∴180B AEC AEC CED +=︒=+∠∠∠∠,∴CED D ∠=∠,∴CE CD BC ==,∵1cos 3D =,∴1cos cos 3B D ==,在Rt ABF 中,cos 2BF AB B =⋅=,∴24BC BF ==,∴4CE BF ==.【点睛】本题主要考查了切线的判定,等腰三角形的性质与判定,锐角三角函数,轴对称的性质等等,灵活运用所学知识是解题的关键.16.李丽大学毕业后回家乡创业,开了一家服装专卖店代理品牌服装的销售.已知该品牌服装进价每件40元,日销售y (件)与销售价x (元/件)之间的关系如图所示(实线),每天付员工的工资每人82元,每天应支付其他费用106元.(1)直接写出日销售y (件)与销售价x (元/件)之间的函数关系式;(2)当某天的销售价为48元/件时,收支恰好平衡(收入=支出),求该店员工人数;(3)若该店只有2名员工,则每天能获得的最大利润是多少元?此时,每件服装的价格应定为多少元?【答案】(1)21404058825871x x y x x -+≤≤⎧=⎨-+≤≤⎩()();(2)3人.(3)每天能获得的最大利润是180元,此时,每件服装的价格应定为55元.【分析】(1)根据待定系数法,可得函数解析式;(2)根据收入等于支出,可得一元一次方程,根据解一元一次方程,可得答案;(3)分两种情况解答:①当4058x ≤<时;②当5871x ≤≤时,依据:总利润=单件利润×销售量-工人工资及其他费用列出函数解析式,求解即可.【详解】(1)解:(1)当4058x ≤<时,设y 与x 的函数解析式为11y k x b =+,由图象可得:111160402458k b k b =+⎧⎨=+⎩,解得:112140k b =-⎧⎨=⎩.∴2140y x =-+;当5871x ≤≤时,设y 与x 的函数解析式为22y k x b =+,由图象得:222224581171k b k b =+⎧⎨=+⎩,解得:22182k b =-⎧⎨=⎩.∴82y x =-+.综上所述:y =2140(4058)82(5871)x x x x -+≤≤⎧⎨-+≤⎩<.(2)设人数为a ,当48x =时,24814044y =-⨯+=,则(4840)4410682a -⨯=+,解得:3a =.答:该店员工人数为3.(3)设每件服装的价格为x 元时,每天获得的利润为w 元.当4058x ≤<时(40)(2140)822106w x x =--+-⨯-222205870x x =-+-22(55)180x =--+当55x =时,w 最大值180=.当5871x ≤≤时(40)(82)822106w x x =--+-⨯-21223550x x =-+-2(61)171x =--+当61x =时,w 最大值=171.∵180171>∴w 最大值180=答:每天能获得的最大利润是180元,此时,每件服装的价格应定为55元.【点睛】本题考查了二次函数的应用与一次函数和一元一次方程的应用能力,理解题意找到符合题意得相等关系函数解析式是解题的关键.17.已知二次函数243y ax ax a =-+(0a >),记该函数在m x n ≤≤上的最大值为M ,最小值为N .已知3M N -=.(1)当04x ≤≤时,求a 的值.(2)当12a =,1n m =+时,求m 的值.(3)已知2m t =+,21n t =+(t 为整数),若M N为整数,求a 的值.18.【问题背景】如图1,在矩形ABCD 中,点M ,N 分别在边BC ,AD 上,且1BM MC m =,连接BN ,点P 在BN 上,连接PM 并延长至点Q ,使1PM MQ m=,连接CQ .【尝试初探】求证:CQ BN ∥;【深入探究】若AN BM AB ==,2m =,点P 为BN 中点,连接NC ,NQ ,求证:NC NQ =;【拓展延伸】如图2,在正方形ABCD 中,点P 为对角线BD 上一点,连接PC 并延长至点Q ,使1(1)PC n QC n =>,连接DQ ,若22222(1)n BP DQ n AB +=+,求BP BD 的值(用含n 的代数式表示)(3)过Q 作QM BD 交BC 的延长线于在正方形ABCD 中,QM BD ,∴~ CBP CMQ ,45∠=∠=︒DBC CMQ 1BP BC PC19.如图①,线段AB ,CD 交于点O ,连接AC 和BD ,若A ∠与B ∠,C ∠与D ∠中有一组内错角成两倍关系,则称AOC 与BOD 为青蓝三角形,其中成两倍关系的内错角中,较大的角称为青蓝角.(1)如图②,在四边形ABCD 中,对角线AC ,BD 交于点O ,已知AB BD ⊥,COD △为等边三角形.求证:AOB 和COD △为青蓝三角形.(2)如图③,已知边长为2的正方形ABCD ,点P 为边CD 上一动点(不与点C ,D 重合),连接AP 和BP ,对角线AC 和BP 交于点O ,当AOP 和BOC 为青蓝三角形时,求DAP ∠的正切值.(3)如图④,四边形ABCD 内接于O ,BCP 和ADP △是青蓝三角形,且ADP Ð为青蓝角,延长AD ,BC 交于点E .①若8AB =,5CD =,求O 的半径;②记BCD △的面积为1S ,ABE 的面积为2S ,12S y S =,cos E x =,当3BE BC =时,求y 关于x 的函数表达式.则PD PH =,设PD PH m ==,则 45DCA ∠=︒,PH ∴PHC V 是等腰直角三角形,∴2PC PH =,∴22m m -=,解得()221m =-,∴tan DP DAP AD ∠==②若2APO CBO ∠=∠则BPI CBO ∠=∠,∴2APO BPI ∠=∠,则API APO ∠=∠-∠ DAP API ∠=∠,∠∴DAP CBP ∠=∠,又 ADP BCP ∠=∠=∴(AAS DAP CBP ≌ADP Ð和BCP ∠都是 AB 所对的圆周角,∴ADP ÐBCP =∠,又 ADP Ð为青蓝角,∴2ADP CBP ∠=∠,∴ 2AB CD =,OM AB ⊥,∴ 2AB AM=,∴ AM CD=,∴5AM CD ==,OM AB ⊥,8AB =,∴4AN BN ==,∴223MN AM AN =-=,设O 的半径为r ,在Rt ANO 中,222OA AN ON =+,∴()22243r r =+-,解得256r =,∴O 的半径为256; 2ADP CBP ∠=∠,ADP ∠=∠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021—2021学年度第二学期高一数学文理分科考试一.选择题:一共12小题,每一小题5分,一共60分.在每个小题给出的四个选项里面,只有一项是哪一项符合题目要求的一项.1. A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是〔〕A. B. C. D. A=B=C【答案】B【解析】锐角必小于 ,应选B.2. 在区间上单调递减的函数是〔〕A. B. C. D.【答案】D【解析】试题分析:A选项,在单调递增,不正确;B选项,在单调递增,不正确;C选项,在单调递增;D选项,在单调递减,正确;应选D。
考点:函数的单调性3. 数列{a n}满足a1=3,a n-a n+1+1=0(n∈N+),那么此数列中a10等于( )A. -7B. 11C. 12D. -6【答案】C【解析】是首项、公差的等差数列,应选C.4. 我国古代数学名著?数书九章?有“米谷粒分〞题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,那么这批米内夹谷约为 ( ) A. 169石 B. 134石 C. 338石 D. 1 365石【答案】A【解析】由可得这批米内夹谷约为,应选A.5. △ABC中,假设,那么△ABC的形状为〔〕A. 直角三角形B. 等腰三角形C. 等边三角形D. 锐角三角形【答案】B【解析】试题分析:由正弦定理及,得;那么,即;又因为A,B是三角形的内角,,即三角形为等腰三角形.考点:正弦定理、三角形形状的断定.6. 当|x|≤1时,函数y=ax+2a+1的值有正也有负,那么实数a的取值范围是( )A. a≥-B. a≤-1C. -1<a<-D. -1≤a≤-【答案】C【解析】由可得,应选C.7. 函数,假设在上任取一个实数,那么不等式成立的概率是〔〕A. B. C. D.【答案】C【解析】试题分析:区间的长度为7,满足不等式即不等式,对应区间长度为2,由几何概型公式可得使不等式成立的概率是。
考点:几何概型8. 设点P(x,y) 在函数y=4-2x的图象上运动,那么9x+3y的最小值为A. 9B. 12C. 18D. 22【答案】C【解析】由可得〔当且仅当时取等号〕,应选C.9. 某班有24名男生和26名女生,数据,…是该班50名学生在一次数学学业程度模拟考试中的成绩〔成绩不为0〕,如下图的程序用来同时统计全班成绩的平均数:,男生平均分:,女生平均分:.为了便于区别性别,输入时,男生的成绩用正数,女生的成绩用其相反数,那么在图中空白的判断框和处理框中,应分别填入〔〕A. B.C. D.【答案】D【解析】在第一个判断框中,“是〞对应的是,故应填 ;在执行框中,计算班级平均分公式应为:,故正确答案为:D.10. ,那么a,b,c的大小关系为〔〕A. B. C. D.【答案】A【解析】试题分析:因为,所以由指数函数的性质可得,,因此,应选A.考点:1、指数函数的性质;2、对数函数的性质及多个数比拟大小问题.【方法点睛】此题主要考察指数函数的性质、对数函数的性质以及多个数比拟大小问题,属于中档题. 多个数比拟大小问题能综合考察多个函数的性质以及不等式的性质,所以也是常常是命题的热点,对于这类问题,解答步骤如下:〔1〕分组,先根据函数的性质将所给数据以为界分组;〔2〕比拟,每一组内数据根据不同函数的单调性比拟大小;〔3〕整理,将各个数按顺序排列.11. 设首项为1,公比为的等比数列{a n}的前n项和为S n,那么( )A. S n=2a n-1B. S n=3a n-2C. S n=4-3a nD. S n=3-2a n【答案】DS n==3-2a n.应选D.12. 等差数列的等差,且成等比数列,假设,为数列的前项和,那么的最小值为〔〕A. B. C. D.【答案】B【解析】由成等比可得〔当且仅当,即时取等号〕,应选A.二.填空题:〔本大题一一共4小题,每一小题5分。
一共20分〕13. 某车间为了规定工时定额,需要确定加工零件所花费的时间是,为此进展了5次试验. 根据搜集到的数据〔如下表〕,由最小二乘法示得回归直线方程为.零件数〔个〕10 20 30 40 50加工时间是62 75 81 89表中有一个数据模糊不清,经推断,该数据的值是______________.【答案】68【解析】试题分析:设表中有一个模糊不清数据为,由表中数据得:,由最小二乘法求得回归方程将,代入回归方程,得。
考点:线性回归方程14. 函数的单调递增区间是________________________【答案】〔写亦给分〕考点:复合函数的单调性15. 在中,,是边上的一点,,的面积为,那么的长为______________【答案】【解析】试题分析:因为,,在中,由余弦定理可得,,在中,,由正弦定理可得。
考点:正余弦定理16. 把正整数按一定的规那么排成了如下图的三角形数表.设是位于这个三角形数表中从上往下数第行、从左往右数第个数,如.那么_____________.【答案】38【解析】试题分析由三角形数表可以看出其奇数行为奇数列,偶数行为偶数列,故a87表示第8行的第7个数字,即第2+4+6+7=19个正偶数.故a87=2×19=38,考点:归纳推理,数阵点评:此题主要考察了归纳推理,根据数阵规律找数列的特点。
三、解答题:(一共6小题,70分解容许写出文字说明,证明过程或者演算步骤)17. 全集,集合,集合.求〔1〕;〔2〕.【答案】〔1〕〔2〕【解析】试题分析:〔1〕此题考察的是集合的运算,先根据题目条件,找出集合,找出的补集,即可确定出两集合的并集。
〔2〕由〔1〕中确定出的,分别求出的补集,找出两补集的公一共元素,即可得到所求答案。
试题解析:〔Ⅰ〕〔Ⅱ〕考点:集合运算18. 解关于x的不等式【答案】当a<0或者a>1时时,原不等式的解集为当时,原不等式的解集为当a=0或者a=1时,原不等式的解集为φ.【解析】试题分析:根据分类讨论思想分为和三种情况进展讨论试题解析:解:〔1〕当a<0或者a>1时,有a<a2,此时不等式的解集为〔2〕当时,有a2<a,此时不等式的解集为〔3〕当a=0或者a=1时,原不等式无解.综上,当a<0或者a>1时时,原不等式的解集为当时,原不等式的解集为当a=0或者a=1时,原不等式的解集为φ.19. 有两个不透明的箱子,每个箱子都装有4个完全一样的小球,球上分别标有数字1,2,3,4.(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜〔假设数字一样那么为平局〕,求甲获胜的概率;(2)摸球方法与〔1〕同,假设规定:两人摸到的球上所标数字一样甲获胜,所标数字不一样那么乙获胜,这样规定公平吗?请说明理由。
【答案】〔1〕〔2〕不公平【解析】略20. 在中,角A,B,C的对边分别为,且满足(1)求角A的大小;〔2〕假设,求面积的最大值。
【答案】〔1〕〔2〕【解析】试题分析:〔1〕利用正弦定理将方程中的边化为角,再利用两角和差公式进展编写求解;〔2〕利用余弦定理和均值不等式求得的最大值,进而求得面积的最大值.试题解析:解:〔1〕由正弦定理:又而〔2〕由(1)与余弦定理知:,又即当且仅当时取“=〞号面积的最大值为21. 某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量〔单位:台〕,并根据这10个卖场的销售情况,得到如下图的茎叶图. 为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场〞.〔1〕求在这10个卖场中,甲型号电视机的“星级卖场〞的个数;〔2〕假设在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a>b的概率;〔3〕假设a=1,记乙型号电视机销售量的方差为,根据茎叶图推断b为何值时,到达最值.〔只需写出结论〕【答案】〔1〕5〔2〕〔3〕b=0【解析】试题分析:〔1〕由茎叶图和平均数的定义可得,即可得到符合“星际卖场〞的个数记事件为,由题意和平均数可得,列举可得和的取值一共9种情况,其中满足的一共4种情况,由概率公式即可得到所求答案。
根据方差公式,只需时,到达最小值试题解析:〔1〕解:根据茎叶图,得甲组数据的平均数为,由茎叶图,知甲型号电视机的“星级卖场〞的个数为.〔2〕解:记事件A为,因为乙组数据的平均数为26.7,所以,解得.所以和取值一共有9种情况,它们是:,,,,,,,,,其中有4种情况,它们是:,,,,所以的概率.〔3〕解:当时,到达最小值.考点:〔1〕茎叶图〔2〕极差、方差与HY差22. 数列{}的前项和为,是和的等差中项,等差数列{}满足,.〔1〕求数列,的通项公式;〔2〕假设,求数列的前项和.【答案】〔1〕〔2〕【解析】试题分析:〔1〕数列由求通项时主要借助于来求解,{}是等差数列,因此可将条件转化为首项和公差,利用根本量得到通项公式〔2〕整理通项为,因此可采用列项相消的方法求解试题解析:〔1〕∵当当2分∴4分6分设的公差为,8分〔2〕10分. 12分考点:1.数列求通项;2.裂项相消法求和励志赠言经典语录精选句;挥动**,放飞梦想。
厚积薄发,一鸣惊人。
关于努力学习的语录。
自古以来就有许多文人留下如头悬梁锥刺股的经典的,而近代又有哪些经典的高中励志赠言出现呢?小编筛选了高中励志赠言句经典语录,看看是否有些帮助吧。
好男儿踌躇满志,你将如愿;真巾帼灿烂扬眉,我要成功。
含泪播种的人一定能含笑收获。
贵在坚持、难在坚持、成在坚持。
功崇惟志,业广为勤。
耕耘今天,收获明天。
成功,要靠辛勤与汗水,也要靠技巧与方法。
常说口里顺,常做手不笨。
不要自卑,你不比别人笨。
不要自满,别人不比你笨。
高三某班,青春无限,超越梦想,勇于争先。
敢闯敢拼,**协力,争创佳绩。
丰富学校体育内涵,共建时代校园文化。
奋勇冲击,永争第一。
奋斗冲刺,誓要蟾宫折桂;全心拼搏,定能金榜题名。
放心去飞,勇敢去追,追一切我们为完成的梦。
翻手为云,覆手为雨。
二人同心,其利断金。
短暂辛苦,终身幸福。
东隅已逝,桑榆非晚。
登高山,以知天之高;临深溪,以明地之厚。
大智若愚,大巧若拙。
聪明出于勤奋,天才在于积累。
把握机遇,心想事成。
奥运精神,永驻我心。
“想”要壮志凌云,“干”要脚踏实地。
**燃烧希望,励志赢来成功。
楚汉名城,喜迎城运盛会,三湘四水,欢聚体坛精英。
乘风破浪会有时,直挂云帆济沧海。
不学习,如何养活你的众多女人。
不为失败找理由,要为成功想办法。
不勤于始,将悔于终。
不苦不累,高三无味;不拼不搏,高三白活。
不经三思不求教不动笔墨不读书,人生难得几回搏,此时不搏,何时搏。
不敢高声语,恐惊读书人。
不耻下问,学以致用,锲而不舍,孜孜不倦。