碳碳单键和碳碳双键的拉曼光谱
碳材料拉曼激发波长

碳材料拉曼激发波长碳材料拉曼激发波长是一个重要的研究领域,它对于理解碳材料的物理性质、表征技术以及应用领域具有指导意义。
拉曼光谱是一种非常有效的表征碳材料结构的方法,它通过激发样本中的分子振动和晶格振动模式,获得样本的结构信息。
在碳材料中,常见的有石墨、石墨烯和纳米碳管等。
这些材料的拉曼光谱在不同波长下的激发,可以提供关于材料的成分、结构以及纳米尺度特征的详细信息。
首先,我们来讨论石墨烯的拉曼激发波长。
石墨烯是由单层碳原子组成的二维材料,它具有优异的电子传输性能和机械性能。
石墨烯的拉曼光谱主要包括G带和2D带。
G带位于约为1582 cm-1处,代表了石墨烯中的晶格振动模式。
2D带位于约为2679 cm-1处,代表了石墨烯的二维性质。
接下来,我们转向纳米碳管的拉曼激发波长。
纳米碳管是由碳原子卷曲形成的一维结构,具有特殊的光电性能和机械性能。
纳米碳管的拉曼光谱包含了Radial Breathing Mode (RBM)、G带和其他特征峰。
RBM位于100-400 cm-1范围内,是由于纳米碳管的径向振动引起的。
G 带和其他特征峰表明了纳米碳管的晶格振动模式和管状结构。
最后,我们来看石墨的拉曼激发波长。
石墨是由多层平行排列的石墨烯片组成的三维材料。
石墨的拉曼光谱包含了G带和其他更高阶的特征峰。
G带位于约为1582 cm-1处,代表了石墨中的晶格振动模式。
其他特征峰则表示了石墨中的堆叠方式和结构缺陷。
通过研究碳材料的拉曼激发波长,我们可以获得关于其结构特征、晶格振动和纳米尺度性质的重要信息。
这些信息对于碳材料的制备、性能优化以及各种应用领域,如能源存储、催化剂和传感器等都具有指导意义。
因此,深入研究碳材料的拉曼激发波长是非常有意义且具有挑战性的课题。
我们相信,在未来的研究中,这个领域将会有更多的突破和应用价值的发现。
实用干货丨解析常见碳材料的拉曼光谱`

1550 1540 1530 1520
0.8 1.0
G+ G-
Semiconducting
1.2 1.4 1.6 1.8 2.0 2.2 2.4
Diameter (nm)
Metallic tubes: G-→LO & G+→TO Semiconducting tubes: G- →TO & G+ →LO
G- diameter dependence → TO circumferential
做计算 找华算
Raman Shift (cm-1)
1600 1590 1580 1570 1560 1550 1540 1530
TO LO
ቤተ መጻሕፍቲ ባይዱG+ G-
Metallic
1600 1590
LO
1580 1570 1560
c. Illustration of the relationship between angles and the chiralities of
the adjacent edges.
做计算 找华算
当两相邻边缘的夹角是30°,90° 时,两边缘有不同的手性,一个是 armchair,一个是zigzag。
做计算 找华算
2D-BAND
层 数 依 赖 性
激发光能量依赖性
1. e excitation
2. e-phonon scattering
3. Phonon with opposite momentum 4. E-hole recombination
做计算 找华算
石墨的拉曼光谱
不同点不同偏振方向的 拉曼光谱 (a)完美石墨晶体 (b)有缺陷的石墨
拉曼光谱3

烯 烃 类
炔 烃 类
碳−碳三键伸缩振动,特别是当三键位于链的中间位置 时,在拉曼光谱中产生一个很强的谱带,但在红外光谱中它 是很弱的,甚至弱到难以观察到这个谱带。在二取代乙炔的 光谱中,通常在2230cm-1和2300cm-1附近出现两个谱带,它 们是 C C 振动和 C C 倍频之间的费米共振产生的。在单取 代炔衍生物中,碳氢伸缩振动 C H 在3300cm-1附近出现一个 谱带。这个谱带在红外光谱中相当强,但在拉曼光谱中为中 等强度。在这个范围内的O−H和N−H谱带都是宽谱带,且都在 红外光谱中是很强的。≡C−H基团还在650~600cm-1范围内 产生一个谱带,属于 C H 振动,它在红外光谱中是强谱带, 在拉曼光谱中为中等强度。
各种基团的特征频率
• 烃类
脂肪烷烃 环烷烃 不同分子中的烷基 烯烃类 炔烃类 芳烃类
脂肪烷烃
仅由饱和烃组成的脂肪基团可由端甲基和链中亚甲基的 振动所表征
端甲基有六种振动类型:
C H ,对称) 反对称伸缩振动( C H ,反对称 ) 对称伸缩振动(
C H ,反对称 反对称变形振动( ) 对称变形振动( C H ,对称)
脂肪烷烃
4.如果分子中有几个相邻的CH2基团,面外摇摆振动 CH 2 谱带 在拉曼光谱中出现在1300cm-1。对于长的碳氢链,还有由碳− 碳键振动 C C在拉曼光谱中的900~800cm-1和1100~ 1000cm-1范围内产生的一系列(3个或4个)特征谱带。在拉 曼光谱的450~150cm-1范围内有几个由碳链变形振动产生的 谱带,它们的频率随链的长度增加而增大;
材料表征方法 第八章-拉曼光谱

拉曼频率及强度等标志着散射物质的性质。从 这些资料可以导出物质结构及物质组成成分的知识。 这就是拉曼光谱具有广泛应用的原因。 拉曼效应起源于分子振动(和点阵振动)与转动, 因此从拉曼光谱中可以得到分子振动能级(点阵振 动能级)与转动能级结构的知识。 拉曼散射强度是十分微弱的,大约为瑞利散射 的千分之一。在激光器出现之前,为了得到一幅完 善的光谱,往往很费时间。激光器的出现使拉曼光 谱学技术发生了很大的变革。
红外吸收要服从一定的选择定律,即分子振 动时伴随着分子偶极矩发生变化才能产生红外吸 收。同样,在拉曼光谱中,分子振动的产生也要 服从一定的选择定则,即必须伴随着分子极化度 发生变化的分子振动模式才能具有拉曼活性,产 生拉曼散射。 极化度是指分子改变其电子云分布的难易程 度,因此只有分子极化度发生变化的振动才能与 入射光的电场E相互作用,产生诱导偶极矩。
散射光谱
拉曼散射光谱(Raman)
拉曼光谱和红外光谱都反映了分子振动 的信息,但其原理却有很大的差别,红外光 谱是吸收光谱,而拉曼光谱是散射光谱。红 外光谱的信息是从分子对入射电磁波的吸收 得到的,而拉曼光谱的信息是从入射光与散 射光频率的差别得到的。
拉曼效应
拉曼光谱为散射光谱。当辐射通过介质 的时候,引起介质内带电粒子的受迫振动, 每个振动的带电粒子向四周发出辐射就形成 散射光。如果辐射能的光子与分子内的电子 发生弹性碰撞,光子不失去能量,则散射光 的频率与入射光的频率相同。1871年,瑞 利发现了这种散射光与入射光频率相同,这 种散射光就称为瑞利散射。
拉曼光谱适合同原子的非极性键的振动。如C-C,S-S,N-N键等, 对称性骨架振动,均可从拉曼光谱中获得丰富的信息。而不同原 子的极性键,如C=O,C-H,N-H和O-H等,在红外光谱上有反映。 相反,分子对称骨架振动在红外光谱上几乎看不到。拉曼光谱和 红外光谱是相互补充的。
常见碳材料及其拉曼光谱(精)

常见碳材料及其拉曼光谱陈翠红 200& 12.02三维的石金刚石 二维的石9烯・碳纳米带 一维的《纳米管•《纳米线 *维的富《烯(Ceo)S 筑学家理査《 •巴克明斯特•富«(Richard Buckminster Fuller) 设计的美国万国席览馆球形n 顶»壳<氛.常见的碳材料有:占::石墨的拉曼光谱自然界中并不存在宏观尺寸的石S单晶,而是含有许许多多任《取向的微小晶粒(HHIuni) •高定向热解石星(HOK;)是人工生长的一种石星.其碳平面几乎完美地沿其垂直方向堆*.然而沿着石星平面内・晶粒仍然存在任竜取向但非常小•CMfMM(I)结构不Ph拉曼光谱不同(2) G-band(*l580cm M是由碳环或长»中的所有原子对的拉伸运动产生的.(3)缺陷和无序诱#n-band (-•I360vm ')的产生•blc)Amorpboin Cwtx>n (a very broadpMk)(4) 我们用D峰与G峰的强度比来衡*碳材料的无序度・Highly oriented pyrolytic graphite (No D❻and) at 1582 cnrJActivated Charcoal (D and G bands ot I3eo. lUOcm')Ramon Spoctmm of OraphlteK T・4Krv・A・ A・fe> I la KMAXUt<Kpe»4v*d U1969)Wfcr**1355CB-1峰的出现归结于微晶尺寸效应使得没有拉*活性的某些声子在选择定W改变后变得有了拉*活性•发现D模对于拉曼活性0«的相对强度与样品中石》微晶尺寸的大小相关.Mbaud的发现及其研究1970年量先报道了无序诱导的I)模.19X1年.一些人利用不同的激发光能量研究了石《的拉*光谱,得出D 模频率随激发光能童的线性移动.斜率在4(450an.1/tY之间.1990年,一些人通过实验总结了D模强度和样品中各种无序或峡陷的相互关系,证明无论石®存在任何形式的无序,D模都会出现•无序诱导的D-band 的产生一双共提拉曼散射D,2D-Band-Double ResonanceD-BandG-Band1 ・ e excitation2. e ・phonon scattering3. defect scattering 4・ E-hole recombination伴随着层数的增加强度提高2D-Bandf■H E(C)Rwran V fl (cm**)-- A r*-才—n2700 2*00AOCn<» fthW (CP'*'}L c excilatian 2. c-phonon scuitcring 3. Phonon uHh uppusilvrocmenluin4. E-hoIe reconibinution激发光能*依聯性石墨的拉曼光谱111«111 K|><-*<• (, r<>w<-<>1 >v <>r111<-*It V S r I : I- It A N I I : Ic I ,l< Ip A N |> C II It IM I I A r< *]' II <T M ?< I :/•/ 小w”・,丿化/ 「“♦"如”切八 / "力. "/< <F«| J71>< <<«iau.4 ik >2/八Af4/u/ E cf 川初”•"山紹•次・ 77管/“n ・Ar Z7f r Z A /«."桁./yr#7l/>. fitrtuttuy不同点不同《«方向的拉曼光谱 (a) 完美石ft 晶体 (b) 有缺陷的石《激发光能«增加. 向离能方向移动・激发光波长衽近任外到近紫外是 性的・ «»4O'S0ca -7er2D 的大*是D 的两俗(a) D 模的相对强度与石ft 微晶尺寸La 的 相互关系-(b) 石》—阶和二阶拉*模的激发光能 *依義性.r IKIUV 7・(11) talMlMl I I M UMII Cur thv D UB O J W Ul tut tlliw tlftUvf will liWM©tMWg. (*> O«lcwlnt«-<l {full «qiBAXM> and v»cMiirv*1 (vp«ti •vmhc4«) frc>qiicntic» of th* t> n>o<1<» M0. U I AA' 4 jg Jj JvM,»1'3 Jk' r'*7;-'iT'~7KwMtMllKPuM b/fu/nnn epcHr 已gy <J / QfTupfuh■ 抄 粒l.MV l-MM> I5«K»lO<A)M fiUMitott u< uxjcii*!kM* vt*v«v<\\ Fiuiii Tl)o«u*vb Xr (Uah I2UUU). ilkv uwuujvu»vi«t* i«Jkvu from rf n/ (IO?KI). P6o«tk rf n l. (I W>H) And Mfhcf </. { VW>J小结療石4「532啊光学膜的拉曼峰强不依说曼实脸中激发光偵抿孚款字詮為谱睑垂亶和平行值摄配.下的蟹度不同’说明石■微晶的尺G*的频率比G 的两倍大・可能是纵向光学声子支的过度弯曲导致•一般来说・非拉曼活性舉动倍頻模的二阶拉《散射在石■中是允许的•爲群欝歸舉番雜盜蠶皺評于与石稣其他SP"*碳材碎石》烯是一种其禁带宽度几乎为寒的半金属/半导体材料 在2006 - 200M 年阖■石•烯已被制成弹道输运A 体伸bidlkw IransiMoDt 平面场效应管(FieW-EfTevI rransislorsh 并且吸引了大批科学家的兴ft■>石ft 烯的手性 Graphene 的结构及其拉曼光谱半金属性ZIGZAGrn V sK'AL Hr VIEWII T M H S石a 烯的拉曼光谱KMitiMit Sprrla-um IB T CU'MphriK' omi < ^ritpIx-iBr t.a'ufA.<7 IcfKirt?'* J <' Meyr 」V ' <? C AMi4<hi * M丿、<«"仇K. S N lum.』i4Mtl A. K-Ckuvi"*Ci4M^W|cr祕rvnnmuviwwr Z? A 冷*W *・ Ctvn/vAAv* CA> A 仏WMT %•从/ 5fM«r 敞 VMV ・Jk MWW^" <J*7wrw<- /idTJi A rr 究 /rf ;r /■*»* 〜4 7W/ ♦彳 I(a) Comparison of Raman spectra at 514 nm for bulk graphite and graphene. They are scaled to have similar height of the 2D peak at 2700 enrV(b) Evolution of the spectra at 514 nm with the number of layers. (c) Evolution of the Raman spectra at 633 nm with the number o( layers.(d) Comparison of the D band at 514 nm at the edge ol bulk graphite and single layer graphene. The fit of the D1 and D2 components ol the D band of bulk graphite is shown. fe) The four components of the 2D band in 2 layer graphene at 514 and 633 nm.mvMv Aar.*«.w Av^rrp Mm Ar4i*< A|/< WV Jm 2lHH»c p«Hi*«hod 34» tKiolwram me we严41*000no! \ 心序W«,3”K I \23 LZ J__ ■ 亠g ―R«nw Sign 、M» ano MM zzn me sm(d) D 峰的产生及峰位的不W (e) 2layer 2D 峰由四个组成Gniphrar 中 f 心无缺IB 存在7ZTDO 2*00^*>3e8wA JMiMfrmam2000B "声子支的分«<1.5cm'' 所以归因为电子能级的分裂电子《带的分 便bilayer 分裂为四个带FIG. X r>R f« the 2D peak in <«* single layer and 1b> hla’crAfTLKL> PHYSICS LETItRS ■、・ 16311}小MM)Edge chirality determination of graphene by Raman spectroscopyYuMeng You, ZhenHua Na, Tina Yu. and ZeXlaog Shen**Abitri aW flbsfi, ScAorM 今 Hbwwrt/ 耐 MarArmuiirtf/ $d<wrx AAhowgt/iwrfTOjy, Siiguptyr 27S7t ・ (fUceived 21 July 2a»: iMxepiAXi 30 ScpKinbcr 2WJ8. pubiubed uohoe 22 (Xtuber 200»>SCBVSSS一%Bilayer graphene单层及双层graphene2D 峰的双共撮过程%a*r * A■ 1才(C) 3(r• 1 ZigjagFIG. b Color onhnvOpikal Inwge <W * l> pkul MCG S I KT I and the angles between cdgc»・b The statislkat rvsulls oT the anglemeasunments. rhe standard deviation Is 5-4* •c Illustration of the rclatlonship between angles and the chlruUtks of the adjwtnl rdges>...WJArmchaw • •:『::::: a*-f :■:-:■ N->:■:-:■当两相邻迦》的夹角是30- • 90-时. 两边缘有不同的手性• 一个是armchair, 一个是zigzag.无序诱导的口峰的拉曼强度与边^* 手性有关, 在armchair edge 的边缘D 峰强度较强. 在zigzag边缘较弱.nC. J ICJur Rioua l ua hi tni “o di|iln W MT, (H flfr 〈rogX W. and (di <Mr TW wiugvi<inci«* 时 th* ◎ bod tmtwif ・kw ■ fnMww ml 2聘的 «<tW SLC sheet*. TV bur ■ adu -«*nJ 忖 ihr tvm imwv The w|«*-iinpM«J frMTViWi* b yuig X ibr 忙 mdx<hng Ar edfe <lutaJ<> K«e tkM the vbrabty <■< IMi*l) *<feJcieUMaed ” the obM — uf Ek toi< *wa| ■m W/W <« Oe iMC rvtr ■ 5L J C Dr wnk ta H I MO .小结(;2p hem;—般出现三个峰l )X>«2l);SLG 的2D 峰是尖悦的融峰,BLG 的2D 峰有四个组成,其他的都是两个组 成・可用来区分石星烯单层与多层・2D 峰起源于动量相反的两个声子參与的双共振拉S 过程.在所有sp2 碳材料中均有发现.石星烯根据边缘的不同・具有不同的手性.用fe*光谱.根据n-band 的拉曼强度可以识别graphene ed 跳的手性・对数百MCG 的研究表明,MCGiiat 夹角是30-的倍»・两相邻边缘的夹角是30- , 90。
拉曼光谱

24
拉曼光谱的应用
同种分子的非极性键S-S,C=C,N=N,C≡C产生强 拉曼谱带,随单键→双键→三键谱带强度增加。 红外光谱中,由C≡N,C=S,S-H伸缩振动产生的谱 带一般较弱或强度可变,而在拉曼光谱中则是强谱 带。
环状化合物的对称呼吸振动常常是最强的拉曼谱带。
25
拉曼光谱的应用
21
拉曼光谱仪使用注意事项
测量前要按照先开硬件再开软件的原则开机,以免 造成开机后的软件报错; 开机完成后,测量前需先进行单晶硅的测量,从而 对仪器进行矫正; 测量聚焦过程中要防止样品碰到物镜,以免造成物 镜损坏或污染; 测量完成后关机,关机顺序与开机相反,为先软件 后硬件的原则。同时务必保证激光器的关闭,以免 影响激光器寿命或发生火灾。
34
拉曼光谱在高分子中的应用
Liem等利用共焦显微拉曼光谱和极化拉曼光谱研究 了聚苯乙烯(PS)薄膜(50~180nm)的玻璃化转 变温度,研究表明当PS薄膜越薄,其玻璃化转变温 度越低,当厚度超过90nm时,其玻璃化转变温度与 本体聚合物相一致,这一测量结果与布里渊散射法 和椭圆偏光仪法一致.
32
拉曼光谱在高分子中的应用
研究聚合物链的构象结构; 研究聚合物的玻璃化转变和结晶; 研究聚合物的扩散界面; 研究聚合物共混体系的相态结构及其高分子多相体 系的相容性。 研究聚合物溶液的相转变。
33
拉曼光谱在高分子中的应用
高分子聚合物可以分为两大类———非晶聚合物和 结晶聚合物。对于非晶聚合物,玻璃化转变是一种 普遍现象,在高聚物发生玻璃化转变时,许多物理 性能发生急剧变化。如作为塑料使用的高聚物,当 温度升高至发生玻璃化转变温度以上时,便丧失了 塑料原有的坚固性,变成了橡胶;而作为橡胶使用 的材料,当温度降低至玻璃化转变温度以下时,便 失去橡胶的高弹性,变成硬而脆的塑料。
碳材料的拉曼光谱

❖ G*的频率比G的两倍大,可能是纵向光学声子支的过度弯曲导致。 ❖ 一般来说,非拉曼活性振动倍频模的二阶拉曼散射在石墨中是允许的。 ❖ 声子频率的激发光能量依赖性及其他效应都起源于与石墨和其他sp2键碳材料特
碳纳米管的拉曼光谱G-band
Graphite: G峰单一,尖锐 对应q==0, mode E2g
Nanotubes: 两个峰 G+ 和 G-. 起源于 graphite E2g Metallic semiconducting
G峰的振动模式及其性质
G+: no diameter dependence LO axial
11米mwnt的层间距约为034纳米直径在几个纳米到几十纳米长度一般在微米量级最长者可达数毫米碳纳米管中的碳原子以sp2杂化但是由于存在一定曲率所以其中也有一小部分碳属sp3杂化2000年香港科技大学的汤子康博士即宣布发现了世界上最细的纯碳纳米碳管04nm这一结果已达到碳纳米管的理论极限值
常见碳材料及其拉曼光谱
陈翠红 2008.12.02
常见的碳材料有:
三维的石墨,金刚石 二维的石墨烯,碳纳米带 一维的碳纳米管,碳纳米线 零维的富勒烯(C60)
建筑学家理查德·巴克明斯特·富勒 (Richard Buckminster Fuller) 设计的美国万国博览馆球形圆顶薄壳建筑。
石墨的拉曼光谱
❖ 自然界中并不存在宏观尺寸的石墨单晶,而是含有许许 多多任意取向的微小晶粒(100um)。
G- diameter dependence TO circumferential
Raman Shift (cm-1)
拉曼光谱

Raman 散射的产生:光电场 E 中,分子产生诱导
偶极距
= E
( 分子极化率)
3.红外活性和拉曼活性振动
①红外活性振动 ⅰ永久偶极矩;极性基团; ⅱ瞬间偶极矩;非对称分子; 红外活性振动—伴有偶极矩变化的振动可以产生红外吸收谱带. ②拉曼活性振动
强度由分子偶极距决定 -OH, -C=O,-C-X 异:拉曼 分子对激光的散射 拉曼: 适用于研究同原子的非极性键振动
强度由分子极化率决定 -N - N-, -C-C-
互补
O=C=O
对称伸缩
偶极距不变无红外活性
O=C=O
反对称伸缩
偶极距变有红外活性
极化率变有拉曼活性 极化率不变无拉曼活性
二、拉曼光谱的应用
激光拉曼光谱
一、 拉曼光谱基本原理
二、拉曼光谱的应用 三、 激光拉曼光谱仪
概述 拉曼光谱得名于印度物理学家拉 曼(Raman)。1928年, 拉曼首先从 实验观察到单色的入射光投射到物质 中后产生的散射,通过对散射光进行 谱分析,首先发现散射光除了含有与 入射光相同频率的光外,还包含有与 入射光频率不同的光。以后人们将这 种散射光与入射光频率不同的现象称 为拉曼散射。拉曼因此获得诺贝尔奖。
●另一种是分子处于激发态振动能级,与光子碰撞后,分子跃迁回基态而
●两种情况,散射光子的频率发生变化了,减小或增加了,称为拉曼位移。
Stokes线与反Stokes线
●将负拉曼位移, 即ν0-ν1称为Stokes线(斯托克斯线)。 ●将正拉曼位移, 即ν0+ν1称为反Stokes线(反斯托克斯线)。 正负拉曼位移线的跃迁几率是相等 的,但由于反斯托克斯线起源于受激振 动能级,处于这种能级的粒子数很少, 因此反斯托克斯线的强度小,而斯托克 斯线强度较大,在拉曼光谱分析中主要 应用的谱线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳碳单键和碳碳双键的拉曼光谱
拉曼光谱在石墨烯的层数表征方面具有独特的优势,完美的单洛伦兹峰型的二阶拉曼峰(G'峰)是判定单层石墨烯简单而有效的方法,而多层石墨烯由于电子能带结构发生裂分使其G'峰可以拟合为多个洛伦兹峰的叠加,G'峰与石墨烯的电子能带结构密切相关,因此石墨烯的电子结构可以用共振拉曼散射来测定。
石墨烯电场效应下的拉曼光谱研究表明电子空穴掺杂会影响石
墨烯的电子-声子耦合,从而引起拉曼位移,因此,拉曼光谱是测定石墨烯的掺杂类型和掺杂浓度的有效手段。
如何判断石墨烯的质量?
如何判断石墨烯的质量是一个关键的问题,D峰为涉及一个缺陷散射的双共振拉曼过程,因此石墨烯的缺陷会反映在其拉曼D峰上,通过对石墨烯拉曼D峰的检测可以定量地对其缺陷密度进行研究。
由于石墨烯的带隙为零,通过化学修饰在sp2碳上引入sp3碳缺陷是人们打开石墨烯带隙的重要方法之一,因而D峰也是衡量其化学修饰程度的一个重要的指标。
另外,石墨烯的层间堆垛方式、所处的环境温度、应力作用以及基底效应也会反映在其拉曼光谱特征峰的变化上。