(完整word版)MOS管原理、MOS管的小信号模型及其参数

合集下载

MOS管学习简介

MOS管学习简介

(4)转移特征 漏源电压Vds一定旳条件下,栅源电压Vgs对漏极电流id旳控制特征。
可根据输出特征曲线作出移特征曲线。 例:作Vds =10V旳一条转移特征曲线
i D (mA)
4 3
2 1
uGS=6V
uGS =5V uGS =4V uGS=3V
10V
i D (mA)
4
3
2
1
u
DS
(V)
UT
2 46
开关管导通时,驱动电路应能提供足够大旳充电电流使栅源电压上升 到需要值,确保开关管迅速开通且不存在上升沿旳高频震荡。
开关管导通期间驱动电路能确保MOSFET栅源间电压保持稳定使其可 靠导通。
关断瞬间驱动电路能提供一种低阻抗通路供MOSFET栅源间电压迅速 泻放,确保开关管能迅速关断。
关断期间驱动电路能够提供一定旳负电压防止受到干扰产生误导通。 驱动电路构造尽量简朴,最佳有隔离 。
形成导电沟道,MOS管处于截止状态。
N+
N+
(2) Vgs≥ VGS(th) ,出现N沟道
栅源之间加正向电压 由栅极指向P型衬 底旳电场 将接近栅极下方旳空穴向下排 斥 形成耗尽层
再增长Vgs 纵向电场
P衬底
b
将P区少子(电子)汇集到P区表面
形成源漏极间旳N型导电沟道 假如此时加有漏源电压,就能够形成漏 极电流id
Qgs:栅源充电电量。
Qgd:栅漏充电电量。
Ciss:输入电容,将漏源短接,用交流信号测得旳栅极和源极之间旳电容 。Ciss= CGD + CGS 。对器件旳开启和关断延时有直接旳影响。
Coss:输出电容,将栅源短接,用交流信号测得旳漏极和源极之间旳电容 。Coss = CDS +CGD 。

(完整word版)MOS管原理、MOS管的小信号模型及其参数

(完整word版)MOS管原理、MOS管的小信号模型及其参数

MOS管原理、MOS管的小信号模型及其参数MOS管是只有一种载流子参与导电,用输入电压控制输出电流的半导体器件.有N沟道器件和P沟道器件。

有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。

IGFET也称金属—氧化物-半导体三极管MOSFET(Metal Oxide SemIConductor FET)。

MOS场效应管有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N 沟道和P沟道两种导电类型。

MOS管有三个电极:D(Drain) 称为漏极,相当双极型三极管的集电极;G(Gate)称为栅极,相当于双极型三极管的基极;S(Source)称为源极,相当于双极型三极管的发射极.增强型MOS(EMOS)场效应管道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。

在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。

P型半导体称为衬底(substrat),用符号B表示。

一、工作原理1.沟道形成原理当Vgs=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压,不会在D、S间形成电流。

当栅极加有电压时,若0<Vgs<Vgs(th)时(VGS(th)称为开启电压),通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。

耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。

进一步增加Vgs,当Vgs>Vgs(th)时,由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。

MOS管电路工作原理及详解

MOS管电路工作原理及详解

MOS管电路工作原理及详解在电子世界里,咱们的MOSFET(金属氧化物半导体场效应晶体管)就像是个神奇的小精灵,它能让电流自由穿梭,就像魔术师手里的魔杖一样。

想象一下,你正站在一片漆黑的森林里,突然一束光从天而降,照亮了整个森林,那不就是MOS管在发光吗?这个小精灵有个特别的地方,就是它的“开关”,一按下去,电流就畅通无阻;再一按,电流就像被按下了暂停键,啥也不动。

这就是MOS管的工作原理,简单粗暴,却又无比精准。

你知道吗,MOS管就像是一个微型的“开关”,它有两片金属片,中间夹着一个半导体,当电压足够高的时候,半导体就会被“点亮”,电流就能通过;电压低了,半导体就“熄灭”,电流就断了。

这就是MOS管的基本工作原理。

想象一下,你正在玩一个游戏,这个游戏的规则就是:当你的分数达到一定水平时,你就可以得到一个奖励;如果你的分数低于某个标准,那你就要被淘汰。

这就是MOS管在电路中的角色,它就像一个裁判,决定哪些信号可以通行,哪些信号需要被屏蔽。

但是,MOS管可不是只有开关功能那么简单哦。

它还有自己的“个性”,比如有些MOS管是N沟道的,有些是P沟道的。

这就决定了它们的工作方式和性能差异。

有的MOS管像是个急性子,反应快,适合做高频器件;有的则慢悠悠的,稳扎稳打,适合做低频器件。

这就是MOS管的多样性,它们各有千秋,各得其所。

MOS管还有“家族”之分呢!有的小精灵是三极管,有的小精灵是双极结型晶体管。

这些“家族成员”都有自己的特点和优势,就像不同的人有不同的性格一样。

这就是为什么我们要根据实际需求选择合适的MOS管,而不是盲目地追求“万能”。

MOS管也不是万能的。

有些时候,我们可能需要一些“特殊技能”才能驾驭它。

比如,要让一个MOS管正常工作,你得给它一个合适的偏置电压;要是想让它在特定条件下工作,那就得给它加上一些特殊的驱动信号。

这就需要我们具备一定的电子知识,才能让这些小精灵们发挥出最大的潜力。

MOS管就像是电子世界的魔法师,它们通过简单的开关动作,操控着电流的流动。

MOS管电路工作原理及详解

MOS管电路工作原理及详解

MOS管电路工作原理及详解哎呀,说起电子元件,大家是不是觉得它们就像神秘的魔法师?今天咱们就来聊聊那些藏在电路板里的“魔法”——MOS管。

别看它小,其实大有来头,它的工作方式可是既简单又神奇,让人忍不住想一探究竟。

咱们得知道,MOS管是一种场效应晶体管,它的名字里就藏着几个关键词:“场”和“效应”。

简单来说,MOS管就像一个指挥家,它控制着电流的流向,就像指挥家用手势指挥乐队一样。

但是,这个指挥家可不是随便乱指挥的哦,它需要两个小伙伴,也就是栅极和源极,还有一块神奇的材料——半导体。

想象一下,当你想要让电流从A点流向B点时,MOS管就像是个聪明的小精灵,它会找到最佳的路径,绕过那些不听话的小石头(即电阻),直接把电流送到目的地。

这个过程就像是在地图上画一条线,虽然不是直的,但总是能找到最近的路线。

而且,MOS管还有一大特点就是“低功耗”,这可真是太棒了!想象一下,你正在玩一个需要电池的游戏,而你的MOS管就像是一个永不磨损的电池,无论你玩多久,它都能让你玩得痛快。

当然啦,MOS管也不是万能的。

有时候,它可能会犯个小错误,比如在某些情况下,电流可能会走错路,或者遇到一些“难题”,比如温度变化、电压波动等,这时候就需要我们这些“维修工”来帮忙解决问题了。

不过别担心,这些问题都不是问题,因为科学家们已经找到了解决的办法。

就像修理汽车一样,只要找到问题的根源,换上新的零件,就能让MOS管重新回到最佳状态。

我要说的是,虽然MOS管听起来好像有点复杂,但其实它的原理并不难理解。

就像学习一门新语言,刚开始可能有点困难,但只要你坚持不懈,总会有一天能够流利地交流。

所以,不要害怕挑战,勇敢地去探索这个神奇的世界吧!好啦,关于MOS管的讲解就到这里啦。

如果你对这个话题感兴趣,不妨多花点时间去了解一下,说不定你会发现更多有趣的知识呢!记得点赞关注哦,下次见!。

MOS管工作原理及芯片汇总

MOS管工作原理及芯片汇总

MOS管工作原理及芯片汇总一:MOS管参数解释MOS管介绍在使用MOS管设计开关电源或者马达驱动电路的时候,一般都要考虑MOS的导通电阻,最大电压等,最大电流等因素.MOSFET管是FET的一种,可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,一般主要应用的为增强型的NMOS管和增强型的PMOS管,所以通常提到的就是这两种。

这两种增强型MOS管,比较常用的是NMOS。

原因是导通电阻小且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS.在MOS管内部,漏极和源极之间会寄生一个二极管。

这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要,并且只在单个的MOS管中存在此二极管,在集成电路芯片内部通常是没有的。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的.寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免。

MOS管导通特性导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到一定电压(如4V或10V,其他电压,看手册)就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。

但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS.MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,因而在DS间流过电流的同时,两端还会有电压,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。

选择导通电阻小的MOS管会减小导通损耗.现在的小功率MOS管导通电阻一般在几毫欧,几十毫欧左右MOS在导通和截止的时候,一定不是在瞬间完成的.MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失.通常开关损失比导通损失大得多,而且开关频率越快,导通瞬间电压和电流的乘积很大,造成的损失也就很大。

最经典MOS管电路工作原理及详解没有之一

最经典MOS管电路工作原理及详解没有之一

引导八年级物理教案:如何使用万能表测量电压?为了能够更好地学习物理知识,电学部分是非常重要的一点。

在电路中测量电压是我们必须掌握的基本技能之一。

在测量电压的时候,我们使用的是万能表来完成这个操作。

如何使用万能表来测量电压呢?在本文中,我们会为大家详细地介绍万能表的使用方法和测量电压的注意事项。

1. 什么是万能表?万能表是一种电器测量仪器,也是我们在学习电学物理的时候必不可少的一种工具。

它可以测量电压、电流、电阻等基本电性质。

这个仪器由表头、选择旋钮、测试探针等部分组成。

表头是测量元件,它通过测试探针与要测量的元件相连。

选择旋钮则通过不同的旋钮来选择要测试的电量种类。

2. 如何使用万能表测量电压?万能表测量电压可以分为两种情况:测量直流电(DC)电压和测量交流电(AC)电压,下面我们会为大家详细地介绍这两种情况下的使用方法。

2.1 测量直流电(DC)电压第一步:准备工作在进行测量前,我们需要先确定正负电极的位置和要测量的电压范围。

一般来说,我们应该选择稍大于被测电压的最大量程。

第二步:选择直流电压档位在选择万能表测量直流电压时,需要手动选择直流电压档位。

通常我们选择最接近被测电压的档位,以避免电表由于过大电压量程而被烧毁。

第三步:连接万用表本步骤是将万用表的探针连接到电路中以读取电压。

一般来说,我们需要用黑色探针连接电路中任意地点(一般来说是接地),白色探针则连接需要测量电压的电路部分。

第四步:读取数据在上述步骤完成后,我们只需在万用表的显示屏上读取结果,以得到被测的电压值。

2.2 测量交流电(AC)电压当我们需要测量交流电的电压时,与测量直流电时相比,增加了一个步骤。

第一步:准备工作我们需要先了解被测电路中使用的是交流电,以及要测量的电压范围。

第二步:选择交流电压档位直流电传输的方向是不变的,而交流电的方向是改变的。

在使用万用表测量交流电时,我们需要选择交流电压档位。

第三步:测量电压和测量直流电一样,我们需要将万用表的探针连接到电路中以读取电压,并读取显示屏上的结果。

mos管工作原理及详解

mos管工作原理及详解

万联芯城致力于打造一个方便快捷的电子物料采购平台。

采购MOS管等电子元器件,就到万联芯城,万联芯城MOS场效应管主打IR,AOS,VISHAY等知名国际品牌,均为原装进口货源,当天可发货。

点击进入万联芯城点击进入万联芯城MOS管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

对于这两种增强型MOS管,比较常用的是NMOS。

原因是导通电阻小,且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS。

下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。

寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管工作原理图上可以看到,漏极和源极之间有一个寄生二极管。

这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。

顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

MOS管工作原理图电源开关电路详解这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS的工作原理图。

它一般有耗尽型和增强型两种。

本文使用的为增强型MOSMOS管,其内部结构见mos管工作原理图。

它可分为NPN型PNP型。

NPN型通常称为N沟道型,PNP型也叫P沟道型。

由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。

我们知道一般三极管是由输入的电流控制输出的电流。

但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

为解释MOS管工作原理图,我们先了解一下仅含有一个P—N结的二极管的工作过程。

MOS管电路工作原理及详解

MOS管电路工作原理及详解

实物
最后,3PIN脚的MOS管: (1)SOT-23
3
D
G
S
1
2
PIN1为G极;PIN2为S极;PIN3为D极。
图纸习惯
但请大家特别注意:主板上标示的PIN1与PIN2脚与此刚好颠倒了。
主板图纸上也是如此。 而且,似乎作为一种错误的习惯被保持了下来。
另外一种3PIN脚的MOS管: (2)TO-252
回顾前面的例子,你找到它们的规律了吗?
小提示: MOS管中的寄生二极管方向是关键。
电路符号
小结:“MOS管用作开关时在电路中的连接方法”
NMOS管:
D极接输入; S极接输出。
PMOS管:
S极接输入; D极接输出。
输出端 S极
G极
N沟道
输入端 S极
G极
P沟道
D极 输入端
导通时
D极 输出端
导通时
电路符号
3
1
2
2
1
常见型号有: AOD425
实物
2 它是N沟道还是P沟道的呢?
先从简单的开始,拿最常见的3PIN脚MOS管(SOT-23)讲起。
将万用表调
到“二极体 档”。
电路符号
电路符号篇
电路符号
开始之前,一个小测试:
请回答: 哪个脚是S(源极)?
哪个脚是D(漏极)?
G(栅极)呢?
是P沟道还是N沟道MOS?
如果接入电路, D极和S极,哪一个该接 输入,哪个接输出? 你答对了吗?
电路符号 再来一个,试试看:
哪个脚是S(源极)?
哪个脚是D(漏极)?
G(栅极)呢?
是P沟道还是N沟道MOS? 依据是什么?
作用: 电压通断(开关)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MOS管原理、MOS管的小信号模型及其参数
MOS管是只有一种载流子参与导电,用输入电压控制输出电流的半导体器件.有N沟道器件和P沟道器件。

有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。

IGFET也称金属—氧化物-半导体三极管MOSFET(Metal Oxide SemIConductor FET)。

MOS场效应管
有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟道和P沟道两种导电类型。

MOS管有三个电极:
D(Drain) 称为漏极,相当双极型三极管的集电极;
G(Gate)称为栅极,相当于双极型三极管的基极;
S(Source)称为源极,相当于双极型三极管的发射极.
增强型MOS(EMOS)场效应管
道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。

在源极和漏极之间的绝缘层上镀一层金属铝作为栅极 G。

P型半导体称为衬底(substrat),用符号B表示。

一、工作原理
1.沟道形成原理
当Vgs=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压,不会在D、S间形成电流。

当栅极加有电压时,若0<Vgs<Vgs(th)时(VGS(th)称为开启电压),通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。

耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。

进一步增加Vgs,当Vgs>Vgs(th)时,由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。

如果此时加有漏源电压,就可以形成漏极电流ID。

在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层(inversion layer)。

随着Vgs的继续增加,ID将不断增加。

在Vgs=0V时ID=0,只有当Vgs>Vgs(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。

VGS对漏极电流的控制关系可用iD=f(vGS)|VDS=const这一曲线描述,称为转移特性曲线,见图。

转移特性曲线斜率gm的大小反映了栅源电压对漏极电流的控制作用。

gm 的量纲为mA/V,所以gm也称为跨导.
跨导的定义式如下:gm=△ID/△VGS|
(单位mS)
2. Vds对沟道导电能力的控制
当Vgs>Vgs(th),且固定为某一值时,来分析漏源电压Vds对漏极电流ID的影响。

Vds的不同变化对沟道的影响如图所示.
根据此图可以有如下关系
VDS=VDG+VGS= —VGD+VGS
VGD=VGS—VDS
当VDS为0或较小时,相当VGD>VGS(th),沟道呈斜线分布。

在紧靠漏极处,沟道达到开启的程度以上,漏源之间有电流通过。

当VDS 增加到使VGD=VGS(th)时,相当于VDS增加使漏极处沟道缩减到刚刚开启的情况,称为预夹断,此时的漏极电流ID基本饱和。

当VDS增加到 VGD〈 VDS增加的部分基本降落在随之加长的夹断沟道上,〉
当VGS>VGS(th),且固定为某一值时,VDS对ID的影响,即iD=f(vDS)|VGS=const这一关系曲线如图02.16所示。

这一曲线称为漏极输出特性曲线。

二、伏安特性
1.非饱和区
非饱和区(Nonsaturation Region)又称可变电阻区,是沟道未被预夹断的工作区。

由不等式
VGS>VGS(th)、VDS<VGS-VGS(TH)限定。

理论证明,ID与VGS和VDS的关系如下:〈 p〉
2.饱和区
饱和区(Saturation Region)又称放大区,是沟道预夹断后所对应的工作区。

由不等式VGS〉VGS(th)、VDS>VGS—VGS(th)限定.漏极电流表达式:
在这个工作区内,ID受VGS控制。

考虑厄尔利效应的ID表达式:
3.截止区和亚阈区
VGS〈>
4.击穿区
当VDS 增大到足以使漏区与衬底间PN结引发雪崩击穿时,ID迅速增加,管子进入击穿区。

四、P沟道EMOS场效应管
在N型衬底中扩散两个P+区,分别做为漏区和源区,并在两个P+之间的SiO2绝缘层上覆盖栅极金属层,就构成了P沟道EMOS管.
耗尽型MOS(DMOS)场效应管
N 沟道耗尽型MOS管的结构和符号如图3-5所示,它是在栅极下方的SiO2绝缘层中掺入了大量的金属正离子。

所以当VGS=0时,这些正离子已经感应出反型层,形成了沟道。

于是,只要有漏源电压,就有漏极电流存在。

当VGS>0时,将使ID进一步增加。

VGS<0时,随着VGS的减小漏极电流逐渐减小,直至ID=0。

对应ID=0的VGS称为夹断电压,用符号VGS(off)表示,有时也用VP表示。

N沟道耗尽型MOS管的转移特性曲线见图所示。

N沟道耗尽型MOS管的结构和转移特性曲线
P沟道MOS管的工作原理与N沟道MOSFET完全相同,只不过导电的载流子不同,供电电压极性不同而已.这如同双极型三极管有NPN型和PNP型一样。

相关文档
最新文档