电路基础原理简介电路的小信号模型和放大器设计

合集下载

电路原理第四版范承志

电路原理第四版范承志

电路原理第四版范承志电路原理是电子工程领域中的重要基础课程,对于电子电路的设计、分析和应用具有重要意义。

其中,《电路原理第四版》是一本由范承志编写的经典教材,本文将从该教材的内容出发,对电路原理进行总结和探讨。

第一章:电路基本概念电路是电子器件的组合,通过电流的流动实现各种功能。

电路中的元件包括电源、电阻、电容和电感等。

在电路中,电流和电压是基本的物理量,其关系可以通过欧姆定律、基尔霍夫定律等来描述和分析。

第二章:基本电路分析方法电路的分析方法包括基本的电压、电流分析方法以及戴维南定理、诺顿定理等。

通过这些方法,可以对电路进行简化和等效处理,从而更好地理解和分析电路的工作原理。

第三章:电路的定常状态分析电路的定常状态是指在电路中各元件参数不随时间变化的情况下,电路的稳定工作状态。

通过对电路的定常状态分析,可以得到电路的直流工作点和交流工作点,从而进一步分析电路的性能和特性。

第四章:电阻器电阻器是电路中最常用的元件之一,它可以用来限制电流、分压和做功等。

在电路中,电阻器的等效电路模型可以通过串并联等效法进行分析和计算。

第五章:电容器电容器是电路中用来存储和释放电荷的元件,具有充电和放电的特性。

在电路中,电容器的充放电过程可以通过RC电路模型进行分析和计算。

第六章:电感器电感器是电路中用来储存和释放磁场能量的元件,具有电磁感应的特性。

在电路中,电感器的充放电过程可以通过RL电路模型进行分析和计算。

第七章:电源与电源电路电源是电路中提供电能的装置,可以分为直流电源和交流电源。

电源电路是将输入电能转化为输出电能的电路,常见的电源电路有稳压电源、开关电源等。

第八章:二端网络二端网络是指由两个端口连接的电路,可以通过传输特定的电信号或频率来实现特定的功能。

常见的二端网络有放大器、滤波器、功率放大器等。

第九章:小信号分析小信号分析是指在电路中对于小幅度信号进行线性化处理和分析。

通过小信号分析,可以得到电路的频率响应和增益等重要性能指标。

电路与电子技术基础教学大纲

电路与电子技术基础教学大纲

电路与电子技术基础教学大纲一、课程概述本课程旨在帮助学生建立起基础的电路和电子技术知识体系,包括电路元件、电路定理、电路分析和电子器件等方面的内容。

课程内容具备一定的实践操作性,同时涉及到一定程度的数学理论知识。

本课程主要适用于电子工程、通信工程、自动化工程等专业的本科生。

二、课程目标2.1 知识目标•掌握电路基础知识,了解电路元件、基本电路定理和电路分析的方法;•熟悉电子元器件的相关知识,如二极管、三极管、场效应管等;•了解基本功率的计算方法和电路的稳态和瞬态分析;•了解一些常用信号的产生、处理和放大电路,并能具体实践。

2.2 能力目标•具有电路分析和解决电路问题的能力;•具有电子元器件的选型能力和电路设计能力;•具有基本的电路测试和测量能力;•具备独立进行电路设计和实验操作的能力。

2.3 态度目标•具有用规范性的方式表述电路分析和设计结果的态度;•具有对电路实验负责和安全维护保养的态度;•具有对电子行业发展趋势的了解和关注。

三、课程内容及分配3.1 电路基础•电路元件:电阻、电容、电感、电源、开关;•基本电路定理:欧姆定律、基尔霍夫定律、电压分压定律、电流分流定律;•电路分析方法:节点分析法、支路分析法、经验公式法。

3.2 电子器件•半导体二极管:硅二极管、锗二极管;•砷化镓(GaAs)二极管;•三极管:晶体管、场效应管、复合型三极管;•放大器设计:小信号模型、增益计算、负反馈。

3.3 电路功率•电路功率计算:电功率、电流功率、有功功率、无功功率;•电路的稳态分析:直流偏置电路、共射放大电路、共集电路;•电路的瞬态分析:单纯电阻电路、RC电路。

3.4 信号处理与放大电路•基础信号:正弦波、矩形波、三角波、脉冲信号;•信号处理电路:RC,RL,RCL等滤波电路;•信号放大电路:小信号放大电路、大信号放大电路。

3.5 实验操作•基本电路分析的实验;•半导体二极管实验;•晶体管工作实验;•信号放大电路的实验。

模拟电路放大电路基础PDF

模拟电路放大电路基础PDF

ic(βib)
icRC C2 υo
2.2.1 放大电路的静态分析
静态分析有计算法和图解分析法两种。
(1)静态工作状态的计算分析法 (2)静态工作状态的图解分析法
①静态工作状态的计算分析法
根据直流通道可对放大电路的静态进行计算
IB
=
V CC − V BE R
b
IC = β IB
V =V − I R
第二章 放大电路基础
2.1 放大电路的基本概念
2.1.1 放大的概念 2.1.2 放大电路的主要技术指标 2.1.3 基本放大电路的工作原理
2.2 基本放大电路的分析方法
2.2.1 放大电路的静态分析 2.2.2 放大电路的动态图解分析 2.2.3 三极管的低频小信号模型 2.2.4 共射组态基本放大电路微变等效
频段和高频段放大倍数都要下降。当A(f)下降
到中频电压放大倍数A0的 1/ 2 时,即
A( f ) = A( f ) = A0 ≈ 0.7 A
L
H
2
0
(02.0 6)
图 02.05 通频带的定义 相应的频率fL称为下限频率,fH称为上限频率。
fbw=fH-fL
通频带定义为上限频率与下限频率之差。 通频带越宽,表明放大电路对信号频率的适应能 力越强。
– 偏置电路VCC 、Rb——
– 耦合电容C1 、C2—— 输入耦合电容C1输出耦合电容C2
保作用是通交流隔直流。
当输入信号υi=0时,电 路工作在直流状态,也称静态。
三极管各参量用VBE 、IB 、 VCE 、IC表示。
当输入信号υi不等于零 时,电路工作在交直流状态, 此时三极管的瞬时各参量: 以上各量都由两部分组成,

放大电路基础

放大电路基础

3.3 放大电路的分析方法 3.3.1 放大电路的静态和动态
(1) 静态
当放大电路没有交流输入信号时,电路中各处的电 压和电流都是不变的直流,称为“直流工作状态”或 “静态”。 分析放大电路的“静态”,需要绘出电路的“直流 通路 ( 道 )” ,此时保留直流电源,去除交流输入信号 ( 交流电压源短路、交流电流源开路 ) ,耦合电容作开 路处理。
(2) 图解分析法
用图解法进行动态分析时需要进行的准备工作: 要有BJT管的输入和输出特性曲线; 对电路进行静态分析,在输出特性曲线
上确定静态工作点Q,并过Q点作出交流负 载线;
作出输入信号vi的波形图。
直线段 Q'Q" 是动态时工作点移动 的轨迹,称为动态工作范围
iC/mA
4 3 2 1 0
1 共射极放大电路的直流通路
固定偏流电路 和 VBB配合,在直 流静态时供给三极 管合适的基极电流
基极电流I B (常称作“偏流” ):
VBB VBE VBB 定值 IB = Rb Rb
(2) 动态
当放大电路有交流输入信号时,电路中各处 的电压和电流处于变动状态,称为“交流工作 状态”或“动态”。
放大电路 的工作点 进入截止 区,引起 截止失真 ( 对 NPN 管 输出波形 出现削顶 现象),其 原因是静 态工作点 选得过低
(2) 静态工作点的选取
如果输入信号的幅度较小,可 将静态工作点设低,以减少直 流电源功率损耗(此时iC低)。
设交流负载线分 别与饱和区、截 止区的分界线交 于 Q 1 、 Q 2 点,将 静态工作点选在 Q 1 、 Q 2 点的中间, 这样可以得到最 大不失真输出, 但这也需要输入 信号幅度较大, 以使iB电流达到一 定 幅 度

2模拟部分第2章放大电路的基本原理和分析方法-放大

2模拟部分第2章放大电路的基本原理和分析方法-放大
第2章 放大电路的基本原理 和分析方法
2.1 2.2 2.3 2.4 2.5
BJT
基本共射极放大电路 放大电路的分析方法 放大电路静态工作点的稳定问题 共集电极放大电路和共基极放大电路
2.2 基本共射极放大电路
2.2.0 放大电路概述
2.2.1 基本共射极放大电路的组成 2.2.2 基本共射极放大电路的工作原理

2.2.0 放大电路概述
ii
由于
RS
io
Ri
Ro
+
ui
+
uo

RL
RL uo = Au0ui RL Ro
us −
+

Au 0ui
+

Ri
直流电源
即 Ro越小,输出电压越稳定,电路带载能力越强。
2.2.0 放大电路概述
(4) 全谐波失真度D
D=
2 U n n =2
U1
即谐波电压总有效值与基波电压有效值之比。
RL
uo

使集电极有合适的电流IC
RC
转换集电极电流信号为电压信号, 实现电压放大
2.2.1 基本共射极放大电路的组成
(1)电路的简化 只用一个电源,减 少电源数。考虑经 济实用。 (2)电路的简化画法
RB
VCC
RC
ui


C1

T
C2

RL
uo

不画电源符号, 只写出电源正极 对地的电位。

(一)图解法在放大电路静态分析中的应用 1.输入回路 列写输入回路方程 VCC=IBRB+UBE
VCC
RB
IB

模拟电路第二章 放大电路基础

模拟电路第二章 放大电路基础

模拟电路第二章放大电路基础模拟电路第二章放大电路基础第2章放大电路基础2.1教学要求1、掌握放大电路的组成原理,熟练掌握放大电路直流通路、交流通路及交流等效电路的画法并能熟练判断放大电路的组成是否合理。

2、熟识理想情况下放大器的四种模型,并掌控增益、输入电阻、电阻值等各项性能指标的基本概念。

3、掌握放大电路的分析方法,特别是微变等效电路分析法。

4、掌控压缩电路三种基本组态(ce、cc、cb及cs、cd、cg)的性能特点。

5、介绍压缩电路的级间耦合方式,熟识多级压缩电路的分析方法。

2.2基本概念和内容要点2.2.1压缩电路的基本概念1、放大电路的组成原理无论何种类型的压缩电路,均由三大部分共同组成,例如图2.1右图。

第一部分就是具备压缩促进作用的半导体器件,例如三极管、场效应管,它就是整个电路的核心。

第二部分就是直流偏置电路,其促进作用就是确保半导体器件工作在压缩状态。

第三部分就是耦合电路,其促进作用就是将输出信号源和输入功率分别相连接至压缩管及的输出端的和输入端的。

(1)偏置电路①在分立元件电路中,常用的偏置方式存有压强偏置电路、自偏置电路等。

其中,分后甩偏置电路适用于于任何类型的放大器件;而自偏置电路只适合于用尽型场效应管(如jfet及dmos管)。

42输出信号耦合电路耦合电路输入功率t偏置电路外围电路图2.1下面详述偏置电路和耦合电路的特点。

②在集成电路中,广泛采用电流源偏置方式。

偏置电路除了为压缩管提供更多最合适的静态点(q)之外,还应当具备平衡q点的促进作用。

(2)耦合方式为了保证信号不失真地放大,放大器与信号源、放大器与负载、以及放大器的级与级之间的耦合方式必须保证交流信号正常传输,且尽量减小有用信号在传输过程中的损失。

实际电路有两种耦合方式。

①电容耦合,变压器耦合这种耦合方式具有隔直流的作用,故各级q点相互独立,互不影响,但不易集成,因此常用于分立元件放大器中。

②轻易耦合这是集成电路中广泛采用的一种耦合方式。

电路放大器原理

电路放大器原理

电路放大器原理
电路放大器是一种电子设备,用于将输入信号的幅度放大。

它基本上由一个放大器和若干个被放大器驱动的负载组成。

当输入信号通过放大器时,放大器会增大其电压或电流的幅度,从而使输出信号比输入信号更强。

这种放大的主要目的是为了增强信号以便在后续电路或设备中进行更细致的处理。

放大器的工作原理可以归结为增加信号的功率或幅度。

这是通过将输入信号与放大器电源连接在一起,然后通过放大器的放大机制来实现的。

通常,放大器包括一个输入端和一个输出端,输入端接收来自源的信号,并将其传递到放大器电路中。

放大器电路然后通过放大机制对信号进行处理,并将其输出到负载上。

在放大器中,通常使用一种叫做晶体管的半导体器件。

晶体管被用作放大器的关键元素,它可以控制电流的流动并放大输入信号。

晶体管具有不同的工作模式,包括共射极、共基极和共集极等。

这些模式使晶体管能够在输入和输出之间提供不同的增益和电流驱动能力。

放大器的增益通常由其电路设计和元件参数决定。

增益表示输出信号与输入信号之间的比率。

常见的放大器类型包括运放(操作放大器)、管子放大器和集成放大器等。

每种放大器都有其特定的应用范围和设计要求。

总而言之,电路放大器通过增加输入信号的幅度来提供信号放大。

它是各种电子设备和电路中必不可少的组成部分,其工作
原理基于晶体管等元件的放大机制。

通过增大信号幅度,电路放大器可以使信号更适合于进一步处理或传输。

三极管电路的小信号模型分析方法

三极管电路的小信号模型分析方法

参数的物理意义
极间电阻
描述三极管内部电阻,影响三极管的放大倍数和频率 响应。
极间电容
描述三极管内部电容,影响三极管的频率响应和稳定 性。
放大倍数
描述三极管放大能力的重要参数,影响三极管电路的 增益和稳定性。
参数的测量与计算
极间电阻的测量
通过测量三极管在不同工作点的电压和电流,利 用欧姆定律计算极间电阻。
详细描述
在共射极电路中,基极和集电极之间加上小信号电压,通过小信号模型分析可以得出输 入电阻、输出电阻和电压放大倍数等关键参数。输入电阻是指从基极输入端看进去的电 阻,输出电阻是指从集电极输出端看进去的电阻,电压放大倍数是指集电极电压与基极
电压之比。这些参数对于理解电路性能和设计具有重要意义。
共基极电路的小信号模型分析
THANKS FOR WATCHING
感谢您的观看
详细描述
在振荡器的小信号模型分析中,我们需要考虑三极管的交流等效电路,包括基 极和集电极的电阻、电感和电容。同时,我们还需要分析反馈网络的频率响应, 以确定振荡器的振荡频率和稳定性。
滤波器的小信号模型分析
总结词
滤波器的小信号模型分析主要关注三极管的频率响应和传递函数。
详细描述
在滤波器的小信号模型分析中,我们需要计算三极管的频率响应,即三极管在不同频率下的增益和相 位响应。同时,我们还需要分析滤波器的传递函数,以确定滤波器的类型(高通、低通、带通或带阻 )和性能参数(如截止频率、通带增益等)。
共集电极电路的小信号模型分析
总结词
共集电极电路是一种应用广泛的三极管电路,通过小信 号模型分析可以得出电压放大倍数、输入电阻和输出电 阻等关键参数。
详细描述
在共集电极电路中,集电极和发射极之间加上小信号电 压,通过小信号模型分析可以得出电压放大倍数、输入 电阻和输出电阻等关键参数。电压放大倍数是指发射极 电压与基极电压之比,输入电阻是指从发射极输入端看 进去的电阻,输出电阻是指从集电极输出端看进去的电 阻。这些参数对于理解电路性能和设计具有重要意义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路基础原理简介电路的小信号模型和放大
器设计
电路基础原理简介、电路的小信号模型和放大器设计
电路是电子技术的基础,也是现代社会中各种电子设备的基本组成部分。

了解电路的基础原理以及掌握电路的小信号模型和放大器设计是电子工程师的基本技能。

本文将简要介绍电路的基础原理,并重点讨论电路的小信号模型和放大器设计。

一、电路基础原理简介
电路是由电子元件(例如电阻、电感、电容)和电子器件(例如二极管、晶体管)组成的。

在电路中,电流和电压是最基本的物理量。

欧姆定律指出电流与电压之间的关系为I=V/R,其中I为电流,V为电压,R为电阻。

通过欧姆定律,我们能够计算电路中的电流和电压。

二、电路的小信号模型
电路的小信号模型是用于描述电路中小信号行为的模型。

在电路工程中,我们通常关注的是电路中微弱的变化,例如输入信号的微小变化引起的输出信号的微小变化。

因此,我们只需要考虑电路在直流工作点附近的小信号行为。

以晶体管为例,晶体管的小信号模型由三个参数描述:输入阻抗Zin、输出阻抗Zout和电流放大倍数β。

输入阻抗描述了输入信号与晶体管之间的阻抗匹配情况;输出阻抗描述了晶体管与负载之间的阻抗匹配情况;电流放大倍数描述了晶体管将输入信号放大多少倍。

三、放大器设计
放大器是电子器件,用于将输入信号放大。

它在电子设备中广泛应用,例如音频放大器、射频放大器等。

放大器的设计是电路工程中的
重要部分,它涉及到电路的稳定性、频率响应和失真等问题。

放大器设计的首要任务是选择适当的放大器类型。

常见的放大器类
型包括共射放大器、共基放大器和共集放大器。

这些放大器类型各有
特点,适用于不同的应用场景。

此外,放大器设计还需要考虑电路的稳定性。

电路的稳定性是指在
不产生自激或者发散的情况下,电路能够保持所需的功能。

为了提高
电路的稳定性,我们需要采取一系列措施,例如增加反馈电路、控制
增益等。

最后,放大器设计还需要考虑电路的频率响应和失真。

频率响应描
述了放大器在不同频率下的增益情况,失真则描述了输入信号经过放
大器后可能引起的波形畸变。

设计良好的放大器应该具备平坦的频率
响应和低的失真。

综上所述,电路基础原理的了解和掌握以及电路的小信号模型和放
大器设计是电子工程师的基本技能。

电子工程师需要了解电路的基本
原理,并能够建立电路的小信号模型以分析电路的性能。

在进行放大
器设计时,电子工程师需要考虑电路的稳定性、频率响应和失真等问题。

通过不断学习和实践,电子工程师可以不断提高电路设计的水平。

相关文档
最新文档