八年级上册全等三角形针对性练习(浙教版))
全等三角形的重难点模型(八大题型)(原卷版)—八年级数学上册(浙教版)

全等三角形的重难点模型(八大题型)【题型01:平移型】【题型02:翻折型】【题型03:旋转型】【题型04:一线三等角型(三类型)】【题型05:手拉手模型(四大类型)】【题型06:半角模型】【题型07:对角互补模型】【题型08:平行+线段中点构造全等模型】【题型1 平移型】【方法技巧】【典例1】如图,点E,C在线段BF上,AB=DE,BE=CF,AC=DF.(1)求证:△ABC≌△DEF;(2)若∠B=45°,∠F=85°,求∠A的度数.【变式1-1】如图、点B、E、C、F在一条直线上AB=DE,AC=DF,BE=CF.(1)求证:∠A=∠D;(2)求证:AC∥DF.【变式1-2】如图,在△ABC和△DEF中,边AC,DE交于点H,AB∥DE,AB=DE,BC=EF.(1)若∠B=55°,∠ACB=100°,求∠CHE的度数;(2)求证:△ABC≌△DEF.【变式1-3】如图,点B、E、C、F在同一直线上,∠A=∠D=90°,BE=CF,AC=DF.求证:∠B=∠DEF.【题型2 翻折型】【方法技巧】【典例2】如图,AB=AD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.【变式2-1】如图,已知∠1=∠2,∠C=∠D,求证:AC=BD【变式2-2】如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.【变式2-3】如图,AB=AC,BO=CO,求证:∠ADC=∠AEB.【题型3 旋转型】【方法技巧】【典例3】如图,在△ABC和△AEF中,点E在BC边上,∠C=∠F,AC=AF,∠CAF=∠BAE,EF与AC交于点G.(1)试说明:△ABC≌△AEF;(2)若∠B=55°,∠C=20°,求∠EAC的度数.【变式3-1】如图,点E在△ABC外部,点D在BC边上,若∠1=∠2,∠E=∠C,AE=AC,求证:AB=AD.【变式3-2】如图,点E在△ABC边AC上,AE=BC,BC∥AD,∠BAC=∠ADE.(1)求证:△ABC≌△DEA;(2)若∠CAD=30°,求∠BCD的度数.【变式3-3】如图,在△ABC中,点D是BC的中点,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.【变式3-4】如图,∠ABC=∠ADE,∠BAD=∠CAE,AC=AE,求证:△ABC≌△ADE.【题型4 一线三等角型】【方法技巧】模型一 一线三垂直如图一,∠D=∠BCA=∠E=90°,BC=AC 。
浙教版八年级数学《针对性训练》单元检测八年级上册第一章三角形的初步认识(1.4- -1.6) 单元练习卷

(第 9题 图)
翰 林 工 作 室 1:版 八年级数学 《针对性训练》单元检测 (二 )— 1共 4页
10.如 图,已 知长方形 ABCD的 边长 AB=16cm,BC=12cm,点 E在 边 AB上 , 沁 AE=6cm,如 果点 P从 点 B出 发在线段 BC上 以 2cm/s的 速度 向点 C向 运动 ,
A. 90°
B. 12o°
C. 135°
D. 180°
9.如 图 ,将 △ABC绕 点 C按 顺 时针 方 向旋 转 至 △A′ B′C,使 点 A′ 落 在 BC
C
的延长线上 .已 知 ZA=27° ,zB=40° ,则 ZACB′ 的度数 为 ( )
A,27°
B,4o°
c,46°
D,67°
c第 8题 图 )
14.∶如 图 ,oAˉ oB,oC=o0, Zo=60° , ZC=20° ,贝刂 ZOAD=_° .
15.如 图 ,在 ΔABC和 △DEF中 ,点 B,F,C,E在
同 一 直 线 上 ,BF=cE,AB∥ DE,请 添 加 一
个条件 ,使 ΔABC≌ △DEF,这 个添加 的条件可 以是
(只 需写一个 ,不 添加辅助线 ).
一△
.
一△
Ⅱ 矿
/ /F | ° |— ^'¨ .。
∷∷∷ 丿 |||
|涠|l
灏1
翰 林 工 作 室 1:版 八年级数学 《针对性训练》单元检测 (二 )— 2共 4页
20.(8分 )如 图,己 知 /1=Z2,/B=/D,求 证 :CB=CD.
审
d
21.(10分 )如 图 ,0是 线 段 AC、 DB的 交 点 ,且 AC=BD,AB=DC,小 华 认 为 图中的两个 三角
浙教版八年级上1.5《三角形全等的判定》同步练习题含答案

浙教版八年级数学上册第一章三角形初步认识1.5《三角形全等的判定》同步练习题一选择题1.如图,已知∠A=∠D,∠1=∠2,要利用“ASA”得到△ABC≌△DEF,还应给出的条件是(D) A.∠E=∠B B.ED=BCC.AB=EF D.AF=CD(第1题)(第2题)2.如图,一块玻璃碎成三片,现要去玻璃店配一块一模一样的玻璃,最省力的办法是带哪块去(C) A. ① B. ②C. ③D. ①②③3.在△ABC与△A1B1C1中,下列不能判定△ABC≌A1B1C1的是(B)A.AB=A1B1,BC=B1C1,∠B=∠B1B.AB=A1B1,AC=A1C1,∠C=∠C1C.∠B=∠B1,∠C=∠C1,BC=B1C1D.AB=A1B1,BC=B1C1,AC=A1C14.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是(B)(第4题)A.甲和乙B.乙和丙C.只有乙D.只有丙5.如图,已知BD⊥AC于点D,CE⊥A B于点E,BD=EC,则△ABD≌△ACE,其三角形全等的判定方法是(C)A. ASAB. SASC. AASD. 以上都不对(第5题)(第6题)6.如图,已知AC=FC,CE是∠ACF的平分线,则图中全等三角形有(D)A. 1对B. 2对C. 3对D. 4对7.如果两个三角形的两条边和其中一条边上的中线分别对应相等,那么这两个三角形第三边所对的角的关系是(A)A. 相等B. 互余C. 互补D. 以上答案都不正确(第8题)8.如图,点E在BC上,AB⊥BC于点B,DC⊥BC于点C,AB=BC,∠A=∠CBD,AE交BD 于点O,下列结论:①AE=BD;②△AOB的面积=四边形CDOE的面积;③AE⊥BD;④BE=CD.其中正确的结论有(D)A.1个B.2个C.3个D.4个二填空题9.如图,AD平分∠BAC,AB=AC,BF与CE交于点D,则图中有4对全等的三角形.(第9题)(第10题)10.如图,AD是△ABC的高线,∠BAD=∠ABD,DE=DC,∠ABE=15°,则∠C=60°.11.如图,已知AE=CE,∠B=∠D=∠AEC=90°,AB=3 cm,C D=2 cm,则△CDE和△A BE 的面积之和是6cm2.(第11题)12. 在△ABC和△DEF中,已知AB=4,∠A=35°,∠B=70°,DE=4,∠D=__35°__,∠E=70°,可以根据__ASA__判定△ABC≌△DEF.(第12题)13.如图,在△ABC中,AB=AC=10cm,DE是AB的中垂线,△BDC的周长为16 cm,则BC 的长为6 cm.14.如图,点B在AE上,且∠CAB=∠DAB,要使△ABC≌△ABD,可补充的一个条件是(写一个即可):AC=AD或∠C=∠D等.15.如图,在△ABC 中,∠C =90°,AD 是△ABC 的角平分线,BC =10,CD ∶BD =2∶3,则点D 到AB 的距离为4.三、解答题16.如图,在△ABC 中,∠B =∠C ,D ,E 分别在BC ,AC 边上,且∠1=∠B ,AD =DE ,求证:△ADB ≌△DEC.(第16题)【解】 ∵∠B +∠BAD =∠1+∠CDE , ∠B =∠1, ∴∠BAD =∠CDE. 在△ADB 和△DEC 中, ∵⎩⎪⎨⎪⎧∠BAD =∠CDE ,∠B =∠C ,AD =DE , ∴△ADB ≌△DEC(AAS).17.如图,在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于点D ,BE ⊥MN 于点E .(1)当直线MN 绕点C 旋转到图①的位置时,求证:DE =AD +BE ; (2)当直线MN 绕点C 旋转到图②的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到图③的位置时,试问:DE ,AD ,BE 具有怎样的等量关系?请直接写出这个等量关系.(第17题)【解】 (1)∵∠ACB =90°,∴∠ACD +∠ECB =90°. ∵AD ⊥MN ,BE ⊥MN ,∴∠AD C =∠BEC =90°. ∴∠DAC +∠ACD =90°,∴∠DAC =∠ECB . 在△ADC 和△CEB 中, ∵⎩⎪⎨⎪⎧∠DAC =∠ECB ,∠ADC =∠CEB ,AC =CB ,∴△ADC ≌△CEB (AAS ). ∴AD =CE ,DC =EB .∴DE =AD +B E .(2)同(1)证明,∠DAC =∠ECB . ∴△ADC ≌△CEB (AAS ). ∴AD =CE ,CD =BE .∵DE =CE -CD ,∴DE =AD -BE .(3)DE =BE -AD .(第18题)18.如图,BE ,CF 是△ABC 的两条高线,延长BE 到点P ,使BP =CA ,CF 与BE 交于点Q ,连结AQ ,且QC =AB.(1)猜想AQ 与AP 的大小关系,并说明理由; (2)按三角形内角判断△APQ 的类型,并说明理由. 【解】 (1)AQ =AP.理由如下: ∵BE ,CF 是△ABC 的两条高线, ∴BE ⊥AC ,CF ⊥AB , ∴∠ABP +∠BAC =90°, ∠QCA +∠BAC =90°, ∴∠ABP =∠QCA . 在△ABP 和△QCA 中, ∵⎩⎪⎨⎪⎧BP =CA ,∠ABP =∠QCA ,AB =QC , ∴△ABP ≌△QCA (SAS ), ∴AP =QA ,即AQ =AP . (2)△APQ 是等腰直角三角形.理由:∵△ABP ≌△QCA , ∴∠P =∠QAC .∵BP⊥AC,∴∠P+∠P AE=90°,∴∠QAC+∠P AE=90°.∴∠QAP=90°.又∵AQ=AP,∴△APQ是等腰直角三角形.。
2019秋浙教版八年级上册数学同步测试题:1.5三角形全等的判定【含答案】

1.5三角形全等的判定第1课时“边边边”知识点1.三角形全等的判定(SSS)1.如图1所示,如果AB=A′B′,BC=B′C′,AC=A′C′,则下列结论正确的是(A)图1A.△ABC≌△A′B′C′B.△ABC≌△C′A′B′C.△ABC≌△B′C′A′D.这两个三角形不全等2.下列三角形中,与图2中△ABC全等的是__③__.3.如图3所示,AD=BC,AC=BD,用三角形全等的判定“SSS”可证明__△ADC__≌__△BCD__或__△ABD__≌__△BAC__.图3知识点2.三角形的稳定性4.[2018春·泉港区期末]如图4,人字梯中间一般会设计一“拉杆”,这样做的道理是(C)图4A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等知识点3.三角形全等的判定与性质的综合5.在△ABC和△A1B1C1中,AB=A1B1,BC=B1C1,AC=A1C1,且∠A=110°,∠B=40°,则∠C1=(C)A.110°B.40°C.30°D.20°6.如图5所示,在△ABC和△DBC中,已知AB=DB,AC=DC,则下列结论中错误的是(D)图5A.△ABC≌△DBCB.∠A=∠DC.BC是∠ACD的平分线D.∠A=∠BCD7.如图6,在四边形ABCD中,AB=CD,AD=CB,连结AC,求证:∠ACD =∠CAB.图6证明:在△ADC 与△CBA 中,⎩⎨⎧CD =AB ,AD =CB ,AC =CA ,∴△ADC ≌△CBA (SSS ),∴∠ACD =∠CAB .8.雨伞的截面如图7所示,伞骨AB =AC ,支撑杆OE =OF ,AE =13AB ,AF =13AC ,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭的过程中,∠BAD 与∠CAD 有何关系?请说明理由.图7解:∠BAD =∠CAD .理由:∵AB =AC ,AE =13AB ,AF =13AC ,∴AE =AF .在△AOE 和AOF 中,⎩⎨⎧AO =AO ,AE =AF ,OE =OF ,∴△AOE ≌△AOF (SSS ),∴∠EAO =∠F AO ,即∠BAD =∠CAD . 知识点4.尺规作角平分线9.[2018春·历城区期末]如图8,作∠AOB 的角平分线的作图过程如下,作法:图8(1)在OA和OB上,分别截取OD,OE,使OD=OE;(2)分别以D,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于点C;(3)作射线OC,OC就是∠AOB的平分线.用三角形全等判定法则解释其作图原理,最为恰当的是__SSS__.【易错点】证明两个三角形全等时,对于有公共部分的角或线段,错把不是对应的边或角当成三角形的对应边或对应角.10.如图9,AB=AC,AD=AE,BE=CD,∠2=110°,∠BAE=60°,下列结论错误的是(C)图9A.△ABE≌△ACDB.△ABD≌△ACEC.∠ACE=30°D.∠1=70°第2课时“边角边”与线段的垂直平分线的性质知识点1.三角形全等的判定(SAS)1.如图1中全等的三角形是(D)①②③④图1A.①和②B.②和③C.②和④D.①和③2.如图2所示,在△ABD和△ACE中,AB=AC,AD=AE,要证△ABD≌△ACE,需补充的条件是(C)A.∠B=∠C B.∠D=∠EC.∠DAE=∠BAC D.∠CAD=∠DAC图2 图33.如图3,在四边形ABCD中,AB=AD,CB=CD,若连结AC,BD相交于点O,则图中全等三角形共有(C)A.1对B.2对C.3对D.4对4.已知:如图4,OA=OB,OC平分∠AOB,求证:△AOC≌△BOC.图4证明:∵OC 平分∠AOB , ∴∠AOC =∠BOC . 在△AOC 和△BOC 中,⎩⎨⎧OA =OB ,∠AOC =∠BOC ,OC =OC ,∴△AOC ≌△BOC (SAS ).知识点2.利用“SAS ”判定三角形全等证明线段或角相等5.如图5,在△ABC 和△ABD 中,AC 与BD 相交于点E ,AD =BC ,∠DAB =∠CBA ,求证:AC =BD .图5证明:在△ADB 和△BCA 中,⎩⎨⎧AD =BC ,∠DAB =∠CBA ,AB =BA ,∴△ADB ≌△BCA (SAS ),∴AC =BD .6.如图6,在△ABC 中,已知AB =AC ,AD 平分∠BAC ,点M ,N 分别在AB ,AC 边上,AM =2MB ,AN =2NC .求证:DM =DN .图6证明:∵AM =2MB ,∴AM =23AB ,同理,AN =23AC , 又∵AB =AC ,∴AM =AN . ∵AD 平分∠BAC , ∴∠MAD =∠NAD .在△AMD 和△AND 中,⎩⎨⎧AM =AN ,∠MAD =∠NAD ,AD =AD ,∴△AMD ≌△AND ,∴DM =DN .知识点3.利用“SAS ”判定三角形全等来解决实际问题7.如图7所示,有一块三角形镜子,小明不小心将它打破成Ⅰ,Ⅱ两块,现需配成同样大小的一块.为了方便起见,需带上__Ⅰ__块,其理由是__两边及其夹角分别相等的两个三角形全等__.图7知识点4.线段的垂直平分线的性质8.[2017秋·浉河区期末]如图8,DE 是△ABC 中AC 边的垂直平分线,若BC =8,AB =10,则△EBC 的周长是( C ) A .13B .16C .18D .20【解析】 ∵DE 是△ABC 中AC 边的垂直平分线,∴EA =EC ,∴△EBC 的周长=BC +BE +EC =BC +BE +EA =BC +BA =18.图8 图99.如图9,在△ABC中,AB=AC=20 cm,DE垂直平分AB,垂足为E,交AC 于D,若△DBC的周长为35 cm,则BC的长为(C)A.5 cm B.10 cmC.15 cm D.17.5 cm【解析】∵△DBC的周长=BC+BD+CD=35 cm,又∵DE垂直平分AB,∴AD=BD,∴BC+AD+CD=35 cm,∵AC=AD+DC=20 cm,∴BC=35-20=15 cm.【易错点】“SSA”不能判定两个三角形全等.10.下列条件能够判断△ABC与△A′B′C全等的是(D)A.∠A=∠A′B.AB=A′B′,∠B=∠B′,AC=A′C′C.AB=A′B′,AC=A′C′D.AB=A′B′,∠A=∠A′,AC=A′C′【解析】A.已知条件为一组对应角相等,不符合全等三角形的判定定理,无法证明两个三角形全等,故此选项错误;B.已知条件为边边角,不符合全等三角形的判定定理,无法证明两个三角形全等,故此选项错误;C.已知条件为两条边对应相等,不符合全等三角形的判定定理,无法证明两个三角形全等,故此选项错误;D.由边角边定理可证两个三角形全等,故此选项正确.第3课时“角边角”知识点三角形全等的判定(ASA)1.如图1,已知△ABC三条边、三个角,则甲、乙两个三角形中和△ABC全等的图形是(B)图1A.甲B.乙C.甲和乙都是D.都不是2.如图2所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是__ASA__.图23.如图3,∠1=∠2,∠3=∠4,求证:AC=AD.图3证明:∵∠3=∠4,∴∠ABC=∠ABD.在△ABC和△ABD中,⎩⎨⎧∠1=∠2,AB =AB ,∠ABC =∠ABD ,∴△ABC ≌△ABD (ASA ),∴AC =AD .4.[2018秋·延庆区期中]如图4,AB =AC ,点D ,E 分别在AB ,AC 上,CD ,BE 交于点F ,且∠B =∠C .求证:△ABE ≌△ACD .图4证明:在△ABE 与△ACD 中,⎩⎨⎧∠A =∠A ,AB =AC ,∠B =∠C ,∴△ABE ≌△ACD (ASA ).5.[2018秋·金坛区期中]如图5,在△ABC 和△ADE 中,AB =AD ,∠B =∠D ,∠1=∠2.求证:△ABC ≌△ADE .图5证明:∵∠1=∠2,∴∠DAC +∠1=∠2+∠DAC , ∴∠BAC =∠DAE ,在△ABC 和△ADE 中,⎩⎨⎧∠B =∠D ,AB =AD ,∠BAC =∠DAE ,∴△ABC ≌△ADE (ASA ).【易错点】错用判定三角形全等的判定方法.6.已知:如图6,∠AOD =∠BOC ,∠A =∠C ,O 是AC 的中点.求证:△AOB ≌△COD .图6证明:∵∠AOD =∠BOC ,∴∠AOD +∠DOB =∠BOC +∠BOD , 即∠AOB =∠COD ,∵O 是AC 的中点,∴AO =CO ,在△AOB 与△COD 中,⎩⎨⎧∠A =∠C ,AO =CO ,∠AOB =∠COD ,∴△AOB ≌△COD .第4课时 “角角边”与角平分线的性质知识点1.三角形全等的判定(AAS )1.如图1,AB =AE ,∠1=∠2,∠C =∠D .求证:△ABC ≌△AED .图1证明:∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC ,即∠BAC =∠EAD . 又∵∠C =∠D ,AB =AE ,∴△ABC ≌△AED (AAS ).2.如图2,已知:在△AFD 和△CEB 中,点A ,E ,F ,C 在同一直线上,AE =CF ,∠B =∠D ,AD ∥BC .求证:AD =BC .图2证明:∵AE =CF ,∴AF =CE . ∵AD ∥BC ,∴∠A =∠C . 在△AFD 和△CEB 中,⎩⎨⎧∠A =∠C ,∠B =∠D ,AF =CE ,∴△AFD ≌△CEB (AAS ),∴AD =BC . 知识点2.三角形全等判定方法的选用3.如图3,已知∠ABC =∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是( A )A .AC =BDB .∠CAB =∠DBAC .∠C =∠DD .BC =AD图3图44.如图4所示,在△ABC 中,∠B =∠C ,D 为BC 边的中点,过点D 分别向AB ,AC 作垂线段,则能够说明△BDE ≌△CDF 的理由是( D ) A .SSSB .SASC .ASAD .AAS知识点3.角平分线的性质5.如图5,OC 是∠AOB 的平分线,P 是OC 上一点,PD ⊥OA 于点D ,PD =6,则点P 到边OB 的距离为( A )图5A .6B .5C .4D .36.[2019·辽阳模拟]如图6,BD 平分∠ABC ,DE ⊥BC 于点E ,AB =7,DE =4,则S △ABD =( C ) A .28 B .21 C .14D .7图6第6题答图【解析】 如答图,作DH ⊥BA 于H .∵BD 平分∠ABC ,DE ⊥BC ,DH ⊥AB , ∴DH =DE =4,∴S △ABD =12×7×4=14,故选C.7.如图7,已知BD 为∠ABC 的平分线,AB =BC ,点P 在BD 上,PM ⊥AD 于M ,PN ⊥CD 于N ,求证:PM =PN .图7证明:∵BD 为∠ABC 的平分线, ∴∠ABD =∠CBD , 在△ABD 和△CBD 中,⎩⎨⎧AB =CB ,∠ABD =∠CBD ,BD =BD ,∴△ABD ≌△CBD (SAS ),∴∠ADB =∠CDB , ∵点P 在BD 上,且PM ⊥AD ,PN ⊥CD ,∴PM =PN .【易错点】对于全等三角形开放性问题,常常不能正确选用判定方法. 8. 如图8,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,这个条件是( D )图8A .∠A =∠DB .BC =EF C .∠ACB =∠FD .AC =DF【解析】 ∵∠B =∠DEF ,AB =DE ,∴添加∠A =∠D ,利用ASA 可得△ABC ≌△DEF ;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;添加AC=DF不能证明△ABC≌△DEF,故选D.。
三角形全等几何模型(一线三等角)(精选精练)(专项练习)(教师版) 24-2025学年八年级数学上册

专题12.12三角形全等几何模型(一线三等角)(精选精练)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.(22-23七年级下·辽宁朝阳·期末)王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ∠=︒),点C 在DE 上,点A 和B 分别与木墙的顶端重合.则两堵木墙之间的距离DE 是()A .10cmB .15cmC .20cmD .25cm2.如图所示,,,B C E 三点在同一条直线上,AC CD =,90B E ∠=∠=︒,AC CD ⊥,则下列结论错误的是()A .A ∠与D ∠互余B .2A ∠=∠C .ABC CED △≌△D .12∠=∠3.如下图所示,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D .DE=6cm ,AD=9cm ,则BE 的长是()A .6cmB .1.5cmC .3cmD .4.5cm4.(23-24八年级上·重庆开州·阶段练习)如图,在平面直角坐标系中,ABC 为等腰直角三角形,90,ACB AC BC ∠=︒=.点()0,1B -,点()1,1C .则点A 坐标为()A .()1,3-B .()3,1-C .()2,1-D .()1,2-5.(22-23七年级下·广东深圳·期末)小丽与爸妈在公园里荡秋千.如图,小丽坐在秋千的起始位置A 处,OA 与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA 的水平距离BD 、CE 分别为1.4m 和1.8m ,90BOC ∠=︒.爸爸在C 处接住小丽时,小丽距离地面的高度是()A .1mB .1.6mC .1.8mD .1.4m6.(22-23八年级上·山东青岛·单元测试)2002年8月在北京召开的第24届国际数学家大会,会标中的图案如图,其中的四边形ABCD 和EFGH 都是正方形,则ABF DAE ≌的理由是().A .SSSB .AASC .SASD .HL7.(23-24八年级上·河北唐山·期中)如图,在ABC 和CDE 中,点B ,C ,E 在同一条直线上,B E ACD ∠∠∠==,AC CD =,若2AB =,6BE =,则DE 的长为()A .8B .6C .4D .28.(2024·山西吕梁·一模)如图,在平面直角坐标系中,点()0,2A 处有一激光发射器,激光照射到点()1,0B 处倾斜的平面镜上发生反射,使得反射光线照射到点C 处的接收器上,若入射角45α=︒,AB BC =,则点C 处的接收器到y 轴的距离为()A .1B .2C .3D .49.(17-18八年级上·河南郑州·期中)如图中,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,若点E 、B 、D 到直线AC 的距离分别为6、3、2,则图中实线所围成的阴影部分面积S 是()A .50B .44C .38D .3210.(22-23八年级下·新疆乌鲁木齐·期末)如图,AB CD ⊥,且AB CD =,E ,F 是AD 上两点,CE AD ⊥,BF AD ⊥.若4CE =,3BF =,2EF =,则AD 的长为()A .3B .5C .6D .7二、填空题(本大题共8小题,每小题4分,共32分)11.(21-22八年级上·山西吕梁·期中)如图,一个等腰直角三角形ABC 物件斜靠在墙角处(∠O =90°),若OA =50cm ,OB =28cm ,则点C 离地面的距离是cm .12.(20-21八年级上·黑龙江·期中)如图,在平面直角坐标系内,OA ⊥OC ,OA=OC ,若点A 的坐标为(4,1),则点C 的坐标为13.(2022·四川成都·二模)如图所示,ABC 中,,90AB AC BAC =∠=︒.直线l 经过点A ,过点B 作BE l ⊥于点E ,过点C 作CF l ⊥于点F .若2,5==BE CF ,则EF =.14.(19-20八年级上·江苏苏州·期中)如图,△ABC 中,∠C =90°,点D 为AC 上一点,∠ABD =2∠BAC =45°,若AD =12,则△ABD 的面积为.15.(23-24八年级上·江苏无锡·期中)如图,两根旗杆间相距12米,某人从点B 沿BA 走向点A ,一段时间后他到达点M ,此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90︒,且CM DM =.已知旗杆BD 的高为9米,该人的运动速度为1米/秒,则这个人运动到点M 所用时间是秒.16.(23-24八年级上·辽宁大连·期末)如图,在ABC 中,90ACB ∠= ,CD 为AB 边上的高,3BC =,6AC =,点E 从点B 出发,在直线BC 上以每秒2cm 的速度移动,过点E 作BC 的垂线交直线CD 于点F ,当点E 运动s 时,AB CF =.17.(19-20八年级上·江苏连云港·阶段练习)如图,线段AB =8cm ,射线AN ⊥AB ,垂足为点A ,点C 是射线上一动点,分别以AC ,BC 为直角边作等腰直角三角形,得△ACD 与△BCE ,连接DE 交射线AN 于点M ,则CM 的长为.18.(22-23七年级下·四川成都·期末)在ABC 中,AB AC =,90BAC ∠<︒,点D 在边BC 上,2CD BD =,点E ,F 在线段AD 上,BED CFD BAC ∠=∠=∠.若ABC 的面积为9,则ABE CDF S S += .三、解答题(本大题共6小题,共58分)19.(8分)如图,在ABC 中,90ACB ∠=︒,AC BC =,BE CE ⊥,于点E AD CE ⊥,于点D .BEC 与CDA 全等吗?请说明理由.20.(8分)如图,90ABC ∠=︒,FA AB ⊥于点A ,D 是线段AB 上的点,AD BC =,AF BD =.(1)判断DF 与DC 的数量关系为,位置关系为.(2)如图2,若点D 在线段AB 的延长线上,点F 在点A 的左侧,其他条件不变,试说明(1)中结论是否成立,并说明理由.21.(10分)如图,在ABC 中,AB BC =.(1)如图1,直线NM 过点B ,AM MN ⊥于点M ,⊥CN MN 于点N ,且90ABC ∠=︒,求证:MN AM CN =+.(2)如图2,直线NM 过点B ,AM 交NM 于点M ,CN 交NM 于点N ,且AMB ABC BNC ∠=∠=∠,则MN AM CN =+是否成立?请说明理由!22.(10分)如图,在ABC 中,2AB AC ==,40B C ∠=∠=︒,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于E .(1)当115BDA ∠=︒时,EDC ∠=°,DEC ∠=°;点D 从B 向C 运动时,BDA ∠逐渐变(填“大”或“小”);(2)当DC 等于多少时,ABD DCE △△≌,请说明理由;(3)在点D 的运动过程中,ADE V 的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数.若不可以,请说明理由.23.(10分)(23-24八年级上·重庆江津·期末)通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图,90ACE ∠=︒,AC CE =,过点A 作AB BC ⊥于点B ,过点E 作ED BC ⊥交BC 的延长线于点D .由90ACB DCE DCE E ∠+∠=∠+∠=︒,得CAB E ∠=∠.又90ABC CDE ∠=∠=︒,AC CE =,可以推理得到ABC CDE △△≌,进而得到AB =______,BC =______.(请完成填空)我们把这个数学模型称为“K 字”模型或“一线三等角”模型.【模型应用】(2)①如图,90ACE BCD ∠=∠=︒,AC CE =,BC CD =,连接AB 、DE ,且DE CG ⊥于点G ,AB 与直线CG 交于点F ,求证:点F 是AB 的中点;②如图,若点M 为x 轴上一动点,点N 为y 轴上一动点,点P 的坐标为()51,,是否存在以M 、N 、P 为顶点且以PM 为斜边的三角形为等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.24.(12分)(22-23八年级上·江苏南京·阶段练习)已知,在ABC 中,AB AC =,D A E ,,三点都在直线m 上,且9DE cm BDA AEC BAC =∠=∠=∠,.(1)如图①,若AB AC ⊥,则BD 与AE 的数量关系为___________,CE 与AD 的数量关系为___________;(2)如图②,判断并说明线段BD ,CE 与DE 的数量关系;(3)如图③,若只保持7BDA AEC BD EF cm ∠=∠==,,点A 在线段DE 上以2cm/s 的速度由点D 向点E 运动,同时,点C 在线段EF 上以cm /s x 的速度由点E 向点F 运动,它们运动的时间为s t ().是否存在x ,使得ABD △与EAC 全等?若存在,求出相应的t 的值;若不存在,请说明理由.参考答案:1.C【分析】由题意易得90ADC CEB ∠=∠=︒,则有BCE DAC ∠=∠,进而可证ADC CEB ∆∆≌,然后根据全等三角形的性质求解即可.【详解】解:∵AC BC =,90ACB ∠=︒,AD DE ⊥,BE DE ⊥,∴90ADC CEB ∠=∠=︒,∴90ACD BCE ∠+∠=︒,90ACD DAC ∠+∠=︒,∴BCE DAC ∠=∠,∵在ADC ∆和CEB ∆中,ADC CEB DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADC CEB ∆∆≌;∴6cm EC AD ==,14cm DC BE ==,∴20(cm)DE DC CE =+=,故选C .【点拨】本题主要考查全等三角形的性质与判定,熟练掌握三角形全等的判定条件是解题的关键.2.D【分析】利用同角的余角相等求出2A ∠=∠,再利用“角角边”证明ABC 和CED 全等,根据全等三角形对应边相等,对应角相等,即可解答.【详解】∵90B E ∠=∠=︒,∴190A ∠+∠=︒,290D ∠+∠=︒,∵AC CD ⊥,∴1290∠+∠=︒,故D 错误;∴2A ∠=∠,故B 正确;∴90A D ∠+∠=︒,故A 正确;在ABC 和CED 中,2A B E AC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABC CED ≅ ,故C 正确;故选: D .【点拨】本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法并确定出全等的条件2A ∠=∠是解题的关键.3.C【分析】本题可通过全等三角形来求BE 的长.△BEC 和△CDA 中,已知了一组直角,∠CBE 和∠ACD 同为∠BCE 的余角,AC=BC ,可据此判定两三角形全等;那么可得出的条件为CE=AD ,BE=CD ,因此只需求出CD 的长即可.而CD 的长可根据CE 即AD 的长和DE 的长得出,由此可得解.【详解】解:∵∠ACB=90°,BE ⊥CE ,∴∠BCE+∠ACD=90°,∠BCE+∠CBE=90°;∴∠ACD=∠CBE ,又AC=BC ,∴△ACD ≌△CBE ;∴EC=AD ,BE=DC ;∵DE=6cm ,AD=9cm ,则BE 的长是3cm .故选C .【点拨】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.4.D【分析】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.过C 作直线l y ∥轴,过B 作BE l ⊥于E ,过A 作AD l ⊥于D ,于是得到90ADC ACB BEC ∠=∠=∠=︒,得到CAD BCE ∠=∠,根据全等三角形的性质得到,AD CE CD BE ==,根据点()0,1B -,点()1,1C ,得到1,112BE CD AD CE ====+=,于是得到结论.【详解】解:过C 作直线l y ∥轴,过B 作BE l ⊥于E ,过A 作AD l ⊥于D ,∴90ADC ACB BEC ∠=∠=∠=︒,∴90DAC ACD ACD BCE ∠+∠=∠+∠=︒,∴CAD BCE ∠=∠,在ACD 与CBE △中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ACD CBE ≌,∴,AD CE CD BE ==,∵点()0,1B -,点()1,1C ,∴1,112BE CD AD CE ====+=,∴()1,2A -.故选:D .5.D【分析】利用全等三角形判定()AAS ,证得OBD 与COE 全等,根据全等三角形性质可求出OE 和OD 的值,进而求出OA 的值,最后根据OA OE AE -=,即可求出问题答案.【详解】解:90BOC ∠=︒ ,90BOD COE ∴∠+∠=︒,90BDO ∠=︒ ,90CEO ∠=︒,90BOD OBD ∴∠+∠=︒,90COE OCE ∠+∠=︒,COE OBD ∴∠=∠,BOD OCE ∠=∠,又OB CO = ,()OBD COE AAS ∴≅ ,1.4m OE BD ∴==, 1.8m OD CE ==,1.8m 1m 1.4m 1.4m AE OA OE OD DA OE ∴=-=+-=+-=.故选:D .【点拨】本题考查了利用三角形全等测距离的问题,理解题意及熟知三角形的性质与判定是解题关键.6.B【分析】由正方形的性质知,AB DA =,由同角的余角相等知,BAF ADE ∠=∠,又有90AFB DEA ∠=∠=︒,故根据AAS 证得ABF DAE ≌.【详解】证明:∵四边形ABCD是正方形,∴90AB DA BAF DAE =∠+∠=︒,,∵90ADE DAE ∠+∠=︒,∵BAF ADE ∠=∠,在ABF △与DAE 中,BAF ADE AFB AED AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABF DAE ≌△△.故选:B .【点拨】本题利用了正方形的性质,同角的余角相等,全等三角形的判定,学生要以常用的几种判定方法掌握并灵活运用.7.C【分析】本题考查了三角形全等的判定与性质,根据三角形内角和定理,证明()AAS ABC CED ≌ ,由DE BC BE AB ==-即可求出结果.【详解】解:180B ACB BAC ∠+∠+∠=︒ ,B E ACD ∠∠∠==,180ACD ACB BAC ∴∠+∠+∠=︒,180ACD ACB DCE ∠+∠+∠=︒,BAC DCE ∴∠=∠,在ABC 和CED △中,BAC DCE B E AC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABC CED ≌ ,,BC DE AB CE ∴==,2AB =,6BE =,∴624DE BC BE CE BE AB ==-=-=-=,故选:C .8.C【分析】本题主要考查坐标与图形,全等三角形的判定与性质,过点C 作CM x ⊥轴于点M ,证明ABO BCM ≌V V 得出2BM OA ==,进一步得出3OM =即可【详解】解:过点C 作CM x ⊥轴于点M ,如图,则90,CBM BCM ∠+∠=︒根据题意得90,ABC ∠=︒∴90,ABO CBM ∠+∠=︒∴,ABO BCM ∠=∠又,90,AB BC AOB BMC =∠=∠=︒∴,AOB BMC ≌V V ∴2,BVM AB ==∴123,OM OB BM =+=+=即点C 处的接收器到y 轴的距离为3,故选:C9.D【分析】由已知和图形根据“K ”字形全等,用AAS 可证△FEA ≌△MAB ,△DHC ≌△CMB ,推出AM =EF =6,AF =BM =3,CM =DH =2,BM =CH =3,从而得出FH =14,根据阴影部分的面积=S 梯形EFHD -S △EF A -S △ABC -S △DHC 和面积公式代入求出即可.【详解】∵AE ⊥AB ,EF ⊥AF ,BM ⊥AM,∴∠F =∠AMB =∠EAB =90°,∴∠FEA +∠EAF =90°,∠EAF +∠BAM =90°,∴∠FEA =∠BAM ,在△FEA 和△MAB 中F BMA FEA BAM AE AB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△FEA ≌△MAB (AAS ),∴AM =EF =6,AF =BM =3,同理CM =DH =2,BM =CH =3,∴FH =3+6+2+3=14,∴梯形EFHD 的面积=12EF DH FH + ()=126241⨯+⨯()=56,∴阴影部分的面积=S 梯形EFHD -S △EF A -S △ABC -S △DHC =11566322183322-⨯⨯-⨯⨯-⨯⨯=32.故选D .【点拨】本题考查了三角形的面积,梯形的面积,全等三角形的性质和判定等知识点,关键是把不规则图形的面积转化成规则图形的面积.10.B【分析】本题考查全等三角形的判定和性质.正确掌握相关性质内容是解题的关键.由AB CD ⊥可得90A D ∠+∠=︒,由CE AD ⊥,BF AD ⊥可得90CED AFB ∠=∠=︒,A B ∠∠=︒+90,从而B D ∠=∠,进而证得()AAS ABF CDE ≌,可得4AF CE ==,3BF DE ==,推出()AD AF DF AF DE EF =+=+-,代入数据即可解答.【详解】∵AB CD ⊥,∴90A D ∠+∠=︒,∵CE AD ⊥,BF AD ⊥,∴90CED AFB ∠=∠=︒,∴1801809090A B AFB ∠+∠=︒-∠=︒-︒=︒,∴B D ∠=∠,∵AB CD =,∴()AAS ABF CDE ≌,∴4AF CE ==,3BF DE ==,∴()()4325AD AF DF AF DE EF =+=+-=+-=.故选:B11.28【分析】作CD ⊥OB 于点D ,依据AAS 证明D AOB B C ∆≅∆,GMF ,再根据全等三角形的性质即可得到结论.【详解】解:过点C 作CD ⊥OB 于点D,如图,∴90CDB AOB ∠=∠=︒∵ABC ∆是等腰直角三角形∴AB =CB ,90ABC ∠=︒∴90ABO CBD ∠+∠=︒又90CBD BCD ∠+∠=︒∴ABO BCD∠=∠在ABO ∆和BCD ∆中,AOB BDC ABO BCD AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ABO BCD AAS ∆≅∆∴28cmCD BO ==故答案为:28.【点拨】本题主要考查了等腰直角三角形的性质、三角形全等的判定与性质,正确作出辅助线构造全等三角形是解答本题的关键.12.(-1,4)【分析】过点A 和点C 作x 轴的垂线,垂足为D ,E ,证明△COE ≌△OAD ,得到OE=AD ,CE=OD ,再根据点A 的坐标可得结果.【详解】解:过点A 和点C 作x 轴的垂线,垂足为D ,E ,∵∠AOC=90°,∴∠COE+∠AOD=90°,又∠CEO=90°,则∠COE+∠OCE=90°,∴∠OCE=∠AOD ,在△COE 与△OAD 中,OCE AOD CEO ODA OC OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COE ≌△OAD (AAS ),∴OE=AD ,CE=OD ,∵点A 的坐标为(4,1),∴OD=4,AD=1,∴CE=OD=4,OE=AD=1,∴点C 的坐标为(-1,4),故答案为:(-1,4).【点拨】本题考查了全等三角形的判定和性质,坐标与图形,解题的关键是利用已知条件,作出辅助线,证明全等.13.7【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【详解】解:∵BE ⊥l ,CF ⊥l ,∴∠AEB =∠CFA =90°.∴∠EAB +∠EBA =90°.又∵∠BAC =90°,∴∠EAB +∠CAF =90°.∴∠EBA =∠CAF .在△AEB 和△CFA 中∵∠AEB =∠CFA ,∠EBA =∠CAF ,AB =AC ,∴△AEB ≌△CFA .∴AE =CF ,BE =AF .∴AE +AF =BE +CF .∴EF =BE +CF .∵2,5==BE CF ,∴257EF =+=;故答案为:7.【点拨】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是熟练掌握所学的知识,正确的证明三角形全等.14.36.【分析】作DE ⊥DB 交AB 于E ,EF 垂直AC 于F ,则∠DEB =90°-∠ABD =45°,证出AE =DE =DB ,通过证明△AEF ≌△BCD ,得出BC ==AF=12AD=6,由三角形面积公式即可得出答案.【详解】作DE ⊥DB 交AB 于E ,EF 垂直AC 于F ,如图所示:则∠DEB =90°-∠ABD =45°,∴△BDE 是等腰直角三角形,∴DB =DE ,∵∠ABD =2∠BAC =45°,∴∠BAC =22.5°,∴∠ADE =∠DEB -∠BAC =22.5°=∠BAC ,∴AE =DE =DB ,∵∠AFE=90°,∴F 是AD 中点,AF=FD ,又∵∠C=90°,∴∠CBD=90°-45°-22.5°=22.5°,在Rt △AEF 和Rt △BCD 中A CBD AFE BCD AE BD =⎧⎪=⎨⎪=⎩∠∠∠∠∴Rt △AEF ≌Rt △BCD (AAS ),∴AF=BC=12AD=6,∴△ABD 的面积S=12AD ×BC =12×12×6=36;故答案为:36.【点拨】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,三角形面积公式的的计算,熟记特殊三角形的判定和性质定理是解题关键.15.3【分析】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件,对应角相等,并巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题的关键是求得ACM BMD ≌.【详解】解:∵90CMD ∠=︒,∴90CMA DMB +=︒∠∠,又∵90CAM ∠=︒,∴90CMA C ︒∠+∠=,∴C DMB ∠=∠,在ACM 和BMD 中,A B C DMB CM MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ACM BMD ≌,∴9BD AM ==米,1293BM =-=(米),∵该人的运动速度1米/秒,他到达点M 时,运动时间为313÷=(秒).故答案为:3.16.1.5或4.5【分析】本题考查了全等三角形的判定和性质,直角三角形的性质,分①当点E 在射线BC 上移动时,639BE CE BC ''=+=+=,②当点E 在射线CB 上移动时,()633cm BE AC BC =-=-=,熟练正确全等三角形的判定和性质是解题的关键.【详解】解:∵EF BC ⊥,∴90CEF ACB ∠=︒=∠,在CEF △和ACB △中,ECF A CEF ACB CF AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS CEF ACB ≌,∴6CE AC ==,如图,①当点E 在射线BC 上移动时,639BE CE BC ''=+=+=,∵点E 从点B 出发,在直线BC 上以2cm 的速度移动,∴E 移动了:()92 4.5s ÷=;②当点E 在射线CB 上移动时,()633cm BE AC BC =-=-=,∵点E 从点B 出发,在直线BC 上以2cm 的速度移动,∴E 移动了:()32 1.5s ÷=;综上所述,当点E 在射线CB 上移动4.5s 或1.5s 时,CF AB =,故答案为:1.5或4.5.17.4cm.【分析】过点E 作EF ⊥AN 于F ,先利用AAS 证出△ABC ≌△FCE ,从而得出AB=FC=8cm ,AC=FE ,然后利用AAS 证出△DCM ≌△EFM,从而求出CM 的长.【详解】解:过点E 作EF ⊥AN 于F ,如图所示∵AN ⊥AB ,△BCE 和△ACD 为等腰直角三角形,∴∠BAC=∠BCE=∠ACD=∠CFE =90°,BC=CE ,AC=CD∴∠ABC+∠ACB=90°,∠FCE+∠ACB =90°,∴∠ABC =∠FCE ,在△ABC 和△FCE 中BAC CFE ABC FCE BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△FCE∴AB=FC=8cm ,AC=FE∴CD=FE在△DCM 和△EFM 中90DMC EMF DCM EFM CD FE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△DCM ≌△EFM∴CM=FM=12FC=4cm.故答案为:4cm.【点拨】此题考查的是全等三角形的判定及性质,掌握用AAS 证两个三角形全等是解决此题的关键.18.6【分析】本题属于全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法.证明ABE ≌CAF V ,推出ABE 与CAF V 面积相等,可得结论.【详解】解:在等腰三角形ABC 中,AB AC =,2CD BD =,ABD ∴ 与ADC △等高,底边比值为1:2,ABD ∴ 与ADC △的面积比为1:2.ABC 的面积为9,ABD ∴ 与ADC △的面积分别为3和6,BED CFD ∠=∠ ,AEB AFC ∴∠=∠.BED ABE BAE ∠=∠+∠ ,BAE CAF BAC ∠+∠=∠,BED BAC ∠=∠,BAC ABE BAE ∴∠=∠+∠,CAF ABE ∴∠=∠.在ABE 和CAF V 中,AEB AFC ABE CAF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABE CAF ∴ ≌,ABE ∴ 与CAF V 面积相等,ABE ∴ 与CDF 的面积之和为ADC △的面积,ABE ∴ 与CDF 的面积之和为6.故答案为:6.19.全等,理由见解析【分析】首先证明CAD BCE ∠=∠,即可证明CDA BEC ≌V V ,即可解题.【详解】全等,理由如下:BE CE ⊥,E AD CE ⊥,,90ACB ∠=︒∴90BCE DCA ∠+∠=︒,90DAC DCA ∠+∠=︒.∴CAD BCE ∠=∠;在BEC 和DAC △中,90BCE DAC BEC CDA BC AC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AAS BEC DAC ≌V V .【点拨】此题是三角形综合题,主要考查了全等三角形的判定,掌握证明全等三角形的方法是解题的关键.20.(1)CD DF =,CD DF⊥(2)成立,见解析【分析】(1)根据题意可直接证明AFD BDC ≌ ,即可得出结论;(2)仿照(1)的证明过程推出ADF BCD ≌ ,即可得出结论.【详解】(1)解:由题意,90A B ∠=∠=︒,在AFD △与BDC 中,AF BD A B AD BC =⎧⎪∠=∠⎨⎪=⎩∴()SAS AFD BDC ≌ ,∴DF DC =,ADF BCD ∠=∠,在Rt BDC 中,90BDC BCD ∠+∠=︒,∴90BDC ADF ∠+∠=︒,∴90FDC ∠=︒,∴CD DF ⊥,综上可知CD DF =,CD DF ⊥;(2)解:成立,理由如下:AF AB ⊥,∴90DAF ∠=︒,在ADF △和BCD △中,AF DB DAF CBD AD BC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ADF BCD ≌ ,∴DF DC =,ADF BCD ∠=∠,90BCD CDB ∠+∠=︒,∴90ADF CDB ∠+∠=︒,即90CDF ∠=︒,∴CD DF ⊥;∴(1)中结论仍然成立.【点拨】本题考查全等三角形的判定与性质,以及直角三角形两锐角互余等,熟练掌握全等三角形的判定定理是解题关键.21.(1)见解析(2)成立,理由见解析【分析】(1)本题主要考查全等三角形的判定和性质综合,利用题目中的已知条件导角,可推导CBN BAM ∠=∠,最后证明(AAS)≌AMB BNC ,直接可证.(2)利用AMB ABC ∠=∠及ABN ∠是ABM 的外角,可以推出MAB CBN ∠=∠,再利用AAS 可以判定(AAS)≌AMB BNC ,再利用全等的性质导边即可证明.【详解】(1)证明:∵AM MN ⊥于点M ,⊥CN MN 于点N ;∴90AMB BNC ∠=∠=︒;∴90MAB ABM ∠+∠=︒;∵90ABC ∠=︒,∴90ABM NBC ∠+∠=︒;∴MAB NBC ∠=∠;在ABM 和BCN △中,AMB BNC MAB NBC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ABM BCN ≌;∴AM BN =,BM CN =;∴MN BN BM AM CN =+=+.(2)MN AM CN =+成立.理由如下:设AMB ABC BNC α∠=∠=∠=;∴180ABM BAM ABM CBN α∠+∠=∠+∠=︒-;∴BAM CBN ∠=∠;在ABM 和BCN △中;BAM CBN AMB BNC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ABM BCN ≌;∴AM BN =,BM CN =;∴MN BN BM AM CN =+=+;故MN AM CN =+成立.22.(1)25;115;小(2)当2DC =时,ABD DCE≌△△(3)可以;BDA ∠的度数为110︒或80︒【分析】(1)由已知平角的性质可得180EDC ADB ADE ∠=︒-∠-∠,再利用三角形内角和定理进而求得DEC ∠,即可判断点D 从B 向C 运动过程中,BDA ∠逐渐变小;(2)当2DC =时,由已知和三角形内角和定理可得140DEC EDC ∠+∠=︒,140ADB EDC ∠+∠=︒,等量代换得ADB DEC ∠=∠,又由2AB AC ==,可得()AAS ABD DCE ≌△△;(3)根据等腰三角形的判定定理,利用三角形内角和定理求解即可.【详解】(1)解:1801801154025EDC ADB ADE ∠=︒-∠-∠=︒-︒-︒=︒,1801802540115DEC EDC C ∠=︒-∠-∠=︒-︒-︒=︒,点D 从B 向C 运动时,BDA ∠逐渐变小,故答案为:25;115;小.(2)解:当2DC =时,ABD DCE ≌△△,理由:40C ∠=︒ ,140DEC EDC ∴∠+∠=︒,又40ADE ∠=︒ ,∴140ADB EDC ∠+∠=︒,ADB DEC ∴∠=∠,又 B C ∠=∠,2AB DC ==,∴()AAS ABD DCE ≌△△;(3)解:当BDA ∠的度数为110︒或80︒时,ADE V 的形状是等腰三角形;理由:110BDA ∠=︒ 时,70704030ADC EDC ∴∠=︒∠=︒-︒=︒,,40C ∠=︒ ,70DAC ∴∠=︒,304070AED C EDC ∠=∠+∠=︒+︒=︒,DAC AED ∴∠=∠,∴ADE V 是等腰三角形;80BDA ∠=︒ 时,100ADC ∴∠=︒,40C ∠=︒ ,40DAC ∴∠=︒,DAC ADE ∴∠=∠,∴ADE V 的形状是等腰三角形.【点拨】本题考查了等腰三角形的判定和性质,全等三角形的判定,熟练掌握知识点是解题的关键.23.(1)CD ,DE ;(2)见解析;(3)存在,()4,0-或()6,0-【分析】本题是三角形综合题目,考查了等腰直角三角形的判定与性质、全等三角形的判定与性质、坐标与图形性质、直角三角形的性质等知识;(1)由全等三角形的性质可得出答案;(2)过点A 作AM FG ⊥交FG 于点M ,过点B 作BN FG ⊥交FG 于点N ,证明(AAS)ACM CEG ≌,得出AM CG =;同理可得:BCN CDG ≌.得出BN CG =,证明(AAS)AMF BNF ≌,由全等三角形的性质可得出AF BF =;(3)分两种情况,由全等三角形的性质可得出答案.【详解】(1)解:由题意可知ABC CDE △≌△,AB CD ∴=,BC DE =,故答案为:CD ,DE ;(2)证明:如图1,过点A 作AM FG ⊥交FG 于点M ,过点B 作BN FG ⊥交FG 于点N,ED CG ⊥ ,90ACE ∠=︒,90ACF ECG ECG E ∴∠+∠=∠+∠=︒,ACF E ∴∠=∠,在ACM △和CEG 中,ACM E AMC CGE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ACM CEG ∴ ≌,AM CG ∴=;同理可得:BCN CDG ≌.BN CG ∴=,AM BN ∴=,在AMF 和BNF 中,AFM BFN AMF BNF AM BN ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)AMF BNF ∴ ≌,AF BF ∴=,∴点F 是AB 的中点.(3)解:如图,当点N 在x 轴正半轴上时,由【模型呈现】可知MEN NDP ≌,5EM DN ∴==,DP EN =,514DP ∴=-=,4EN ∴=,(4,0)M ∴-;当点N 在x 轴负半轴上时,同理可得(6,0)M -.综上所述,点M 的坐标为(4,0)-或(6,0)-.24.(1)BD AE CE AD==,(2)DE BD CE=+(3)12t x ==,或928,49t x ==【分析】(1)利用平角的定义和三角形内角和定理得CAE ABD ∠=∠,再利用AAS 证明ABD CAE ≌, 得BD AE CE AD =,=;(2)由(1)同理可得ABD CAE △△≌,得BD AE CE AD ==,,可得答案;(3)分DAB ECA ≌ 或DAB EAC ≌△△两种情形,分别根据全等三角形的性质可解决问题.【详解】(1)解:∵BDA AEC BAC ∠=∠=∠,∴BAD CAE BAD ABD ∠+∠=∠+∠,∴CAE ABD ∠=∠,∵BDA AEC BA CA ∠=∠=,,∴ABD CAE AAS ≌() ,∴BD AE CE AD ==,,故答案为:BD AE CE AD ==,;(2)DE BD CE =+,由(1)同理可得ABD CAE AAS ≌() ,∴BD AE CE AD ==,,∴DE BD CE =+;(3)存在,当DAB ECA ≌ 时,∴2,7AD CE cm BD AE cm ====,∴1t =,此时2x =;当DAB EAC ≌△△时,∴ 4.5,7,AD AE cm DB EC cm ====∴924AD t ==,928749x =÷=,综上:12t x ==,或928,49t x ==.【点拨】本题是三角形综合题,主要考查了全等三角形的判定与性质,熟练掌握一线三等角基本模型是解题的关键,同时渗透了分类讨论的数学思想.。
浙教版八年级数学上册 全等三角形之手拉手模型、倍长中线-截长补短法

手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点结论:(1)△ABD≌△AEC(2)∠α+∠BOC=180°ABD BCE与AE与C D例1.如图在直线AB C的同一侧作两个等边三角形ABE DBC(1),连结,证明DC(2)AE(3)(4)(5)(6)B H 平分AHC (7)GFABD BCE与AE C D与变式精练1:如图两个等边三角形ABE DBCDC ,连结,证明(1)60(3)(4)AE与D C的交点设为H,BH 平分AH CABD BCE与AE C D与变式精练2:如图两个等边三角形ABE DBC证明(1),连结,DC(2)AE60AE(4)AE与D C的交点设为H,BH 平分AH C例 2:如图,两个正方形 AB C D 与 D EF G ,连结 AG ,CE,二者相交于点 HAD G CDE 问:(1) (2) A G 是否与C E 相等?(3) A G 与CE 之间的夹角为多少度?(4) H D 是否平分AHE是否成立? ?例 3:如图两个等腰直角三角形 A D C 与 E D G ,连结 A G ,CE,二者相交于点 HAD G CDE 问:(1) (2) A G 是否与C E 相等?(3) A G 与CE 之间的夹角为多少度?(4) H D 是否平分AHE是否成立? ?ABD BCE与AB B D CB E B,AB D C BE AE例4:两个等腰三角形问:(1),其中,,连结与C D,ABE DBC是否成立?(2)AE是否与C D相等?(3)AE与C D之间的夹角为多少度?(4)H B 是否平分AH C?例5:如图,点A.B.C在同一条直线上,分别以AB、BC为边在直线AC的同侧作等边三角形△ABD、△BCE.连接AE、DC,AE与DC所在直线相交于F,连接FB.判断线段FB、FE与FC之间的数量关系,并证明你的结论。
八年级数学上册第1章三角形的初步知识1-5三角形全等的判定第2课时作业浙教版

解:测出 ME 的长度,就是 M 与 F 之间的距离.理 由如下:连结 ME,MF,∵点 M 是 BC 的中点,∴MB =MC,在△MBE 和△MCF 中, BE=CF, ∠B=∠C, BM=CM,
∴△MEB≌△MFC(SAS),∴ME=MF,∴测出 ME 的
长度,就是 M 与 F 之间的距离.
13.如图,在△ABC 和△ADE 中,∠BAC=∠DAE= 90°,AB=AC,AD=AE,C,D,E 三点在同一条直 线上,连结 BD. (1)求证:△BAD≌△CAE. (2)试猜想 BD,CE 有何特殊的位置关系,并证明.
4.如图,四边形 ABCD 中,AC 垂直平分 BD,垂足
为 E,下列结论不一定成立的是( C )
A.AB=AD B.AC 平分∠BCD C.AB=BD D.△BEC≌△DEC
5.如图,AD 是△ABC 的中线,E,F 分别是 AD 和 AD 延长线上的点,且 DE=DF,连结 BF,CE,下列 说法:①CE=BF;②△ABD 和△ACD 面积相等;③
足为点 D,AB=CD,BC=DE,则∠ACE=__9_0_°___.
8.(2020·上海)如图,△ABC 中,AB=AC=14 cm,
AB 的垂直平分线 MN 交 AC 于点 D,连接 BD,且△
DBC 的周长是 24 cm.则 BC=_1__0_ cm.
9.如图,点 D 在 AB 上,点 E 在 AC 上,AB=AC, AD=AE.求证:BE=CD.
第1章 三角形的初步知识 1.5 三角形全等的判定
第2课时 “边角边”与线段的垂直平分线的性质
课时目标
1.掌握基本事实:SAS
A
2.掌握线段的垂直平分线的概念及性质 定理
1.下图中全等的三角形有( D )
三角形全等的判定 浙教版八年级数学上册达标测试题(含答案)

1.5三角形全等的判定自主达标测试题一.选择题(共8小题,满分40分)1.下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙3.如图,AB=AC,若要使△ABE≌△ACD,则添加的一个条件不能是()A.∠B=∠C B.BE=CD C.BD=CE D.∠ADC=∠AEB 4.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可5.如图,OA=OB,OC=OD,∠O=60°,∠C=25°,则∠BED的度数是()A.70°B.85°C.65°D.以上都不对6.如图,AB=AD,AE平分∠BAD,则图中有()对全等三角形.A.2B.3C.4D.57.如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳).在图中,要测量工件内槽宽AB,只要测量A′B′就可以,这是利用什么数学原理呢?()A.AAS B.SAS C.ASA D.SSS8.如图,Rt△ABC中,CD⊥AB于D,E在AC上,过E作EF⊥AB于F,且EF=EC,连接BE交CD于G.结论:①∠CEB=∠BEF②CG=EF③∠BGC=∠AEB④∠AEF=2∠ABE以上结论正确的个数是()A.1B.2C.3D.4二.填空题(共7小题,满分35分)9.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=DE;③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的条件是.(填写序号)10.如图,AD=BD,AD⊥BC,垂足为D,BF⊥AC,垂足为F,BC=6cm,DC=2cm,则AE=cm.11.如图,△ABC中,AB=4,AC=7,M是BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于.12.如图,AB⊥AC,垂足为A,CD⊥AC,垂足为C,DE⊥BC,且AB=CE,若BC=5cm,则DE的长为cm.13.如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.若∠B=20°,则∠C=°.14.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD ⊥BC;④AC=3BF,其中正确的结论是.15.如图,已知AB=AC,AD=AE,∠BAC=∠DAE,B、D、E三点在一条直线上.若∠3=55°,∠2=30°,则∠1的度数为.三.解答题(共6小题,满分45分)16.如图,在等腰△ABC中,BA=BC,点F在AB边上,延长CF交AD于点E,BD=BE,∠ABC=∠DBE.(1)求证:AD=CE;(2)若∠ABC=30°,∠AFC=45°,求∠EAC的度数.17.如图,在△ABC中,AB=AC,AD⊥BC于点D,E为AC边上一点,连接BE与AD交于点F,G为△ABC外一点,满足∠ACG=∠ABE,∠F AG=∠BAC,连接EG.(1)求证:△ABF≌△ACG;(2)求证:BE=CG+EG.18.已知:如图,在△ABC中,AB=CB,∠ABC=45°,高AD与高BE相交于点F,G为BF的中点.求证:(1)DG=DE;(2)∠DEG=∠DEC.19.如图,在Rt△ABC和Rt△ADE中,∠ABC=∠ADE=90°,BC与DE相交于点F,且AB=AD,AC=AE,连接CD,EB.(1)求证:∠CAD=∠EAB;(2)求证:CF=EF.20.在△ABC中,AB=AC,AB>BC,点D,E,F分别在边AB,BC,AC上,且ED=EF,∠DEF=∠B.(1)如图1,求证:BC=BD+CF;(2)如图2,连接CD,若DE∥AC,求证:CD平分∠ACB.21.如图,在△ABC中,∠ABC=45°,AH⊥BC于点H,D为AH上一点,且BD=AC,直线BD与AC交于点E,连接EH.(1)求证:DH=CH;(2)判断BE与AC的位置关系,并证明你的结论;(3)求∠BEH的度数.参考答案一.选择题(共8小题,满分40分)1.解:A、全等三角形的形状相同,但形状相同的两个三角形不一定是全等三角形.故该选项错误;B、全等三角形是指能够完全重合的两个三角形,则全等三角形的周长和面积一定相等,故B正确;C、全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;D、两个等边三角形,形状相同,但不一定能完全重合,不一定全等.故错误.故选:B.2.解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选:B.3.解:A、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;B、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;C、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;D、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;故选:B.4.解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选:D.5.解:在△AOD和△BOC中,∴△AOD≌△BOC(SAS)∴∠C=∠D.∵∠C=25°,∴∠D=25°.∵∠O=60°,∠C=25°,∴∠OBC=95°.∴∠OBC=∠BED+∠D=95°,∴∠BED=70°.故选:A.6.解:∵AB=AD,AE平分∠BAD,且AE、AC为公共边,∴△DAC≌△BAC,△DAE≌△BAE(SAS),∴DE=BE,DC=BC,EC为公共边,∴△DCE≌△BCE(SSS).所以共有3对三角形全等.故选:B.7.解:连接AB,A′B′,如图,∵点O分别是AA′、BB′的中点,∴OA=OA′,OB=OB′,在△AOB和△A′OB′中,,∴△AOB≌△A′OB′(SAS).∴A′B′=AB.故选:B.8.解:∵AC⊥BC,EF⊥AB,EF=EC,∴BE平分∠ABC,∴∠ABE=∠CBE,∵∠EFB=∠ECB=90°,∴∠FEB=∠CEB,故①正确;或者:在Rt△BEC和Rt△BEF中,,∴Rt△BEC≌Rt△BEF(HL),∴∠FEB=∠CEB,故①正确;∵∠FEB=∠CEB=90°﹣∠EBF,∠BGD=∠CGE=90°﹣∠GBD,∴∠CEB=∠CGE,∴CE=CG,∵EF=EC,∴CG=EF,故②正确;∵∠BGC=180°﹣∠CGE,∠AEB=180°﹣∠CEG,∠CEG=∠CGE,∴∠BGC=∠AEB,故③正确;∵∠AEF=90°﹣∠A,∠ABC=90°﹣∠A,∴∠AEF=∠ABC,∵∠ABC=2∠ABE,∴∠AEF=2∠ABE,故④正确.综上所述:正确的结论有①②③④,共4个,故选:D.二.填空题(共7小题,满分35分)9.解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④;故答案为①③④.10.解:∵BF⊥AC,∴∠C+∠FBC=90°,∵AD⊥BC,∴∠C+∠DAC=90°,∴∠DAC=∠FBC,在△BDE和△ADC中,∴△BDE≌△ADC(ASA),∴CD=DE=2cm,∵BC=6cm,DC=2cm,∴BD=AD=4cm,∴AE=4﹣2=2(cm).故答案为:2.11.解:如图,延长FM到N,使MN=MF,连接BN,延长MF交BA延长线于E,∵M是BC中点,∴BM=CM,∠BMN=∠CMF,∴△BMN≌△CMF,∴BN=CF,∠N=∠MFC,又∵∠BAD=∠CAD,MF∥AD,∴∠E=∠BAD=∠CAD=∠CFM=∠AFE=∠N,∴AE=AF,BN=BE,∴AB+AC=AB+AF+FC=AB+AE+FC=BE+FC=BN+FC=2FC,∴FC=(AB+AC)=5.5.故答案为5.5.12.解:∵AB⊥AC,CD⊥AC,DE⊥BC,∴∠ACD=∠BAC=∠1=90°,∴∠B+∠BCA=90°,∠DEC+∠BCA=90°,∴∠DEC=∠B,在△ACB与△CDE中,∴△ACB≌△CDE(ASA),∴DE=BC=5cm.故答案为:5.13.解:在△BAE和△CAD中,,∴△BAE≌△CAD(SAS),∴∠B=∠C,∵∠B=20°,∴∠C=20°,故答案为20.14.解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确;故答案为:①②③④15.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠2,∵∠3=∠ABD+∠1,∴∠1=∠3﹣∠2=55°﹣30°=25°.故答案为:25°.三.解答题(共6小题,满分45分)16.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠ABE=∠DBE+∠ABE,∴∠ABD=∠CBE.在△ADB和△CEB中,,∴△ADB≌△CEB(SAS),∴AD=CE;(2)解:∵BA=BC,∠ABC=30°,∴∠BAC=∠BCA=(180°﹣30°)=75°,∵∠AFC=45°,∴∠BCE=∠AFC﹣∠ABC=45°﹣30°=15°,∵△ADB≌△CEB,∴∠BAD=∠BCE=15°,∴∠EAC=∠BAD+∠BAC=15°+75°=90°.17.(1)证明:∵∠BAC=∠F AG,∴∠BAC﹣∠CAD=∠F AG﹣∠CAD,∴∠BAD=∠CAG,在△ABF和△ACG中,,∴△ABF≌△ACG(ASA);(2)证明:∵△ABF≌△ACG,∴AF=AG,BF=CG,∵AB=AC,AD⊥BC,∴∠BAD=∠CAG,∵∠BAD=∠CAG,∴∠CAD=∠CAG,在△AEF和△AEG中,,∴△AEF≌△AEG(SAS).∴EF=EG,∴BE=BF+FE=CG+EG.18.证明:(1)AD⊥BD,∠BAD=45°,∴AD=BD,∵∠BFD=∠AFE,∠AFE+∠CAD=90°,∠CAD+∠ACD=90°,∴∠BFD=∠ACD,在△BDF和△ACD中,,∴△BDF≌△ACD(AAS),∴BF=AC,∵G为BF的中点.∴DG=BF,∵AB=CB,BE⊥AC,∴E为AC的中点.∴DE=AC,∴DG=DE;(2)由(1)知:∠DBG=∠DAE,BG=BF,AE=AC,BF=AC,∴BG=AE,在△BDG和△ADE中,,∴△BDG≌△ADE(SAS),∴∠BDG=∠ADE,∴∠DGB=∠DBG+∠BDG,∵∠DEC=∠DAE+∠ADE,∴∠DGB=∠DEC,∵DG=DE,∴∠DGE=∠DEG,∴∠DEG=∠DEC.19.证明:(1)在Rt△ABC和Rt△ADE中,,∴Rt△ABC≌Rt△ADE(HL),∴∠BAC=∠DAE,∴∠BAC﹣∠DAB=∠DAE﹣∠DAB,∴∠CAD=∠EAB.(2)在△ACD与△AEB中,∴△ADC≌△ABE(SAS),∴CD=BE,∠ACD=∠AEB.∵Rt△ABC≌Rt△ADE,∴∠ACB=∠AED.∠ACB﹣∠ACD=∠AED﹣∠AEB,∴∠DCF=∠BEF.∠DFC=∠BFE,∴△DFC≌△BFE(AAS),∴CF=EF.20.证明:(1)如图1中,∵AB=AC,∴∠B=∠C,∵∠DEC=∠DEF+∠FEC=∠EDB+∠B,∵∠DEF=∠B,∴∠BDE=∠FEC,∵ED=EF,∴△BDE≌△CEF(AAS),∴BD=EC,BE=CF,∴BC=BE+EC=BD+CF;(2)如图2中,∵AB=AC,∴∠B=∠ACB,∵DE∥AC,∴∠DEB=∠ACB,∠EDC=∠ACD,∴∠B=∠DEB,∴DB=DE,由(1)可知,BD=EC,∴DE=EC,∴∠EDC=∠BCD,∴CD平分∠ACB.21.(1)证明:∵AH⊥BC,∴∠AHB=∠AHC=90°∵∠ABC=45°,∴∠BAH=45°=∠ABC,∴AH=BH,在Rt△BHD和Rt△AHC中,,∴Rt△BHD≌Rt△AHC(HL),∴DH=CH;(2)解:BE⊥AC.由(1)可知△BHD≌△AHC,∴∠DBH=∠CAH.∵∠CAH+∠C=90°,∴∠DBH+∠C=90°,∴∠BEC=90°,∴BE⊥AC;(3)解:过点H作HF⊥HE,交BE于F点,∴∠FHE=90°,即∠AHE+∠DHF=90°.又∵∠BHF+∠DHF=90°,∴∠AHE=∠BHF,在△AHE和△BHF中,,∴△AHE≌△BHF(ASA),∴EH=FH.∴△FHE是等腰直角三角形,∴∠BEH=45°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲全等三角形
一、全等三角形:
能够重合的两个三角形形称为全等三角形;
例1 如图,BD是长方形ABCD的一条对角线
(1)△ABD与△CDB全等吗?你是怎样知道的?
(2)如果你认为△ABD与△CDB全等,请用符号
表示,并说出它们的对应边和对应角。
二、全等三角形的性质:
全等三角形的对应边相等,对应角相等。
例1 如图,E为线段AB上一点,AC⊥AB,DB⊥AB,△ACE≌△BED
(1)试猜想线段CE与DE的位置关系,并证明你的结论
(2)求证:AB=AC+BD
练习
如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD 和∠BED的度数.
三、全等三角形的判定
知识点一三边对应相等的两个三角形全等(简称“边边边”或“SSS”)
例2 如图,在四边形ABCD 中,AB=CD ,AD=CB ,求证:∠A=∠C
练习
1、如图,在△ABC 中,AC=AB ,AD 是BC 边上的中线,则AD ⊥BC ,请说明理由
证明:在△ABD 和△ACD 中,
2、如图AB=AC ,AD=AE ,BD=CE ,求证:∠BAC=∠DAE.、
知识点二、两边及其夹角相等的两个三角形全等(简称“边角边”或“SAS ”)
在△ABC 和△A ′B ′C ′中:
AB= A ′B ′ (已知)
∵ ∠ABC=∠A ′B ′C ′(已知)
BC= B ′C ′ (已知)
∴ △ABC ≌△A ′B ′C ′( SAS )
例3 已知: 如图,AC 与BD 相交于O ,且OA=OC ,OB=OD.
求证:△AOB ≌△COD.
C C'A'O A B
练习:如图,点D在AB上,点E 在AC上,AB=AC,AD=AE.求证:∠B=∠C
知识点三、线段的垂直平分线
垂直于一条线段,并且平分纸条线段的直线叫做
这条线段的垂直平分线,简称中垂线,如图,直线l⊥AB于D,
且AD=BD,直线l就是线段AB的中垂线。
线段垂直平分线上的点到线段两端的距离相等
练习:如图,△ABC中,BC边上的垂直平分线DE交
BC于D,交AB于点E,AB=8,AC=5,则△AEC的周
长等于______.
巩固练习
1、如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使
△ABE≌△ACD,需添加一个条件是
____________________(只要求写一个条件).
第1题图第2题图
2、如图,在△ ABC中,AB=12,EF为AC的垂直平分线,若EC=8,则BE的长为_______
3、如图,在四边形ABCD中,∠BAD=∠BCD=90°,BC=DC,延长AD到E点,使DE=AB.
(1)求证:∠ABC=∠EDC;
(2)求证:△ABC≌△EDC.
知识点四、两个角及夹边对应相等的两个三角形全等(简称“角边角”或“ASA”)
如图,在△ABC和△A′B′C′中,∠B=∠B′,
∠C=∠C′,BC= B′C′,则
△ABC≌△A′B′C′
例4 如图,点B、F、E、C在同一直线上,
AB∥CD,且AB=CD,∠A=∠D.求证:BF=CE
练习:
1、如图,点D在AB上,点E 在AC上,AB=AC,∠B=∠C.求证:AD=AE
2、如图,AC与BD相交于O,∠1=∠2,.∠ABC=∠DCB,求证AB=DC
3、AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD= cm,写出证明过程。
温故而知新
1、点B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF。
求证AB∥DE.
2、如图,点D在AB上,点E 在AC上,AB=AC,AD=AE,.求证:BE=CD
3、点A、B、C、D在同一直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB
4、如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.
第二讲全等三角形(2)
知识点五、有两个角和其中一个角的对边
对应相等的两个三角形全等(简称“角角
边”或“AAS”);
例5 已知:如图,P是ABC的平分线上的
一点,PB⊥AB于点B,PC⊥AC于点C.求证:
PB=PC
练习
1、已知:如图,∠B=∠C,AD=AE,求证:CD=BE.
2、如图,点B、E、C、F在一条直线上,BC=EF,AB∥DE,∠A=∠D.试说明:△ABC≌△DEF.
3、已知:如图,△ABC≌△DCB. 求证:AP=DP,BP=CP
知识点六、角平分线的性质定理:角平分线上的点到角两边的距离相等
练习
1、在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC
于D,AD=3,BC=10,则△DBC的面积是
2、如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF
3、已知,如图,AD是BC的垂直平分线,DE⊥AB于点E,DF⊥AC于点F。
求证:DE=DF
4、已知:如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,BE=CF,求证:AD是BC的中垂线。