电磁感应上课讲义

合集下载

大学物理电磁感应-PPT课件精选全文完整版

大学物理电磁感应-PPT课件精选全文完整版

的磁场在其周围空间激发一种电场提供的。这
种电场叫感生电场(涡旋电场)
感生电场 E i
感生电场力 qEi
感生电场为非静 电性场强,故:
e E i dld dm t
Maxwell:磁场变化时,不仅在导体回路中 ,而且在其周围空间任一点激发电场,感生 电场沿任何闭合回路的线积分都满足下述关 系:
E id l d d m t d ds B td S d B t d S
线


电力线为闭合曲线
E感
dB 0 dt
电 场 的
为保守场作功与路径无关
Edl 0
为e非i 保守E 场感作d功l与路径dd有mt关

静电场为有源场

EdS
e0
q
感生电场为无源场
E感dS0
➢感生电动势的计算
方法一,由 eLE感dl
需先算E感
方法二, 由 e d
di
(有时需设计一个闭合回路)
2.感生电场的计算
Ei
dl
dm dt
L
当 E具i 有某种对称
性才有可能计算出来
例:空间均匀的磁场被限制在圆柱体内,磁感
强度方向平行柱轴,如长直螺线管内部的场。
磁场随时间变化,且设dB/dt=C >0,求圆柱
内外的感生电场。
则感生电场具有柱对称分布
Bt
此 E i 特点:同心圆环上各点大小相同,方向
磁通量 的变化
感应电流的 磁场方向
感应电流 的方向
电动势 的方向
➢ 楞次定律的另一种表述:
“感应电流的效果总是反抗引起感应电流的原因”
“原因”即磁通变化的原因,“效果”即感应电流的 场

电磁感应讲义

电磁感应讲义
科目:物理年级:高三姓名:教师钱老师时间:
知识点一:电磁感应现象
一:电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象.
产生感应电流的条件
表述1:闭合电路的一部分导体在磁场内做切割磁感线运动.
表述2:穿过闭合电路的磁通量发生变化.
产生电磁感应现象的实质
电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只有感应电动势,而无感应电流.
B.A可能带正电且转速增大
C.A可能带负电且转速减小
D.A可能带负电且转速增大
[例2]图中MN、GH为平行导轨,AB、CD为跨在导轨上的两根横杆,导轨和横杆均为导体。有匀强磁场垂直于导轨所在的平面,方向如图,用I表示回路的电流。
A.当AB不动而CD向右滑动时, 且沿顺时针方向
B.当AB向左、CD向右滑动且速度大小相等时,I=0
(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流使导体受到安培力的作用,安培力使导体运动起来.
交流感应电动机就是利用电磁驱动的原理工作的.
(3)电磁阻尼和电磁驱动的原理体现了楞次定律的推广应用.
知识点三:电磁感应的综合应用
电磁感应中的力学问题
例:一个质量m=0.1 kg的正方形金属框总电阻R=0.5Ω,金属框放在表面绝缘的斜面AA′B′B的顶端(金属框上边与AA′重合),自静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边BB′平行、宽度为d的匀强磁场后滑至斜面底端(金属框下边与BB′重合),设金属框在下滑过程中的速度为v,与此对应的位移为x,那么v2-x图象如图9-3-1所示,已知匀强磁场方向垂直斜面向上,金属框与斜面间的动摩擦因数μ=0.5,取g=10 m/s2,sin 53°=0.8;cos 53°=0.6.

课堂讲义系列高中物理人教版选修11文档第三章电磁感应第1讲电磁感应现象

课堂讲义系列高中物理人教版选修11文档第三章电磁感应第1讲电磁感应现象

第1讲电磁感应现象[目标定位],,会比拟“穿过不同闭合电路磁通量〞,把握感应电流的产生条件.一、划时代的发觉1.奥斯特在1820年发觉了电流磁效应.2.1831年,法拉第发觉了电磁感应现象.想一想物理学领域里的每次重大发觉,都有力地推动了人类文明的进程.最早利用磁场获得电流,使人类得以进入电气化时代的科学家是谁?答案法拉第.二、电磁感应现象1.电磁感应现象:闭合电路的一局部导体在磁场中做切割磁感线的运动时,导体中就产生电流.物理学中把这类现象叫做电磁感应.2.感应电流:由电磁感应产生的电流叫做感应电流.想一想假如整个闭合电路都在磁场中做切割磁感线的运动,闭合电路中也肯定有感应电流吗?答案没有.三、电磁感应的产生条件1.磁通量:用“穿过一个闭合电路的磁感线的多少〞来形象地理解“穿过这个闭合电路的磁通量〞.2.感应电流的产生条件只要穿过闭合电路的磁通量发生变化,闭合电路中就有感应电流产生.想一想穿过闭合电路的磁通量很大,是否肯定产生感应电流?答案不是.产生感应电流的条件是穿过闭合电路的磁通量发生变化.关键在“变化〞两字上,这是指穿过闭合电路的磁通量从无变有、从有变无、从小变大、从大变小等等.假设磁通量很大,但是磁通量不变化,闭合电路中也不会产生感应电流.一、磁通量1.定义:物理学中把在磁场中穿过与磁场垂直的某一面积S的磁感线条数定义为穿过该面积的磁通量.2.单位:韦伯,符号:Wb.3.意义:表示穿过某一面积的磁感线条数的多少.例1关于磁通量的概念,以下说法正确的选项是()A.磁感应强度越大的地方,穿过线圈的磁通量也越大B.穿过线圈的磁通量为零,该处的磁感应强度不肯定为零C.磁感应强度越大、线圈面积越大,那么磁通量越大D.穿过线圈的磁通量大小可以用穿过线圈的磁感线条数来衡量答案BD解析穿过某一线圈的磁通量大小,与磁场强弱、线圈面积大小以及线圈平面与磁场的夹角有关.当二者平行时,Φ=0.故只有B、D正确.针对训练1磁通量可以形象地理解为“穿过一个闭合电路的磁感线的条数〞.在图3-1-1所示磁场中,S1、S2、S3为三个面积相同的相互平行的线圈,穿过S1、S2、S3的磁通量分别为Φ1、Φ2、Φ3()图3-1-1A.Φ1最大B.Φ2最大C.Φ3最大D.Φ1、Φ2、Φ3相等答案 A解析磁通量表示穿过一个闭合电路的磁感线条数的多少,从题图中可看出穿过S1的磁感线条数最多,穿过S3的磁感线条数最少.二、产生感应电流的条件1.试验探究感应电流产生的条件(1)闭合电路的局部导体切割磁感线在学校学过,当闭合电路的一局部导体做切割磁感线运动时,电路中会产生感应电流,如图3-1-2所示.图3-1-2导体棒左右平动、前后平动、上下平动,观看电流表的指针,把观看到的现象记录在表1中.表1导体棒的运动表针的摆动方向导体棒的运动表针的摆动方向向右平动向左向后平动不摇摆向左平动向右向上平动不摇摆向前平动不摇摆向下平动不摇摆结论:只有左右平动时,导体棒切割磁感线,才有电流产生;前后平动、上下平动,导体棒都不切割磁感线,没有电流产生.(2)向线圈中插入磁铁,把磁铁从线圈中拔出如图3-1-3所示,把磁铁的某一个磁极向线圈中插入,从线圈中拔出,或静止地放在线圈中.观看电流表的指针,把观看到的现象记录在表2中.图3-1-3表2磁铁的运动表针的摇摆方向磁铁的运动表针的摇摆方向N极插入线圈向右S极插入线圈向左N极停在线圈中不摇摆S极停在线圈中不摇摆N极从线圈中抽出向左S极从线圈中抽出向右结论:只有磁铁相对线圈运动时,才有电流产生;磁铁相对线圈静止时,没有电流产生.(3)模拟法拉第的试验如图3-1-4所示,线圈A通过变阻器和开关连接到电源上,线圈B的两端与电流表连接,把线圈A装在线圈B的里面.观看以下四项操作中线圈B中是否有电流产生.把观看到的现象记录在表3中.图3-1-4表3操作现象开关闭合瞬间有电流产生开关断开瞬间有电流产生开关闭合时,变阻器的滑片不动无电流产生开关闭合时,快速移动变阻器的滑片有电流产生结论:只有当线圈A中电流变化时,线圈B中才有电流产生.不管用什么方法,不管何种缘由,只要使穿过闭合电路的磁通量发生变化,闭合电路中就有感应电流产生.3.产生感应电流的条件(1)闭合电路;(2)磁通量发生变化.例2如下图,矩形线框在磁场中做的各种运动,能够产生感应电流的是()答案 B解析感应电流产生条件为:①磁通量发生变化;②闭合电路.A、C、D中穿过矩形线框的磁通量都不变,故不产生感应电流.针对训练2如图3-1-5所示,线圈与灵敏电流计构成闭合电路;当磁铁向下插入线圈的过程中,发觉电流计指针向右偏转.那么当磁铁()图3-1-5A.放在线圈中不动时,电流计指针向左偏转B.从线圈中向上拔出时,电流计指针向左偏转C.按图示位置在线圈外面上下移动时,电流计指针不会偏转D.按图示位置在线圈外面左右移动时,电流计指针也会偏转答案BD解析磁铁向下插入线圈,穿过线圈的磁通量增大,电流计指针右偏,那么向上拔出时,穿过线圈的磁通量减小,依据楞次定律“增反减同〞知B项正确;磁铁放在线圈中不动时,线圈中的磁通量不变化,没有感应电流产生,电流计指针不偏转,A错;磁铁按图示位置上、下、左、右移动时,线圈中都会产生感应电流,电流计指针都会偏转,C错,D正确.磁通量的变化1.如图3-1-6所示,面积为S的线圈平面与磁感应强度为B的匀强磁场垂直,一半在磁场中,那么穿过线圈的磁通量为()图3-1-6A.0B.12BS C.BS D.2BS答案 B解析 依据磁通量公式Φ=BS ,由于图中有效面积为12S ,所以B 项正确.2.如图3-1-7所示,一环形线圈沿条形磁铁的轴线,从磁铁N 极的左侧A 点运动到磁铁S 极的右侧B 点,A 、B 两点关于磁铁的中心对称,那么在此过程中,穿过环形线圈的磁通量将( )图3-1-7A.先增大,后减小B.先减小,后增大C.先增大,后减小、再增大,再减小D.先减小,后增大、再减小,再增大 答案 A解析 穿过线圈的磁通量应以磁铁内部磁场为主,而内部的磁感线是肯定值,在A 、B 点时,外部磁感线比拟密,即与内部相反的磁感线多,相抵后剩下的内部的磁感线就少;中间位置时,外部磁感线比拟疏,即与内部相反的磁感线少,相抵后剩下的内部的磁感线就多.所以两端磁通量小,中间磁通量大,A 正确.电磁感应的产生条件3.通电直导线穿过闭合线圈L ,如图3-1-8 所示,那么( )图3-1-8A.当电流I增大时,线圈L中有感应电流B.当L左右平动时,L中有感应电流C.当L上下平动时,L中有感应电流D.以上各种状况都不会产生感应电流答案 D解析依据直线电流的磁场特点知,A、B、C各种状况下,穿过线圈的磁通量不变,选项D正确.4.某同学做观看电磁感应现象的试验时,将电流表、线圈A和B、蓄电池、开关,用导线连接成如图3-1-9所示的试验电路,闭合开关,以下说法正确的选项是()图3-1-9A.线圈A插入线圈B的过程中,有感应电流B.线圈A从B线圈中拔出过程中,有感应电流C.线圈A停在B线圈中,有感应电流A拔出线圈B的过程中,线圈B的磁通量在减小答案ABD解析由感应电流产生的条件A、B选项都正确,C项错误;在A线圈从B线圈拔出的过程中B线圈的磁通量减小,D项正确.(时间:60分钟)题组一、磁通量的变化1.如图3-1-10所示,矩形线框平面与匀强磁场方向垂直,穿过的磁通量为Φ.假设线框面积变为原来的12,那么磁通量变为( )图3-1-10A.14Φ B.12Φ C.2Φ D.4Φ答案 B解析 依据Φ=BS 可知,当线框面积变为原来的12时,磁通量变为原来的12,故B 对,A 、C 、D 错.2.如图3-1-11所示,竖直长导线通以恒定电流I ,一闭合线圈MNPQ 与导线在同一平面内,当线圈从图示位置向右渐渐远离导线时,穿过线圈的磁通量将( )图3-1-11A.变小B.变大C.不变D.先变大,后变小答案 A解析 恒定电流I 产生的磁场中,离导线越远磁场越弱,所以线圈向右远离导线时穿过线圈的磁通量将变小.题组二、电磁感应现象与产生条件3.以下现象中,属于电磁感应现象的是()A.小磁针在通电导线四周发生偏转B.通电线圈在磁场中转动C.因闭合线圈在磁场中运动而产生电流D.磁铁吸引小磁针答案 C解析电磁感应是指“磁生电〞的现象,而小磁针和通电线圈在磁场中转动及受磁场力的作用,反映了磁场力的性质.所以A、B、D不是电磁感应现象,C是电磁感应现象.4.如下图试验装置中用于讨论电磁感应现象的是()答案 B解析A、C两试验装置用于讨论通电导线在磁场中所受的安培力;D图用于讨论电流的磁效应,故B对,A、C、D错.5.关于感应电流,以下说法正确的选项是()A.只要穿过线圈的磁通量发生变化,线圈中就肯定有感应电流B.只要闭合导线做切割磁感线运动,导线中就肯定有感应电流C.假设闭合电路的一局部导体不做切割磁感线运动,闭合电路中肯定没有感应电流D.当穿过闭合电路的磁通量发生变化时,闭合电路中肯定有感应电流答案 D解析产生感应电流的条件(1)闭合电路;(2)磁通量发生变化,两者缺一不行,选项D正确.6.如图3-1-12为“探究感应电流与磁通量变化关系〞的试验装置图.以下操作中不能产生感应电流的是()图3-1-12A.开关S闭合瞬间B.开关S断开瞬间C.开关S闭合后,变阻器滑片P移动D.开关S闭合后,变阻器滑片P不移动答案 D7.线圈在长直导线电流的磁场中,做如图3-1-13所示的运动,那么线圈中有感应电流的是()图3-1-13A.向右平动B.向下平动C.绕轴转动(边bc向外)D.从纸面对纸外平动E.向上平动(边bc上有个缺口)答案BCD解析由于长直导线电流的磁场是非匀强磁场,越远离直导线磁场越弱,离直导线等距离的位置磁感应强度大小相等,故B、D、E三种情形穿过线圈的磁通量发生了变化,C这种情形是由于线圈平面与磁场的方向的夹角发生了变化从而造成穿过线圈的磁通量发生了变化,并且B、C、D三种情形线圈是闭合的,E的线圈是不闭合的,故正确选项是B、C、D.8.如图3-1-14所示,ab 是闭合电路的一局部,处在垂直于纸面对外的匀强磁场中( )图3-1-14A.当ab 垂直于纸面对外平动时,ab 中有感应电流B.当ab 垂直于纸面对里平动时,ab 中有感应电流C.当ab 垂直于磁感线向右平动时,ab 中有感应电流D.当ab 垂直于磁感线向左平动时,ab 中无感应电流答案 C解析 当ab 垂直于纸面对外、向里平动时,ab 棒都不切割磁感线,a 、b 中都无感应电流,A 、B 错误,当ab 向右、向左平动时,ab 都切割磁感线,ab 中都有感应电流,故C 正确,D 错误.9.如图3-1-15所示,匀强磁场区域宽为d ,一正方形线框abcd 的边长为L ,且L >d ,线框以速度v 通过磁场区域,从线框进入到完全离开磁场的时间内,线框中没有感应电流的时间是( )图3-1-15A.L +d vB.L -d vC.L +2d vD.L -2d v答案 B解析 从bc 边出磁场到ad 边进入磁场的过程中,穿过闭合回路的磁通量没有发生变化,闭合回路中没有感应电流,此过程所用的时间t =L -d v ,故B 正确,A 、C 、D 错误.10.小明同学做“探究电磁感应产生的条件和感应电流方向〞的试验,先将电池组、滑线变阻器、带铁芯的线圈A、线圈B、电流计及开关如图3-1-16连接.在开关闭合、线圈A放在线圈B中的状况下,某同学发觉当他将滑线变阻器的滑动端P向左加速滑动时,电流计指针向右偏转.图3-1-16闭合开关稳定后,电流计指针将________(填“不偏转〞“向左偏〞或“向右偏〞);当小明把A中的铁芯向上拔出时,电流计指针________(填“不偏转〞“向左偏〞或“向右偏〞). 答案不偏转向右偏解析电路稳定后,磁通量不变,副线圈中没有感应电流,所以电流计指针不偏转;由于题中P向左加速移动,阻值变大,电流变小,磁通量减小,指针向右偏.当把A中铁芯向上拔出时,磁性减弱,磁通量减小,所以指针向右偏.。

第10课 磁场、电磁感应 讲义

第10课  磁场、电磁感应 讲义

课题磁场电磁感应教学目标了解磁场、掌握电磁感应条件、电磁感应定律的计算重点、难点电磁感应定律的理解与运用教学内容一、磁场1.磁场(1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场. (2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用.(3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用.(4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体.(5)磁场的方向:规定在磁场中任一点小磁针极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向.2.磁感线(1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的,这一系列曲线称为磁感线.(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交.(3)几种典型磁场的磁感线的分布:①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I 和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式 B=F/IL.单位T,1T=1N/(A·m). (2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向. (3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B 与IL成反比.(4)磁感应强度B是矢量,遵守矢量分解合成的定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向.4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:(1)地磁场的N极在地球南极附近,S极在地球北极附近.(2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下.(3)在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北.5★.安培力(1)安培力大小F=BIL.式中F、B、I要两两垂直,L是有效长度.若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度.(2)安培力的方向由定则判定.(3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零.6.★洛伦兹力(1)洛伦兹力的大小f=qvB,条件:v⊥B.当v∥B时,f=0.(2)洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定..不做功.(3)洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.所以洛伦兹力的方向与安培力的方向一样也由左手定则判定.(4)在磁场中静止的电荷不受洛伦兹力作用.7.★★★带电粒子在磁场中的运动规律在带电粒子只受洛伦兹力作用的条件下(电子、质子、α粒子等微观粒子的重力通常忽略不计),(1)若带电粒子的速度方向与磁场方向平行(相同或相反),带电粒子以入射速度v做匀速直线运动.(2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动.①轨道半径公式:r=mv/qB ②周期公式: T=2πm/qB8.带电粒子在复合场中运动(1)带电粒子在复合场中做直线运动①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解.②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解.*** 因洛仑兹力大小与v大小有关,所以一般不存在②中情况。

高中物理必修三 讲解讲义 18 A电磁感应现象及应用 基础版

高中物理必修三 讲解讲义 18 A电磁感应现象及应用 基础版

电磁感应现象及应用知识点:电磁感应现象及应用一、划时代的发现1.丹麦物理学家奥斯特发现载流导体能使小磁针转动,这种作用称为电流的磁效应,揭示了电现象与磁现象之间存在密切联系.2.英国物理学家法拉第发现了电磁感应现象,即“磁生电”现象,他把这种现象命名为电磁感应.产生的电流叫作感应电流.二、感应电流的产生条件当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流.技巧点拨一、磁通量的变化磁通量的变化大致可分为以下几种情况:(1)磁感应强度B不变,有效面积S发生变化.如图(a)所示.(2)有效面积S不变,磁感应强度B发生变化.如图(b)所示.(3)磁感应强度B和有效面积S都不变,它们之间的夹角发生变化.如图(c)所示.二、感应电流产生的条件1.实验:探究感应电流产生的条件(1)如下图所示,导体AB做切割磁感线运动时,线路中________电流产生,而导体AB顺着磁感线运动时,线路中________电流产生.(均选填“有”或“无”)(2)如下图所示,当条形磁铁插入或拔出线圈时,线圈中________电流产生,但条形磁铁在线圈中静止不动时,线圈中________电流产生.(均选填“有”或“无”)(3)如下图所示,将小螺线管A插入大螺线管B中不动,当开关S闭合或断开时,电流表中________电流通过;若开关S一直闭合,当改变滑动变阻器的阻值时,电流表中________电流通过;而开关一直闭合,滑动变阻器的滑动触头不动时,电流表中________电流通过.(均选填“有”或“无”)(4)归纳总结:实验一中:导体棒切割磁感线运动,回路面积发生变化,从而引起了磁通量的变化,产生了感应电流.实验二中:磁铁插入或拔出线圈时,线圈中的磁场发生变化,从而引起了磁通量的变化,产生了感应电流.实验三中:开关闭合、断开、滑动变阻器的滑动触头移动时,A线圈中电流变化,从而引起穿过B的磁通量变化,产生了感应电流.三个实验共同特点是:产生感应电流时闭合回路的磁通量都发生了变化.2.感应电流产生条件的理解不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,且穿过该电路的磁通量也一定发生了变化.例题精练1.(舟山期末)随着智能手机的发展,电池低容量和手机高耗能之间的矛盾越来越突出,手机无线充电技术间接解决了智能手机电池不耐用的问题.在不久的将来各大公共场所都会装有这种设备,用户可以随时进行无线充电,十分便捷.如图所示,电磁感应式无线充电的原理与变压器类似,通过分别安装在充电基座和接收装置上的线圈,利用产生的磁场传递能量.当充电基座上的送电线圈通入正弦式交变电流后,就会在邻近的受电线圈中感应出电流,最终实现为手机电池充电.在充电过程中()A.受电线圈中感应电流产生的磁场恒定不变B.送电线圈中电流产生的磁场呈周期性变化C.送电线圈和受电线圈无法通过互感实现能量传递D.由于手机和基座没有导线连接,所以传递能量没有损失2.(滨海新区模拟)如今共享单车随处可见,与大多山地自行车相比,共享单车具有以下特点:①质量更小更轻便;②科技含量更高,携带GPS模块和SIM卡便于定位和传输信息;③每辆车自带二维码,以方便手机扫描进行连接;④自行车可通过车轮转动给车内电池进行充电。

《电磁感应》 讲义

《电磁感应》 讲义

《电磁感应》讲义一、电磁感应现象的发现在 1820 年,丹麦科学家奥斯特发现了电流的磁效应,即通电导线周围存在着磁场。

这一发现揭示了电与磁之间的联系,引发了科学家们对于磁能否生电的思考。

经过多年的探索,1831 年,英国科学家法拉第终于发现了电磁感应现象。

他通过实验观察到,当闭合电路中的一部分导体在磁场中做切割磁感线运动时,电路中就会产生电流。

这一重大发现为人类利用电能开辟了广阔的道路。

二、电磁感应的基本概念1、磁通量磁通量是指通过某一面积的磁感线条数。

其大小可以通过公式Φ =B·S·cosθ 来计算,其中 B 是磁感应强度,S 是面积,θ 是 B 与 S 法线方向的夹角。

2、感应电动势在电磁感应现象中产生的电动势称为感应电动势。

感应电动势的大小与磁通量的变化率成正比。

3、楞次定律楞次定律指出,感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

简单来说,就是“来拒去留,增反减同”。

三、电磁感应的产生条件要产生电磁感应现象,必须满足以下条件:1、闭合电路。

如果电路不闭合,只会产生感应电动势,而不会有感应电流。

2、穿过闭合电路的磁通量发生变化。

这可以通过改变磁场的强弱、方向,或者改变闭合电路在磁场中的面积,或者改变闭合电路与磁场的相对位置等方式来实现。

四、法拉第电磁感应定律法拉第电磁感应定律表明,感应电动势的大小与穿过闭合电路的磁通量的变化率成正比。

数学表达式为 E =nΔΦ/Δt ,其中 E 表示感应电动势,n 是线圈的匝数,ΔΦ 是磁通量的变化量,Δt 是磁通量变化所用的时间。

当磁通量的变化是由导体切割磁感线引起时,感应电动势的大小可以用公式 E = BLv 来计算,其中 B 是磁感应强度,L 是导体在磁场中切割磁感线的有效长度,v 是导体切割磁感线的速度。

五、电磁感应中的能量转化在电磁感应现象中,能量是守恒的。

当导体在磁场中运动产生感应电流时,外力克服安培力做功,将其他形式的能转化为电能。

高中物理必修三电磁感应与电磁现象初步讲义

高中物理必修三电磁感应与电磁现象初步讲义

高中物理必修三电磁感应与电磁现象初步
讲义
1. 电磁感应
1.1 磁场
- 磁场的基本概念和性质
- 磁感线的表示和性质
- 磁场强度和磁感应强度的概念
1.2 电磁感应现象
- 素导磁感应定律和法拉第电磁感应定律
- 电磁感应实验和应用
- 感应电流的产生和性质
1.3 感生电动势和电磁感应定律
- 感生电动势的产生和性质
- 磁通量的概念和计算
- 法拉第电磁感应定律的推导和应用2. 电磁现象
2.1 电磁波的基本特性
- 电磁波的概念和性质
- 电磁波的传播和干涉
- 电磁波的谱系
2.2 光的电磁波性质
- 光的电磁波性质的实验证明
- 光的偏振现象及其实验和应用
2.3 光的干涉和衍射现象
- 光的干涉现象和干涉条纹的产生- 光的衍射现象和衍射图样的产生
2.4 声的电磁波性质
- 声的电磁波性质的实验证明
- 声的吸收和反射
3. 应用实例
- 电磁感应的应用实例
- 电磁现象的应用实例
以上是对高中物理必修三电磁感应与电磁现象内容的初步讲义,希望可以帮助同学们更好地理解和掌握相关知识。

电磁感应 辅导课件

电磁感应 辅导课件

3.自感电动势 (1)定义:在自感现象 中产生的感应电动势. ΔI (2)表达式: E L Δ t . (3)自感系数L
①相关因素:与线圈的 大小 、形状、 匝数 以及是
否有铁芯有关. ②单位:亨利(H,1 mH= 10-3 H,1 μ H= 10-6 H.
重点剖析
一 对法拉第电磁感应定律的理解 1.感应电动势E的大小决定于穿过电路的磁通量的 Δ 变化率 ,而与 的大小和Δ 的大小没有必然的关系, Δt 与电路的电阻R无关.感应电流的大小与E和回路总电阻R有 关. 2.磁通量的变化率 Δ 是 —t图象上某点切线的斜率. Δt 3.在高中阶段所涉及的磁通量发生变化有两种方式:一是磁 感应强度B不变,垂直于磁场的回路面积发生变化,此时 ΔS E=nB ;二是垂直于磁场的回路面积不变,磁感应强度发 Δt 生变化,此时E=n Δ B S,其中 Δ B 是B—t图象的斜率. Δt Δt

感应电流方向的判定
1.利用右手定则判断闭合电路的一部分导体做切割 磁感线运动时产生的感应电流方向. 常见的几种切割情况: (1)导体平动切割磁感线;
(2)导体转动切割磁感线;
(3)导体不动,磁场运动,等效为磁场不动,导体反 方向切割磁感线.
2.应用楞次定律判断感应电流方向的步骤: (1)确定原磁场的方向;
电磁感应
第1单元 电磁感应现象 基础回顾
一、磁通量 1.概念:在磁感应强度为B的匀强磁场中,与磁场方
楞次定律
向垂直 的平面S和B的乘积.
2.公式: = BS . 3.单位:1 Wb= 1 T·m2 .
二、电磁感应现象
1.产生感应电流的条件:穿过闭合电路的 磁通量 发
生变化. 2.引起磁通量变化的常见情况 (1)闭合电路的部分导体做 切割磁感线 运动,导致
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

eEk e B
Ek v B
+ v
+
+ + + + Fm - + + + O+ + + +

设杆长为
OP
Ek dl OP ( v B ) dl
l
vBdl vBl
0
l
例2. 的均匀 磁场中,以角速度 在与磁场方向垂直的平面上绕 棒的一端转动,求铜棒两端的感应电动势. 解
R1
I
I r
l
R2
2 πr 如图在两圆筒间取一 长为 l 的面 PQRS ,并将 其分成许多小面元. I 则 dΦ B dS Bl dr
解 两圆筒之间 B
I
R1 Q
R
I r
P
R2
l
S
Φ dΦ
R2
I
2π r
ldr
R1
dr
Φ dΦ
R2
I
2π r
一长为 L 的铜棒在磁感强度为 B
+ + + + + + + + + + + + + + + dl + + +
d (v B) dl
vBdl
L
+ + P + + + + +
vBdl
0
B
o v + + +
方向 O P 1 2 BL (点 P 的电势高于点 O 的电势) 2
ES dl 0 L B E dl dS L S t
——电场与磁场间的普遍关系之一
3. 感应电流(涡流)的应用
▲ 涡流的热效应
矿石 交流电源
高(中)频炉
减小涡流的措施:
( t)
横截面
绝缘层 硅钢片
割断了大的涡流
▲涡流的磁效应——电磁阻尼
lBdl
0
L
+ + + + + + +
I
A dl 1m
v
1m
B
例3.已知 I=40A, v=2m/s,则金属杆AB 中的感应电动势i= ,电势较高端为 . X
o
x x+dx
解: ⑴设i正方向为AB
则对于x-x+dx线元,有
0 Ivdx di (v B) dl vBdx 2 x
Φ2 Φ1 1. 互感系数 M1 M 2 M (理论可证明) I1 I2
注意 互感仅与两个线圈形状、大小、匝数、相 对位置以及周围的磁介质有关(无铁磁质时为常 量).
L1
I2
2 .互感电动势
12
dI dI1 dt
dI1 21 M dt

12
dI 2 dt
§9.5 磁场的能量(Energy of Magnetic Field)
1.载流线圈的磁能 L i a b i=Ldi/dt
i:0I i阻碍电流增长 电源克服i做功,与此同 时建立起磁场,所做的 功转化为磁能.
ii+di过程(tt+dt),电源做的功: dA=dq(Ua-Ub) =idt(-i) =idtLdi/dt =Lidi
②金属杆为半圆,其所在平面垂直于直线电 流,则cd=?
⊙v
b o
I⊙
c a
d
答案同①
③金属杆为任意形状,c、d位置及速度方向 同前,则cd=? 答案同①
§9.3 感生电动势
特点:回路不变,磁场变化. 1.感生电动势的计算
dYm i dt
2.感生电场(induced electric field)
感生电动势:
F非来自某种非静电场——感应电场 Ei
闭合回路中的感生电动势
F非 F洛
dΦ Ei dl L dt
Φ B ds
d Ei dl B ds L S dt S dB Ei dl ds L S dt
——电源内部存在非静电场
() ( ) ( )
A( )( )
() F非 dl q E非 dl
非静电场场强

()
( )
E非 dl
a

+
方向:(-)(+) b
(U低U高)
大小:开路电压 (=Ub-Ua)
en 与 B
dI L L dt
自感
L L
dI dt
6
单位:1 亨利 ( H )= 1 韦伯 / 安培 (1 Wb / A)
1mH 10 H , 1μ H 10 H
3
二. 互感电动势 互感
路中所产生的磁通量
I1 在 I 2 电流回
B1
I1
L2
B2
Φ2 M 2 I1 I 2 在 I1 电流回路 中所产生的磁通量 Φ1 M1I 2
感生电场和静电场的对比
E静 和 Ei 均对电荷有力的作用.
静电场是保守场

L
E静 dl 0
dΦ 感生电场是非保守场 L Ei dl dt 0
静电场由电荷产生;感生电场是由变化的磁 场产生 .
一般:E ES Ei
(static) (induced)
ldr
R1 Q
R2 Φ ln 2π R1
Il
R1
Φ l R2 L ln I 2π R1
R
I
I r
P
R2
l
S
单位长度的自感为 L R2 ln l 2π R1
dr
例5. 如图同轴电缆,中间充以磁介质,芯线与圆筒上的 电流大小相等、方向相反. 已知 R1 , R2 , I , , 求单位 长度同轴电缆的磁能. 设金属芯线内的磁场可略. 解 由安培环路定律可求 B r R1 , B 0 I R1 r R2 , B 2πr r R2 , B 0 则

R2
R1 r R2
2
1B 1 I 2 ( ) wm 2 2π r 2
Wm wm dV
V
2 1 I 2 I R1 r R2 wm ( ) 2 2 2 2π r 8π r 2 I
V
8π r
2 2
dV
单位长度壳层体积
dV 2π rdr 1 2 2 R2 I I R2 ln Wm dr R1 4 π r 4π R1 R2 1 2 ln Wm LI L 2π R1 2
x x+dx
X
d m 0b ln 2 dI 0bI 0 ln 2 i sin t dt 2 dt 2
[思考]
若金属框以速率v右移,在t时刻正处于图示位置, 则i=? Hint: i为该时刻感生电动势与动生电动势之和
0bI 0 ln 2 0bI 0v i sin t cos t 2 4a

r dr
R2
EXERCISES
⒈ 一根直导线在均匀磁场 B 中以速度 v 运动
答: v B
,则导线中对应于非静电力的场强 (称作非 静电场场强)Ek= .
⒉ 在感应电场中电磁感应定律可写成
式中Ek为感应电场的电场强度,此式表明 (A)闭合曲线上 Ek处处相等.
(B)感应电场是保守力场. (C)感应电场的电力线不是闭合曲线. (D)在感应电场中不能像对静电场那样引 入电势的概念. 答案:(D)
一 电磁感应现象
B
m变化 回路中产生Ii ——电磁感应
L
二. 电磁感应定律 回路中的感应电动势与穿过这个闭合回路的磁 通量对时间变化率成正比.
dΦ K dt
若单位:
Φ —韦伯

K 1

t
—秒 —伏特
dΦ dt
dΦ dt
感应电动势的方向
B
Φ 0( B 与回路成右螺旋)
例1. 在匀强磁场中匀速转动的平面线圈, 已知 S , N , 求 解 设 t 0 时, 同向 , 则
t
N

o' en B
N NBS cost d NBS sin t
dt
令 则
m sin t
ω m NBS o
0I过程,电源做的总功:
A Lidi LI
0 1 2
I
2
载流线圈的磁能: Wm
A LI
1 2
2
2.磁场能量密度 载流细螺绕环: 管内 B=0nI 管外 B=0

I
2
2
L
2
B 1 磁能 Wm 1 V n V I LI 0 2 2 2 0
2
B 磁场能量密度: wm 2 0
2
3.磁场的能量
Wm wm dV

例 4 有两个同轴圆筒形导体,其半径分 别为 R1 和 R2 ,通过它们的电流均为 I , 但电流的流向相反. 设在 R 1 两圆筒间充满磁导率为 的均匀磁介质, I r I l 求其自感 L .
R2
例4. 如图同轴电缆,芯线与圆筒上的电流大小 相等、方向相反. 已知 R1 , R2 , I , 求单位长度同 轴电缆的自感.
涡流阻尼摆
相关文档
最新文档