基于DSP和增量式PI电压环控制的逆变器研究 原创论文
基于DSP的逆变电源锁相环的设计与研究

文章编 号 :0 93 6 (0 7 0 —0 80 10 —6 4 2 0 )60 4 —3
冀 辩钠舞赞
基 于 DS P的逆 变 电 源锁 相 环 的设 计 与研 究
龚 益 民 , 小 惠 臧 ( 州 大 学城 轻工 学 院 , 州 23 6 ) 常 常 1 14 摘 要 :采 用基 于 D P的 数 字 锁 相 环 ( P ) 高频 逆 变 电 源输 出频 率 的 实 时控 制 , 实现 逆 变 器 工作 频 率 对 负载 谐 S D I 对 L 可 振频 率的同步跟踪 , 确保逆 变器开关 器件工作在零 电压 电流软 开关( VZ S 状 态, 著减小功 率器件 的开关损 耗和提 高 Z C) 显 装置 效率 。文 中在 给 出 D P控 制 的逆 变 电源 拓 扑 结 构 基 础 上 , 出 了适 用 于 高频 逆 变 电源 的锁 相 环 数 学 模 型 , Z域 中 S 推 在 对二 阶 数 字锁 相 环进 行 了稳 定性 分析 和 动 态设 计 。在 对 锁 相 环 Z域 传 递 函数 分 析 的 基 础 上 , 出二 阶 数 字 锁 相 环 的 稳 定 得 条件 , 给 出数 字锁 相 环 的软 件 实现 , 并 最后 进 行 了 实验 验 证 。 实验 结 果表 明在 Z域 中对 基 于 D P 的二 阶数 字 锁 相 环 的动 S 态分 析 和 设 计 是 合 理 可行 的 。 用此 方 法设 计 的 电源 具 有 良好 的 动 态 响 应 和抗 扰 性 能 。
Ab t a t sr c :Th g t l a e L c e o ( II) e h o o y b s d o g t l i n l o e s r( P)i a p id t e Di i a Ph s — o k d Lo p DP t c n l g a e n aDiia S g a c s o DS Pr s p l O e c n r l h p r t g f e u n y o n H ih Fr q e c — n e t r( o to e o e a i r q e c fa g — e u n y I v re HF— I v re )smu tn o sy O a o a a t v r t s o t n n e t r i la e u l ,S s t d p a i i f e e t e l a e o a tfe u n y t e p t e iv re l y r i g o VZ S ( e o Vo a c Z r re tS th n )mo e h o d r s n n r q e c O k e h n e t ra wa s wo k n n Z C Z r h g  ̄ e o Cu r n wic i g d. Att eme n i 。t e l s e f s th n o o e t r e u e b iu l n h fiin y o h o r i i r v d h a wh l e h o s s o wi i g c mp n n s a e r d c d o v o sy a d t e efce c f t e p we S mp o e c g e ty o r a l n ZVZ d .I h s p p r h o o o y o CS mo e n t i a e ,t e t p l g f HF— I v r e a e n DS sp e e td.a d PI Sma h ma i n e t rb s d o P i r s n e n ’ t e t I c mo e Ss tu ,wh c ss i b e f r HF— I v re .Th t b l y o e o d o d rDPI i n l z d,a d t e d n mi d — d l e p i ih i u t l o a n etr e sa i t fs c n r e i s a ay e I n h y a c e sg sc n i e e sn h in i o sd r d u i g t eZ— ta so m e h i u .At h a eo n lz n h r n f r tc n q e e b s fa ay i g t e Z— ta se u c i n o t r n f rf n to fDPI t es a i … I h tbl — i o d to fs c n r e t c n i n o e o d o d rDPL s p e e t d Th o t r ft e DP i i e y i L i rsn e . e s fwa e o h LI sg v n,a d t e c r e p n i g e p r n s n h o r s o d n x e i me ti d n i a l. Th e u t fe p rme t h w h tt e d n mi a ay i a d d sg fs c n r e ) r e s n b e o efn l y e r s ls o x e i n s s o t a h y a c n l ss n e in o e o d o d r IPI a e r a o a l I
基于DSP三环控制的逆变电源的设计

基于DSP三环控制的逆变电源的设计针对逆变电源输出电压波形畸变并且在大功率负载下输出电压掉压严重的问题,提出了采用电压有效值外环、电容电压环和电感电流内环的三环控制策略,选用TI公司的DSP TMS320F2812芯片实现了三环的控制算法,并且给出了程序流程图以及逆变电源的详细设计过程。
在理论分析和仿真的基础上设计了一台采用单极性倍频SPWM调制的6 kVA /50H z/220 V 逆变器,并进行了实验。
实验结果显示,所采用的三环数字化控制方案能达到??逆变电源带大功率负载条件下较优的动态、稳态特性。
0前言以前,正弦波逆变器大多采用输出电压均值环来维持输出电压的恒定,而波形控制是开环的,这种控制方式不能保证输出电压的波形质量,特别是在非线性负载条件下输出电压波形畸变严重,失真很大; 在突加(减)负载时输出电压的动态性能难以满足用户的要求。
目前的逆变电源大多采用外环电压、内环电流的双闭环控制策略,电压瞬时值外环在很大程度上改善了波形的质量,电流内环加大了逆变器控制系统的带宽,使得逆变器动态响应加快,输出电压的谐波含量减小,非线性负载适应能力加强。
但是,当负载比较大时会出现输出电压掉压严重的现象。
为解决逆变电源在大功率负载下掉压严重的问题,本研究提出在双环控制的基础上外加一个电压有效值的三环控制策略,它的实质是随负载的增加而增大基准正弦信号,从而保证输出电压幅值稳定。
另外,由于对逆变电源的数字化控制是当今电源的发展方向,所以本研究通过选用T I公司的DSP TMS320F2812来实现对逆变器的数字化控制。
1 逆变系统单相全桥逆变器的主电路结构,如图1所示。
采用了单极性倍频SPWM 调制技术,可以在不增加开关损耗的情况下将谐波频率提高一倍,大大减小了输出滤波器的体积。
采用了瞬时电压环、瞬时电流环和电压有效值外环的三环控制策略,电感电流瞬时值反馈环是内环,电容电压瞬时值是外环,电容电压有效值反馈环是第三环,有效值反馈控制用来改变电压瞬时值反馈环的正弦波给定幅值,三环控制很好地解决了“随着负载的增加,输出电压幅值下降”的问题。
三相逆变器DSP控制技术的研究

三相逆变器DSP控制技术的研究引言随着可再生能源的快速发展和广泛应用,逆变器作为可再生能源发电系统的核心设备,扮演着重要的角色。
而在逆变器控制技术的发展中,DSP控制技术得到了广泛应用。
本文将重点讨论三相逆变器DSP控制技术的研究及其应用。
一、三相逆变器的基本结构和工作原理三相逆变器由直流侧、逆变侧和控制部分组成。
直流侧主要包括整流器和滤波电容,用于将直流电源输出电压平整化;逆变侧则是通过控制电子开关器件(如IGBT)进行电流的开关控制,将直流电压转化为交流电压;控制部分主要是基于DSP芯片的控制系统,用于控制逆变器的工作状态,以实现逆变器的性能优化。
二、三相逆变器DSP控制技术的应用1.谐波抑制在三相逆变器的输出电压中,存在着许多谐波成分,这对于接入电网可能产生不利的影响。
因此,利用DSP控制技术,可以有效地对逆变器输出进行谐波抑制处理,提高电网的电质量。
2.电流控制电流控制是逆变器控制中的一个重要环节。
采用DSP控制技术,可以实现电流的精确控制,提高逆变器的响应速度和控制精度,使逆变器能够更好地适应不同的工作条件。
3.矢量控制在三相逆变器的运行过程中,需要将直流电压转化为交流电压,并根据负载要求进行动态调整。
通过DSP控制技术,可以实现矢量控制,将逆变器的输出电压和频率精确控制在负载要求的范围内,提高逆变器的输出电压和频率稳定性。
三、三相逆变器DSP控制技术的优势1.精确度高DSP控制技术可以实时采集和处理逆变器的输出数据,对逆变器的运行状态进行精确监测和控制,提高逆变器的控制精度。
2.稳定性好DSP控制技术可以实现逆变器的闭环控制,将逆变器的输出电压和频率控制在一定的范围内,提高逆变器的稳定性,提高系统的可靠性。
3.响应速度快DSP芯片具有运算速度快的特点,可以实现快速的控制计算和响应,降低逆变器控制的延迟时间,提高系统的响应速度和动态性能。
结论三相逆变器是可再生能源发电系统中不可或缺的设备,而DSP控制技术则是实现逆变器高性能控制的关键。
基于DSP控制的双模式逆变系统的研究

万方数据万方数据万方数据到。
采用定时中断。
在每个开关周期.程序从参考正弦表中获得相应数字量,并将它赋值给比较寄存器CMPRx。
PWM输出设置为高有效时,当计数值从零开始计数到周期值TxPR的过程中与CMPR】【匹配时.则输出高电平:当计数值从周期值TxPR开始计数到零的过程中与CMPRx匹配时。
则输出低电平。
设置为低有效的另一组PWM输出与高有效互补。
当到达一个正弦周期时,将查表的指针复位到正弦波的初始处循环读取【4】。
为了同一桥臂的上下开关管直通。
两路互补的PWM信号还要通过死区时间寄存器来设置一定的死区时间。
4.2.3数字锁相在由独立切换到并网时,需要锁相使此时的输出电压与电网电压同幅同频同相.以减小电压冲击,同时由于系统在并网运行时为电流输出型,需使输出并网电流与电网电压同频同相,以实现最大有功输送,故需进行锁相。
该设计采用软件锁相实现并网切换前使输出电压与电网电压同步。
并网后输出使并网电流与电网电压严格同步151。
将电网电压信号经霍尔传感器比例缩小、滤波和电压抬升,整形成与其同步的符合DSP输入的方波信号。
该信号送入TMS320LF2407A的CAPl引脚。
当捕捉到方波信号的上升沿时,记录下此刻定时器的值。
由相邻两次定时器值之差可算得电网电压周期。
用此周期值作为正弦调制波的周期.即可实现输出电压或并网电流与电网电压同频。
通过判断电网电压过零时正弦表指针的位置来判断二者的相位差.调整输出电压或并网电流参考正弦表的指针.可实现输出电压或并网电流与电网电压同相。
5仿真与实验用仿真软件Matlab/Simulink对系统进行仿真。
仿真参数设定为:直流侧母线电压Ud=350V,参考电流幅值I=10A,滤波电感L=5mH,开关频率疋=15kHz,仿真算法采用Ode23t,误差为lxl0巧。
负载为阻性负载。
在O.08s时由独立工作模式切换为并网工作模式,如图7a所示。
在0.2s时由并网工作模式切换为独立工作模式.如图7b所示。
基于DSP控制技术的逆变器谐波失真消除

基于DSP控制技术的逆变器谐波失真消除1 引言 随着数字处理系统应用的快速发展,许多设备,如报警系统,健康护理设备和安全照明设备等对高品质不间断电源的需求也就随之增加。
而且随着高频静态功率变换器的广泛使用,包括临界载荷在内的许多电力负载都成为了非线性的,并将产生谐波。
因此,必须应用附加谐波滤波技术来保证UPS逆变器有高品质的正弦输出电压。
一台典型的在线式UPS系统框图如图1所示,它主要是由以下几部分组成:整流滤波电路、充电器、逆变器、输出变压器及滤波路、静态开关、充电电路、蓄电池组和控制监测、显示告警及保护电路。
其中最主要的部分就是由整流器提供存储能量的蓄电池组和把直流电压转换成正弦交流输出的逆变器。
由于与输出相连接的非线性负载的影响,使得UPS的输出电压产生谐波失真,难以达到设备对高品质正弦输出电压的要求。
图1 典型在线式UPS的系统框图 UPS转换开关的控制对减小输出电压谐波含量来说是至关重要的。
而控制转换开关的难点在于滤波器的输出阻抗。
因而人们想提供一个近似于零阻抗的转换级,使它能在理论上产生接近于零失真的正弦输出电压,并且不受负载条件的影响。
虽然通过高频转换开关可以实现极低的输出滤波阻抗,然而在大功率应用中(如功率大于20kVA),由于转换频率被限定在1-2kHz,它便不能降低滤波器输出阻抗了。
因此,现代UPS系统通过一种采用了复杂的大规模无源元件的滤波方案使逆变器输出电压的谐波含量达到最小。
另外,许多PWM技术已经成功地应用于补偿滤波器的输出阻抗和降低输出电压的失真。
本文介绍了UPS系统非线性负载的实时DSP控制,讨论了采用DSP控制的优点,并对DSP控制的UPS逆变器和谐波调节系统进行了分析,最后通过一个1KVA系统验证了该控制方案的正确性。
2 逆变系统的分析及模拟控制 现代UPS系统使用PWM逆变器来产生单相或三相交。
整流器将单相或三相交流输入转化成直流输入,这不仅向逆变器提供了能量,而且使蓄电池组保持满载。
基于DSP 的逆变电源模糊 PID 控制

2.2 模糊PID的实现 DC/AC逆变电源控制的主要是输出电压及频率
的准确性。频率的准确性由SPWM发生器决定(它是一个 存贮在存储器内的一个正弦输出表格),只要触发计算 准确就能达到设计要求。负载的变化使输出电流产生 变化,对于一定脉宽输出的DC/AC电源来说,势必 导致输出电压的变化。因此采用模糊控制规则根据不
存储、滤波
计算kp、ki、kd
2.3 DSP 软件算法实现 为了保证模糊 PID 控制的时实性和准确性,DSP
在 A/D 采样的中断子程序中就调用模糊 PID 控制算法 程序,立即计算出输出控制量并送到被控对象,根据 TMSLF2407 的性能,机器时钟周期和中断延时可以计 算出本系统从采样当前实际输出值到输出控制量大约 需要 6.67μ ,这对于 1ms 一次的采样来说是足够的, 完全满足时实性要求。程序流程图如图 3 所示。下面 是部分程序
同的 e 和 ec ,对PID控制器的参数kp、ki、kd进行在线
μ
Z
S
M
L
0
1
2
3
E/EC
4
5 KP/KI/KD
图 2 语言变量 E、EC、KP、KI、KD
自整定来调节输出电压。模糊控制器的输入变量是偏 差绝对值 E 、偏差变化率绝对值 EC ,模糊控制器
在本文中,利用 CRI 法推理时控制过程是用查控 制表来产生控制量的,在控制表中,模糊偏差量 E 、
(3) 采用 DSP 控制系统在满足逆变电源控制的要 求下,具有成本低、控制灵活、可靠性高的特点。
e(k)=r(k)-u(k) ec(k)=e(k)-e(k-1)
增量式PID算法
e(k)、ec(k)取绝 对值并模糊化
SPWM发生器 返回
基于DSP闭环控制的逆变器

DSP闭环控制逆变器的硬件实现
1 2 3
硬件架构
基于DSP的闭环控制逆变器通常采用模块化设计 ,包括主电路、控制电路、驱动电路和保护电路 等。
核心元件
主电路的元件包括开关管、滤波器和变压器等, 控制电路的核心元件是DSP控制器和相关外围电 路。
电路连接
各电路元件通过合理的连接,实现能量的转换与 控制。
DSP的主要应用领域
总结词
通信、音频处理、图像处理、控制系 统等
详细描述
DSP技术在通信、音频处理、图像处 理、控制系统等领域有着广泛的应用 ,如语音识别、音频编解码、图像识 别、雷达信号处理等。
基于DSP的控制系统设计
总结词
实时性、高精度、稳定性
详细描述
基于DSP的控制系统设计具有实时性、高精度和稳定性等特点,能够实现对复杂 系统的精确控制和优化管理。
03
基于DSP的闭环控制逆变器设 计
闭环控制系统的基本原理
反馈控制
通过比较期望输出与实际输出之间的误差,调整系统参数以减小 误差。
负反馈
将系统输出信号反馈到输入端,用于纠正系统误差。
比例-积分-微分控制
通过调整比例、积分和微分系数,改善系统动态性能和稳态精度。
基于DSP的闭环控制逆变器设计方法
快速响应
DSP的高速运算能力使得逆变器能够快速跟踪负载变化。
闭环控制逆变器的优点与局限性
• 灵活性:可实现复杂的控制算法,适应不 同的应用场景。
闭环控制逆变器的优点与局限性
对硬件要求高
需要高性能的DSP和高速A/D转换器 等硬件支持。
抗干扰能力有限
容易受到电网波动、电磁干扰等外部 因素的影响。
基于DSP的并网逆变器的设计

Copyright©博看网 . All Rights Reserved.
Keywords:grid⁃connected inverter;energy feedback control;DSP;software phase locked loop;PI closed⁃loop regulation
0引言
逆变器也称逆变电源,逆变器是能将其他形式的能 量(蓄电池、太阳能电池、电机制动、电源老化试验等)转 变 成 交 流 电(工 频 或 中 频 交 流 电)的 装 置 。 其 通 过 控 制 半导体功率器件的开关,把直流电能转变成交流电能 。 [1]
现能量再循环,设计了基于 DSP 的并网逆变器,采用倍频单极性 SPWM 技术实现逆变控制,并利用 DSP 外设 CAP 检测逆变器
输出电流频率和相位,以软锁相技术实现逆变器输出电流的相位和频率与电网电压同步;利用 DSP 外设 ADC 采集逆变器的
输出电流与电网的电压,采用最后搭建实验样机验证设计的可行性。
关键词:并网逆变器;能量回馈控制;DSP;软锁相;PI 闭环调节
中图分类号:TN710⁃34;TM464
文献标识码:A
文章编号:1004⁃373X(2014)18⁃0159⁃04
Design of DSP based grid⁃connected inverter
YANG Shu⁃tao,HE Tian⁃zhang,LIU Jun⁃guo
并网逆变器输出年工频交流电,且输出电流的频率 和相位与市电的频率和相位相同,它能以最大功率因数 向电网回馈能量,是 UPS、馈能式电子负载、分布式电站 的核心控制器。逆变技术原理在 1931 年提出,1948 年 美国西屋电气公司研制成功。随着新型功率器件和计 算机技术的发展,如今功率开关器件从 20 世纪 60 年代 的 SCR 到大功率高频 IGBT,为逆变器向大容量方向发 展奠定了基础 。 [2] 随着微电子技术的发展,逆变控制器 件从分立模拟电路到高速 DSP,使先进的控制技术如矢 量控制技术、多电平变换技术、重复控制、模糊逻辑控制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于DSP和增量式PI电压环控制的逆变器研究原创论文
基于DSP和增量式PI电压环控制的逆变器研究
摘要:研究了一种基于数字控制的逆变器,该方案采用电压瞬时值环控制,以提高输出稳定性,同时兼顾输出动态性能。
反馈电路中采用增量式PI法则,并对PI增量及PI输出进行限幅控制,避免因误扰动造成输出的不稳定,进一步确保系统的稳定性与动态性能。
采用TMS320LF2407A来实现算法,并进行了一个输出最大值为200V,输出功率为500W的逆变器实验。
关键词:逆变器;电压环控制;增量式PI;DSP控制
0 引言
目前,逆变器应用最为广泛的PWM技术中,SPWM控制具有很多优点。
其控制技术主要有电压瞬时值单环反馈、电流瞬时值单环反馈、电压电流双环反馈环控制及电压空间矢量控制。
电压环使系统有较好的稳定性,瞬时值反馈则增强系统的动态性能[1]。
电压环采用PI控制,其中比例环节及时反映控制系统的偏差信号,偏差一旦产生,控制器立即产生控制作用,以减少偏差;积分环节主要用于消除静差,提高系统的无差度。
相对于位置式控制,增量式控制误动作影响小,必要时可以用逻辑判断的方法去掉;且手动/自动切换时冲击小,便于实现无扰动切换;同时其算式中不需要累加,比较容易通过加权处理而获得比较好的控制效果[2]。
相对于数字控制,传统的模拟控制已暴露诸多缺点:需要大量的分立元器件和电路板,制造成本比较高;大量的模拟元器件使其之间的连接相当复杂;模拟器件的老化问题和不可补偿的温漂问题,以及易受环境干扰等因素都会影响控制系统的长期稳定性。
随着微处理器的可靠性与质量的不断提高,数字控制已经在逆变控制中占据着主导地位[3],本文提出了一种基于DSP控制的方案。
1 逆变器建模
单相全桥逆变器如图1所示,E为输入直流电压,S1~S4为开关管,L为滤波电感,r为电感等效内阻,C为滤波电容,R为负载。
图1 单相全桥逆变器
将电感用Ls表示,电容用1/Cs表示,可推导出输出电压Vo(s)与AB两点间电压Vi(s)之间的传递函数G(s)如式(1)所示。
G(s)==(1)
忽略电感等效内阻,则式(1)可简化为
G(s)=(2)
在一个开关周期中,当S1及S4导通时,vi为-E;当S2及S3导通时,vi为E。
由于开关频率与输出频率相比为400,故一个开关周期中可以用平均值代替瞬时值。
vi=ED+(-E)(1-D)=(2D-1)E(3)
本方案采用双极性SPWM,故
D=(4)
式中:vm为正弦波信号,vm=Vmsinωt;
Vtri为三角载波峰值。
则调制比M为
M=(5)
将式(5)代入式(3)可得
vi≈(6)
转化为频域有
(7)
由式(7)与式(1)可得式(8)
(8)
此即逆变器输出传递函数,由此可得逆变器的等效框图如图2所示。
图2 逆变器等效框图
2 控制方案设计
本系统采用电压环反馈,为提高动态性能,采用瞬时值控制。
电压环控制中,采用增量式PI控制,同时对其算法进行了优化,确保输出具有较好的稳定性。
控制器采用TI公司的TMS320LF2407A,其最高工作频率可达40MHz,能够较好地实现以上算法。
2.1 电压环设计
忽略电感等效内阻,电压环等效框图如图3所示。
图3 电压环等效框图
图中:Kpwm为PWM环节等效增益,其大小为调制波到逆变器AB两端输出的增益;
K为反馈回路中的电压采样系数。
图3可简化为图4。
图4 电压环简化框图
图中Kpwm系数已归于PI模块中。
逆变器开关频率取为20kHz,输出为工频,则取LC滤波器的转折频率fn为1kHz,综合考虑电感电流纹波与压降,取L=1mH,C=10μF。
本实验取满载时R= 40Ω。
设PI环节传递函数为
G(s)=Kp+(9)
则系统的开环传递函数为
G(s)=K(10)
取PI补偿频率为500Hz,而系统的穿越频率为1kHz。
则由式(10)可得
=2π×500(11)
=1(12)
式中:K为采样系数,实验中设计为0.014。
联立式(11)及式(12)可得
kp=39 ki=124416
其波特图如图5所示。
图5 电压环波特图
从图5中可以看出,系统相角裕度为60°,满足稳定性要求。
图6为仿真所得的输出波形。
从图6中可看出,输出波形为正弦波,幅值为200V,频率为50Hz,与设计值相符。
图6 逆变输出波形
2.2 增量式PI算法及其优化
PI环节的传递函数为式(9),其对应的时域方程式为
y(t)=kp(13)
式中:y(t)为PI输出;
e(t)为PI差动输入;
Ti为积分时间常数;
kp为比例系数。
对式(13)离散化得
yk=kp(14)
式中:Ts为采样时间。
这即是位置式PI控制,而若采用增量式PI控制,可避免误动作,同时运算不需要累加,对数字控制尤其方便。
由式(14)可得
yk-1=kp(15)
由式(14)与(15)可得
yk=yk-1+kp ek-kp·ek-1(16)
式(16)为一般的增量式PI算法,但实际控制中,很多不稳定因素易造成增量较大,甚至比输出还大,进而造成输出波形不稳定,因此,必须对增量式PI算法进行优化。
本方案采用饱和区判断法则,即对增量
Δyk=kp ek-kp·ek-1(17)
进行判断,当其绝对值越过某一上限ΔYlim,即进入饱和区时,将ΔYlim赋予绝对值。
但是,即使对增量进行饱和区判断后,其输出由于累加的结果,也可能很大,甚至超过载波幅值。
因此,也必须对PI输出进行限幅处理,此时,可以以调制波幅值作为限幅值,也可简单地以载波幅值作为限幅值,等稳定后这个幅值将不会超过调制波幅值。
2.3 DSP控制算法的实现
TI公司的TMS320LF2407A的最高工作频率可达40MHz,存储结构为哈佛结构,数据、程序和I /O空间的寻址区域均可高达64k,且相互独立,片内则有32k的flash空间。
同时片上具有A/D模块,其分辨率为10位,片上还具有PWM输出口,能实现同相、反相输出,还能添加死区控制,能较好地完成电压环控制算法的实现[4]。
程序中采用最高工作频率40MHz,开关频率为20kHz,运用定时器的周期中断,使用连续增或者减模式,产生对称的三角载波。
设置比较输出使能,利用比较寄存器CMPR1和CMPR2的值控制P WM1~PWM4的输出,产生两路同相和反相的PWM信号,控制开关管的开通和关断。
同时为避免上下桥臂同时导通,程序中加入0.5μs的死区控制。
而CMPR1与CMPR2的计算,则由每一个周期中断给出。
周期中断时,通过采样电压反馈值,经过优化的PI增量式控制后,产生占空比D,由D 与定时期周期即可得CMPR1和CMPR2的值。
图7为周期中断的程序流程图。
图7 周期中断流程图
3 实验结果
实验主电路为单相全桥电路,如图1所示,其中开关管采用20N60S的MOS管,滤波电感取1 mH,滤波电容取10μF,负载R取40Ω,输入直流电压为250V,开关频率取20kHz。
PI算法中比例系数取39,积分时间常数取(1/3140)s。
图8为输出电压波形,从图8中可以看出,输出电压峰值为200V,频率为50Hz,且THD很小,输出波形稳定。
图8 逆变器输出波形
图9为满载切向半载时输出波形的变化,从图9中可以看出,输出经过轻微扰动后,马上恢复稳定,可见动态性能比较好。
图9 满载切半载时输出电压波形
4 结语
本文提出的逆变器方案,采用电压瞬时值控制,反馈环采用增量式PI控制,并对PI增量和PI输出进行限幅控制,确保了输出的稳定性和精度,同时避免误扰动,有较好的动态性能。
控制器采用T I公司的TMS320LF2407A来实现,较好地完成了控制算法。