物质的聚集状态课件

合集下载

第一章物质的聚集状态普通化学优秀课件

第一章物质的聚集状态普通化学优秀课件
第一章物质的聚集状态普通化学
第一节 气体 第二节 液体
第一节 气体
一、理想气体状态方程
1.理想气体:假设分子不占有体积、分子间没 有吸引力、分子之间及分子与器壁之间发生 的碰撞不造成动能损失。
注:实际气体在高温、低压下接近理想气体。
为什么?
2.描述气体状态的物理量:T、P、V和n 3.方程式:pV=nRT
P总
n总RT V
4.008.314 298.15 10.0103
991.5kPa
∵Pi
ni n总
P总
P(N2 )
1.00 991.5 4.00
247.9k
Pa
P(H2 )
3.00 991.5 4.00
ቤተ መጻሕፍቲ ባይዱ
743.6k
Pa
例1-3一容器中含4.4g二氧化碳、16g氧气和14g氮气, 在20℃时的总压力为200kPa。计算:⑴二氧化碳、 氧气和氮气的分压各是多少?⑵该容器的体积是多少?
解:
⑴n(CO2 )
4.4 44
0.10mol , n(O2 )
16 32
0.50 mol
n( N2 )
14 28
0.50 mol
n(总) n(CO2 ) n(O2 ) n(N2 ) 1.10 mol
P(CO2)
n(CO2) n(总)
P(总)
0.1020018.2kPa 1.10
0.50
P(O2)
图1-2 几种液体的蒸气压曲线
P(kPa)
T(℃)
图1-2 几种液体的蒸气压曲线
三、水的相图
㈠概念
1.相:系统内部物理和化学性质完全均匀的部分 称为相 2.相变:物质从一个相转到另一个相的过程。如 水(液相)加热蒸发转为水蒸气(气相) 3.相平衡:各相的组成和数量不随时间而改变 4.相图:相平衡时的温度、压力之间的关系用图 形来表示,这种图称为相图

教学课件:第一章-物质的聚集状态

教学课件:第一章-物质的聚集状态
气象观测
气态物质如空气中的水蒸气、二氧化碳等,用于气象观测和气候变 化研究,对环境保护和气候预测具有重要意义。
THANKS FOR WATCHING
感谢您的观看

气体定律与状态方程
1 2 3
理想气体定律
理想气体遵循玻意耳定律、查理定律和盖吕萨克 定律,这些定律描述了气体在不同条件下的状态 变化。
状态方程
理想气体的状态方程为PV=nRT,其中P表示压 强,V表示体积,n表示摩尔数,R表示气体常数, T表示温度。
实际气体近似
对于压强较大或温度较低的气体,实际气体可以 近似为理想气体。
04 气态物质
气体分子运动论
01
分子运动论的基本假设
气体由大量做无规则运动的分子组成,分子之间相互作用力可以忽略。
02
分子平均动能
气体分子的平均动能与温度成正比,温度越高,分子运动越剧烈。
03
分子分布
气体分子在空间的分布是均匀的,但在单位时间内与器壁碰撞的分子数
与气体分子速率大小有关,呈现出“中间多、两头少”的分布规律。
流动性
液体具有一定的流动性,可以流动 和变形。
液体的相变与热力学性质
熔点和沸点
熔点和沸点是液体物质的重要热 力学性质。
热容量和导热性
液体的热容量和导热性与温度有 关,不同液体有不同的热容量和
导热性。
相变过程
液体在一定条件下可以发生相变, 如蒸发或凝固。
液体中的溶解与扩散
溶解度
不同物质在液体中的溶解度不同。
气体的相变与热力学性质
相变
01
气体在一定条件下可以发生相变,例如液化、凝华等。相变过
程中气体的热力学性质会发生显著变化。

《物质的聚集状态》PPT课件

《物质的聚集状态》PPT课件

(1) (2) (3)
pi V总 = ni R T ( 2 )
p总V总 = n R T ( 1 )
式(2)/ 式(1) 得
pi p总
ni =
n
= xi
故 pi = p总•xi
即组分气体的分压等于总压与该
组分气体的摩尔分数之积。P7例题1-2
p总 Vi = ni R T ( 3 )
p总V总 = n R T ( 1 ) 又 式(3)/ 式(1) 得
由一种(或多种)物质分散于另一种物质所 构成的系统,称为分散系。
分散相: 被分散的物质。 分散介质: 容纳分散相的物质。
按聚集状态或分散质粒大小可对分散系进行分类。
4
按聚集状态分类的分散系
分散相 气体 液体 固体 气体 液体 固体 气体 液体 固体
分散介质 气体 液体 固体
实例 空气、天然气、焦炉气 云、雾 烟、灰尘 碳酸饮料、泡沫 白酒、牛奶 盐水、泥浆、油漆 泡沫塑料、木炭 豆腐、硅胶、琼脂 合金、有色玻璃
pV = nRT
(1-1)
p为气体压力,单位:Pa; V为气体体积,单位:m3; T为气体温度,单位:K;
n为气体的物质的量,单位:mol;
R为摩尔气体常数,取值8.314 Jmol-1K-1 。
8
Question 例1-1 某碳氢化合物的蒸汽,在100℃及
101.325 kPa时,密度ρ=2.55 g·L-1,由化 学分析结果可知该化合物中碳原子数与 氢原子数之比为1:1。试确定该化合物的 分子式。
Vi = ni V总 n
= xi 又有
pi = p总•xi

Vi pi = p总• V总
即组分气体的分压,等于总压与

物质的聚集状态-PPT课件

物质的聚集状态-PPT课件

单位:L/mol或m3/mol等
公式:
V
Vm= ——
n
对象:任何气体(纯净或混合气体) 标准状况下:Vm约22.4L/mol 标准状况: 温度:0oC、压强1.01×105Pa
思考:1mol气体在任何状况下所占的体积是不是相等? 是不是都约为22 .4L?
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
几点注意:
1、状态:气体 2、状况:一定温度和压强下,一般指标准状况 3、定量:1mol 4、数值:22 .4L 5、通常状况:200C、1atm 6、气体体积与微粒数目有关,与种类无关。 7、结论:在标准状况下,1mol任何气体所占的体积 都约为22 .4L。
8、有关计算:(标准状况下) V=n×22.4L/mol(n---气体的物质的量)
物质的聚集状态
复习:
粒子数 NA
(N) NA
物质的量
(n)
M 物质的质量
M
(m)
不同聚集状态的物质的结构与性质
思考
1、1mol任何物质的质量,我们可以通过摩 尔质量求出,若要通过质量求体积 还要知道 什么?
密度,V=m/ρ
2、那么下面就请同学们用上面的理论 为依据进行计算填表:(气体是指相同 状况下)
1mol物Байду номын сангаас的体积
10 Cm3
7.2 Cm3 18 Cm3 58.4 Cm3 22.4 L 22.4 L 22.4 L
分析上述两表,得出什么结论?
1、1mol不同的固态或液态物质,体积不同。 2、在相同状态下,1mol气体的体积基本相同。
那么不同状态的物质,体积大小跟哪些因素 有关呢?
举一个例子:同学们在做操的时候,一个班在操场 上所占的面积和哪些因素有关:人数、距离、胖瘦

第三章第一节第1课时物质的聚集状态晶体与非晶体-2024-2025学年高二化学选择性必修2教学课件

第三章第一节第1课时物质的聚集状态晶体与非晶体-2024-2025学年高二化学选择性必修2教学课件

课堂练习
4.图1是元素M的晶态单质和非晶态单质的结构示意图,有关说
法正确的是( )
A.b是晶态单质
图1
图2
B.现有一份粉末状的M单质,一定是a
C.鉴别a、b最可靠的方法是利用其熔点的差异
D.a、b表面凝固的石蜡受热后,产生图2所示现象
课堂练习
5.铁下图1是有机物乙腈(CH3CN)的固体模型中的一部分,有
各向同性
熔、沸点 固定
不固定
本质区别 微观粒子在三维空间是否呈现周期性有序排列
常见非晶体: 玻璃、石蜡、松香、沥青、橡胶、炭黑。
二、晶体与非晶体
观察思考
许多固体粉末用肉眼看不到晶体外形,但在光学显微镜或电子显微镜 下可观察到规则的晶体外形。
晶体结构的周期大小和X-射线的波长相当(1-10000pm),使它成为 天然的三维光栅,能够对X-射线产生衍射:
二、晶体与非晶体
思考讨论
不同方向观察红宝石,发现宝石的颜色不同
在不同方向,晶体对光线的吸收与反射是不同的, 折射率有各向异性。
二、晶体与非晶体
思考讨论
石墨在平行于层的方向上电导率高; 而在垂直于层的方向上电导率低。
在不同方向,石墨的导电能力不同,导电率有各向异性。
二、晶体与非晶体
思考讨论
决定
微观结构
X-射线衍射实验区分晶体和非晶体最可靠的科学方法
二、晶体与非晶体
资料卡片
晶体材料的应用
二、晶体与非晶体
资料卡片
非晶体的优异性能
非晶态合金强度、硬度比相应晶态合金的高5-10倍 非晶态合金在中性或酸性溶液中耐腐蚀性能比不锈钢好的多
课堂练习
1.下列叙述中正确的是( ) A.玻璃是一种常见晶体 B.晶体与非晶体的根本区别在于是否具有各向异性 C.非晶体材料也具有某些优异性能 D.晶体一定比非晶体的熔点高

物质的聚集状态课件

物质的聚集状态课件

等离子态是指气体中的 原子或分子在受到足够 的能量激发时,电子被 电离出来形成自由电子 和离子,呈现出一种高 度离解的状态,如太阳 和其他恒星。
物质聚集状态转变
物质聚集状态的转变是由于温度、压力、磁场等外部条件的变化而引起的。
聚集状态的转变通常伴随着物质物理性质和化学性质的显著变化。
在实际应用中,物质的聚集状态转变具有重要的意义,如工业生产中的结晶、升华、 熔化和凝固等过程,以及自然界中的天气变化、生命活动等过程。
理想气体定律
理想气体定律是描述气体压力、温 度和体积之间关系的一个基本定律, 它指出在一定温度下,气体的压力 与体积成反比。
03
液体
液体的分子运 动
分子运动
液体中的分子不断进行无 规则运动,这种运动受到 分子间相互作用力的影响。
分子间相互作用力
液体分子间存在相互作用 力,这种力使得分子在液 体状态下保持聚集状态。
晶格结构参数
描述晶体结构中原子或分子的间距和排列方式。
固体的基本性 质
1 2 3
热膨胀性 固体在温度变化时,体积发生改变。
电导率 固体材料中电子的迁移率,反映材料的导电性能。
光学性质 固体材料对光的吸收、反射和透射等性质。
固体的力学性 质
弹性
01
固体在外力作用下发生形变,形变与外力成正比,外力撤去后
工业生产 在工业生产中,研究物质的聚集状态有助于优化生产工艺 和提高产品质量,例如通过控制物质的聚集状态改善金属 的加工性能和机械性能。
THANKS
感谢您的观看
物质的聚集状态课件
目录
CONTENTS
• 物质的聚集状态研究的意义和应
01
物质的聚集状态简 介
物质的聚集状态定义

《物质的聚集状态》课件

,相互作用力较强, 具有一定的流动性。
液体分子热运动相对 较弱,具有一定的热 容量和导热性。
液体分子排列相对松 散,具有一定的密度 和粘度。
液体的相变
液体与气体的相变
当温度升高到沸点时,液体开始蒸发变成气体。
液体与固体的相变
当温度降低到凝固点时,液体开始凝固变成固体。
物质聚集状态的变化
01
02
03
04
熔化
固态物质变为液态物质,需要 吸收热量。
凝固
液态物质变为固态物质,需要 释放热量。
汽化
液态物质变为气态物质,需要 吸收热量。
液化
气态物质变为液态物质,需要 释放热量。
物质聚集状态的特点
固态
具有固定的形状和体积,不易流 动。
液态
具有一定的流动性,形状随容器改 变。
04
气态物质
气体的结构与性质
气体分子之间的距离较大,相互 作用力较小,因此气体分子可以
自由移动,且运动速度较快。
气体的密度较小,占据的空间较 大,因此气体可以充满整个容器

气体的扩散速度较快,可以迅速 地扩散到整个空间。
气体的相变
当温度降低到一定程度时,气体分子之间的热运动速度减 缓,分子之间的碰撞频率降低,气体分子之间的距离逐渐 减小,最终气体分子会凝聚成液体或固体。
相变过程中的能量变化
液体的相变过程中需要吸收或释放能量,以维持相变平衡。
液态物质的应用
01
02
03
工业生产
许多工业生产过程中需要 使用液体物质,如冷却剂 、润滑剂、溶剂等。
日常生活
液体物质在日常生活中也 广泛应用,如饮用水、饮 料、食用油等。
科学实验
在科学实验中,常常需要 使用各种液体物质进行实 验,如化学试剂、生物培 养基等。

大学基础化学课件工科05物质的聚集状态


熔融盐,如熔融状态的NaCl,就是由阴、阳离子组成的液体,称为高温离子液体。
室温离子液体,它在-100~200C均呈液体状态,与一般的液态物质不同,它完全是由离子组成的,一般是由有机阳离子和无机阴离子组成。也不同于等离子体,应该是物质的另一种聚集状态。
离子液体
5.2.1 理想气体状态方程
分子本身体积为零的气体
0 g·mol-1
02
例:为了行车的安全,
01
可在汽车中装备
02
上空气袋,防止
03
碰撞时司机受到
04
伤害。这种空气
05
袋是用氮气充胀
06
起来的,所用的
07
氮气是由叠氮化
08
钠与三氧化二铁
09
在火花的引发下
10
反应生成的。总
11
反应是:
12
6NaN3+Fe2O3(s)
3Na2O(s)+2Fe(s)+9N2(g) 在25℃、748 mmHg下,要产生75.0 L的 N2,计算需要叠氮化钠的质量。
的密度为1.03gcm-3,温度为20℃。在这种条件下,若维持O2、He混合气中p(O2) = 21kPa,氧气的体积分数为多少?以 1.000 L混合气体为基准,计算氧气的分体积和氦气的质量。 (重力加速度取9.807m/s2)
2%;52ml;0.63g
1
2
§5.3 溶液
5.3.1 基本单元及溶液浓度
气体的分体积定律(Law of partial volume)
01
组分气体的分体积
02
组分气体 B 单独存在并具有 与混合气体相同温度和压力 时所占有的体积
03
ห้องสมุดไป่ตู้

大学基础化学课件之物质的聚集状态


5.1 气 体
1 理想气体的模型 2 理想气体的状态方程式 3 分压定律和分体积定律
1.理想气体模型
• 分子碰撞为弹性碰撞,无 分子间作用力;
• 分子是质点,没有体积; • 分子随机运动。
思考 什么样的实际气体近似于理想气体?
低压、高温的实际气体
理想气体状态方程由三个实验定律得出
1、波意耳Boyle定律 PV = 常量 (T, n 恒定)
P总 P1 P2 P3 Pi
Pi P总
ni n
xi
❖阿马格Amagat分体积定律
一定T、P下,混合气体总体积等于各 气体分体积之和。
V总 V1 V2 V3 Vi
Vi V总
ni n
xi
例题:A、B两种气体在一定温度下,在一 容器中混合,混合后下面表达式是否正确?
1 PAVA = nART
nT
1mol 273.15K
8.314Pa m3 mol 1 K 1
理想气体状态方程的应用
➢ 计算p,V,T,n四个物理量之一
pV = nRT
➢ 计算气体摩尔质量
Mr
mRT pV
pV nRT n m Mr
➢ 计算气体密度
pM r
RT
m
V
Mr
mRT pV
3. 理想气体的分压定律和分体积定律
其中被分散的物质称为分散相(dispersion phase),而 容纳分散相的物质称为分散介质(dispersion medium)。
分 散
均相分散系统 (homogeneous system) – 溶液

胶体

多相分散系统
(heterogeneous system) 粗分散系统

《物质的聚集状态》课件


ቤተ መጻሕፍቲ ባይዱ
能量
聚集态中物质分子之间的相互作用能量直接影响物质的熔点、沸点和凝固点等特性。
可逆性
聚集态之间的转变可以是可逆的,根据温度和压力的变化,物质可以在不同的聚集态之间进 行相互转化。
聚集态之间的转变
1
汽化和液化
2
在升高或降低压力时,物质可以从液
态转变为气态(汽化)或从气态转变
为液态(液化)。
3
熔化和凝固
了解聚集态的特性和转变机制可以帮助科学家们更深入地研究物质的性质,并应用于各 个科学领域。
3 教育意义
学习聚集态的知识有助于培养学生的观察力、实验能力和科学思维,增强他们对物质世 界的理解。
总结和展望
通过本PPT课件,我们对物质的聚集态有了更深入的了解。希望这些知识能 够激发您对科学的兴趣,并让您进一步探索物质世界的奥秘。
在升高或降低温度时,物质可以从固 态转变为液态(熔化)或从液态转变 为固态(凝固)。
升华和凝华
在一定条件下,某些物质可以直接从 固态转变为气态(升华)或从气态转 变为固态(凝华)。
应用和意义
1 工业应用
聚集态的转变和特性对于工业生产和物质处理具有重要意义,例如金属冶炼、化学反应 和材料制备等。
2 科学研究
液态是物质的另一种聚集态。 液态物质具有固定的体积,但 没有固定的形状。液态分子之 间的相互作用力较小,使得它 们可以流动。
气态
气态是物质的第三种聚集态。 气态物质具有可变的形状和体 积,分子之间的相互作用力非 常弱。气体可以自由地扩散和 混合。
聚集态的特征和性质
聚集度
聚集态中物质分子之间的接近程度和排列方式决定了物质的性质和特征。
《物质的聚集状态》PPT 课件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氯化钠
石蜡
不同聚集状态物质的微观结构和性质
微观结构 物质的 微粒运动 宏观性质 聚集状态 微粒排列紧密, 固态 在固定的位置 有固定的形状,
微粒间的空隙 上振动 很小
几乎不被压缩
液态
微粒排列较紧 没有固定的形状, 密,微粒间空 可以自由移动 不易被压缩 隙较小 微粒之间的距 可以自由移动 没有固定的形状, 容易被压缩 离较大
(错,未指明气体体积是否在相同条件下测定)
5. 标准状况下,气体的摩尔体积都是 22.4L。 (错,“约为”;单位应为 L/mol) 6. 只有在标准状况下,气体摩尔体积才可能约为22.4L/mol。 (错,不一定)


体积 (V)
÷ρ ×M ÷M ×ρ
Vm
粒子数 (N)
×NA ÷NA
物质的量 (n)
质量 (m)
18.1 cm3
58.4 cm3 22.4 L
22.4 L
22.ห้องสมุดไป่ตู้ L
说明:K是国际单位制中温标(T)的单位(开尔文,简称开), 该温度与摄氏温度的关系为T(K)=273.15 + t(℃)
Q1.1mol任何微粒的集合体所含的微粒数目都相同;
为什么1mol微粒的质量往往是不同的呢? Q2.那么1mol物质的体积是否相同呢? 结论1. 1mol固液体体积不同,1mol气体体积近似相同 结论2. 1mol气体体积远大于1mol固液体的体积
固液体微粒之间的距离比气体微粒之间的距离小得多
Q3.为什么在相同状况下1mol固体或液体的体积不相
同?而1mol气体的体积相同?
固液体微粒之间的距离很小,微粒本身的大小不同 气体微粒之间的距离要比微粒本身的直径大得多
Q1.1mol任何微粒的集合体所含的微粒数目都相同;
为什么1mol微粒的质量往往是不同的呢?
对于气体而言: 在温度、压强一定时,任何具有相同微粒数的 气体都具有大致相同的体积
同温同压时,1mol任何气体体积均相等
[练习] 判断下列说法正确与否:
1. 标准状况下,1mol水的体积约是22.4L。 (错,物质应是气 体)
2. 1mol气体的体积约为22.4L。 (错,应标明条件-标准状况)
3. 标准状况下,气体的体积约为 22.4L。 (错,应指明气体的物质的量) 4. 标准状况下,l mol氧气和氮气混合气(任意比)的体积约为 22.4 L。 (对) 5.22.4 L气体所含分子数一定大于20 L气体所含的分子数。
Q2.那么1mol物质的体积是否相同呢? Q3.为什么在相同状况下1mol固体或液体的体积不相
同?而1mol气体的体积相同?
Q4.物质体积即物质所占据空间的大小取决于哪些微
观因素?
Q5.不同状态的物质体积主要取决于什么因素?
Q6. 气体分子之间的距离受哪些外界因素的影响?
[思考]微粒的间距又受哪些条件影响呢?
气态
不同状态的物质,微粒间的距离不同
微粒在固定的位置振动 可以自由移动
可以自由移动
Q1.1mol任何微粒的集合体所含的微粒数目都相同;
为什么1mol微粒的质量往往是不同的呢?
Q2.那么1mol物质的体积是否相同呢?
1mol物质的体积:
固体、液体:293K;
气体:273K、 101kPa
物质 Al Fe H2O C2H5OH H2 N2 CO
摩尔质量 (g/mol) 26.98 55.85 18.02 46.07 2.016 28.02 28.01
密度 2.70 g/cm3 7.86 g/cm3 0.998 g/cm 0.789 g/cm3 0.0899 g/L 1.25 g/L 1.25 g/L
1mol物质 的体积 9.99 cm3 7.11cm3
相关文档
最新文档