生物技术制药:4-抗体工程制药-2
生物技术制药名词解释

生物技术制药名词解释生物技术制药是指利用生物技术手段,通过改变细胞或生物体的遗传物质,以生产药物或医疗产品的过程。
这一领域的发展已经取得了巨大的成就,为医疗行业带来了革命性的变革。
以下是一些与生物技术制药相关的名词解释。
1. 生物技术。
生物技术是指利用生物体、细胞或其组分进行实验室操作的一系列技术。
这些技术包括基因工程、细胞培养、蛋白质纯化等,可用于生产药物、治疗疾病、改良农作物等领域。
2. 基因工程。
基因工程是通过改变生物体的遗传物质,来产生特定的性状或产物。
这一技术在生物技术制药中被广泛应用,用于生产重组蛋白、激素、疫苗等药物。
3. 重组蛋白。
重组蛋白是指利用基因工程技术将外源基因导入到宿主细胞中,使其产生特定的蛋白质。
这些蛋白质常被用作药物,如重组人胰岛素、重组干扰素等。
4. 生物制药。
生物制药是指利用生物技术手段生产的药物。
与传统化学合成药物相比,生物制药具有更高的特异性和生物相容性,通常用于治疗癌症、糖尿病、风湿性关节炎等疾病。
5. 生物仿制药。
生物仿制药是指在原研药品专利到期后,其他公司生产的与原研药相似的生物制药产品。
生物仿制药的研发需要严格的生物等效性评价,以确保其与原研药在安全性和有效性上的一致性。
6. 基因治疗。
基因治疗是利用基因工程技术,将外源基因导入到患者体内,以治疗遗传性疾病或其他疾病的一种新型治疗方法。
虽然目前仍处于研究阶段,但基因治疗被认为具有巨大的潜力。
7. 细胞培养。
细胞培养是将动植物细胞在无菌条件下培养、增殖、传代的过程。
这一技术在生物技术制药中被广泛应用,用于生产细胞因子、单克隆抗体等生物制药产品。
8. 单克隆抗体。
单克隆抗体是由单个B细胞克隆产生的抗体,具有高度的特异性和亲和力。
单克隆抗体被广泛应用于肿瘤治疗、自身免疫性疾病治疗等领域。
9. 疫苗。
疫苗是一种预防性的生物制品,通过激活机体的免疫系统,产生特定的抗体或细胞免疫应答,以预防传染病的发生。
生物技术制药中的疫苗包括重组疫苗、DNA疫苗等。
(完整版)生物技术制药习题答案(夏焕章版)

第一章绪论填空题1. 生物技术制药的特征高技术、高投入、高风险、高收益、长周期。
2. 生物药物广泛应用于医学各领域,按功能用途可分为三类,分别是治疗药物、预防药物、诊断药物。
3.现代生物药物已形成四大类型:一是应用DNA重组技术制造的基因重组多肽、蛋白质类治疗剂;二是基因药物;三是来自动物植物和微生物的天然生物药物;四是合成与部分合成的生物药物;4.生物技术的发展按其技术特征来看,可分为三个不同的发展阶段,传统生物技术阶段;近代生物技术阶段;现代生物技术阶段。
5.生物技术所含的主要技术范畴有基因工程;细胞工程;酶工程;发酵工程;蛋白质核酸工程和生化工程;选择题1.生物技术的核心和关键是(A )A 细胞工程B 蛋白质工程C 酶工程D 基因工程2. 第三代生物技术( A )的出现,大大扩大了现在生物技术的研究范围A 基因工程技术B 蛋白质工程技术C 海洋生物技术D细胞工程技术3.下列哪个产品不是用生物技术生产的(D )A 青霉素B 淀粉酶C 乙醇D 氯化钠4. 下列哪组描述(A )符合是生物技术制药的特征A高技术、高投入、高风险、高收益、长周期B高技术、高投入、低风险、高收益、长周期C高技术、低投入、高风险、高收益、长周期D高技术、高投入、高风险、低收益、短周期5. 我国科学家承担了人类基因组计划(C )的测序工作A10% B5% C 1% D 7%名词解释1.生物技术制药采用现代生物技术可以人为的创造一些条件,借助某些微生物、植物或动物来生产所需的医学药品,称为生物技术制药。
2.生物技术药物一般说来,采用DNA重组技术或其它生物新技术研制的蛋白质或核酸来药物称为生物技术药物。
3.生物药物生物技术药物是重组产品概念在医药领域的扩大应用,并与天然药物、微生物药物、海洋药物和生物制品一起归类为生物生物药物。
简答题1.生物技术药物的特性是什么?生物技术药物的特征是:(1)分子结构复杂(2)具有种属差异特异性(3)治疗针对性强、疗效高(4)稳定性差(5)免疫原性(6)基因稳定性(7)体内半衰期短(8)受体效应(9)多效应和网络效应(10)检验特殊性2.简述生物技术发展的不同阶段的技术特征和代表产品?(1)传统生物技术的技术特征是酿造技术,所得产品的结构较为简单,属于微生物的初级代谢产物。
生物技术制药复习知识点

生物技术制药复习知识点第一章绪论1.生物制药的研究内容包括基因工程制药, 细胞工程制药, 酶工程制药和发酵工程制药。
2.生物技术制药, 是采用现代生物技术人为地创造一些条件, 借助某些微生物、植物或动物来生产所需的医药品。
3.生物技术药物, 是采用DNA 重组技术、单克隆抗体技术或其它生物新技术研制的蛋白质、治疗性抗体或核酸类药物。
4.生物药物, 指包括生物制品在内的生物体的初级和次级代谢产物或生物体的某一组成部分, 甚至整个生物体用作诊断和治疗的医药品。
5.现代生物药物四种类型: ①应用DNA重组技术制造的基因重组多肽、蛋白质类治疗剂。
②基因药物, 如基因治疗剂、基因疫苗、反义药物和核酶等。
③来自动植物和微生物的天然生物药物。
④合成与部分合成的生物药物。
6.生物药物按功能用途分为三类: 治疗药物, 预防药物和诊断药物。
7.生物技术药物的特性:分子结构复杂, 具种属特异性, 治疗针对性强、疗效高, 稳定性差, 基因稳定性, 免疫原性、重复给药会产生抗体, 体内半衰期短, 受体效应, 多效性和网络效应, 质量控制的特殊性, 生产系统的复杂性。
8.生物技术制药特征:高技术, 高投入, 长周期, 高风险, 高收益。
9.基因诊断: 指采用分子生物学的方法在DNA水平或RNA水平对基因的结构和功能进行分析从而对特定的疾病进行诊断。
第二章基因工程制药1.利用基因工程技术生产药品的优点: (1)可以大量生产过去难以获得的生理活性蛋白和多肽(如胰岛素、干扰素、细胞因子等), 为临床使用提供有效的保障;(2)可以提供足够数量的生理活性物质, 以便对其生理、生化和结构进行深入的研究, 从而扩大这些物质的应用范围;(3)利用基因工程技术可以发现、挖掘更多的内源性生理活性物质;(4)内源性生理活性物质在作为药物使用时存在的不足之处, 可通过基因工程和蛋白质工程进行改造和去除;(5)利用基因工程技术可获得新型化合物, 扩大药物筛选来源。
生物技术制药课后思考题

第一章:绪论思考题1.什么是生物技术生物技术所包含的内容及定义;答:1生物技术又称生物工程,指人们以现代生命科学为基础,结合先进的工程技术手段和其他基础学科的科学原理,按照预先的设计改造生物体或加工生物原料,为人类生产出所需产品或达到某种目的的技术;2包括基因工程、细胞工程、发酵工程、酶工程、蛋白质工程、抗体工程、糖链工程、海洋生物技术及生物转化等;具体定义见P1;2.生物技术药物的概念及分类;答:1指采用DNA重组技术或其他生物技术生产的用于预防、治疗和诊断疾病的药物,主要是重组蛋白或核酸类药物;2a.按照用途:预防、诊断、治疗;b.按作用类型:细胞因子类、激素类、酶类、疫苗、单克隆抗体类、反义核酸、RNA干扰类、基因治疗药物;c.按照生化特性:多肽类、蛋白质类、核酸类、聚乙二醇化多肽或蛋白质;3.生物技术药物在理化性质、药理学与作用、生产制备和质量控制方面的特性;答:1理化性质从药物多是蛋白质或核酸出发:a.相对分子质量大;b.结构复杂;c.稳定性差;2药理学作用:a.活性与作用机制明确;b.作用针对性强;c.毒性低;d.体内半衰期短;e.有种属特异性;f.可产生免疫原性;3生产制备特性:a.药物分子在原料中含量低;b.原料中常存在降解目标产物的杂质;c.制备工艺条件温和;d.分离纯化困难;e.产品易受有害物质污染;4质量控制特性:a.质量标准内容的特殊性;b.制造项下的特殊规定;c.检定项下的特殊规定;4.生物技术制药的概念和主要研究内容与任务;答:1指利用基因工程、细胞工程等生物技术的原理和方法,来研究、开发和生产预防、治疗和诊断疾病的药物的一门科学;2主要研究内容与任务:a.生物制药技术的研究、开发与应用;b.利用生物技术研究、开发和生产药物;第二章:基因工程制药思考题1.简述基因工程制药的基本原理和基本流程;答:1利用重组DNA技术将外源基因导入到宿主菌或宿主细胞进行大规模培养和诱导表达以获取蛋白质药物的过程称为基因工程制药;2目的基因的获得、表达载体的选择、目的基因与载体的连接、重组DNA转入到宿主细胞、重组子的筛选与鉴定、工程菌的发酵表达重组蛋白、表达产物的分离纯化、重组蛋白制剂的生产;2.与化学药物相比较,基因工程药物有什么特点答:a.基因工程药物是由活细胞代谢产生的;b.基因工程药物的相对分子质量要远远大于一般的小分子化学药物;c.在制备基因工程药物时,需要除去宿主蛋白和核酸残留,同时还要防止其他物质的污染,而化学药物大多是通过组合合成的,杂质是原料残留及反应副产物等;3.原核与真核表达体系各有什么优缺点哪些蛋白质需要用真核表达体系4.答:1原核表达体系优点:宿主遗传背景清楚,商品化菌种齐全,方便购买;原核细胞操作简便、繁殖快、周期短;大规模生产成本低,产量较高;下游纯化工艺简单,易于控制,生产效率高;缺点:缺乏蛋白质折叠和翻译后加工系统;分泌能力不足,真核蛋白质常形成不溶性的包含体,表达产物需经变性、复性才恢复活性;有的表达系统,如大肠杆菌有内毒素,很难除去;大肠杆菌中的表达不存在信号肽,产品多为胞内产物,提取困难;2真核表达系统:优点:具有转录后加工能力,外源基因可以是DNA也可以是cDNA;具有蛋白质折叠和翻译后加工系统,可形成正确折叠、装配和糖基化等修饰的蛋白质;可是重组蛋白分泌表达,有利于纯化;缺点:生长缓慢、操作复杂、产量较低、生产成本较高等;3某些需要修饰的蛋白质需要采用真核表达体系;5.重组蛋白类药物的质量控制要考虑哪几个方面答:蛋白质含量测定、纯度检查、理化性质的鉴定分子量、等电点、序列、肽图、二硫键、氨基酸组成、生物学活性鉴定、内毒素分析、宿主蛋白与核酸残留分析;6.基因工程药物如何提高其疗效今后的发展趋势有哪些7.答:1提高蛋白质药物的稳定性;减少蛋白质药物的免疫原性;延长半衰期;提高组织的特异性;2提高基因工程药物的产量;一些现在还没有使用基因工程的手段的药物,实现基因工程化生产;构建突变体,改造已知的药物,增强疗效,减少临床上疗效弱、易产生抗性等不足;第三章:动物细胞工程制药思考题1.离体培养的动物细胞有哪些类型答:贴壁细胞、悬浮细胞和兼性贴壁细胞;2.生产用动物细胞有哪些种类各有何特点3.答:1原代细胞:直接取自动物组织器官,经过粉碎消化而获得的细胞悬液;需要大量动物,费钱、费劳力;2传代细胞系:染色体组型是2n核型;贴壁依赖,接触抑制;可传代培养50代;无致癌性;3转化细胞系:转化过程可以是自发的和人工的,也可从肿瘤组织中获得;具备无限的生命力;较短的倍增时间;较低的培养条件要求;适合于大规模工业化生产的要求;基因工程药物表达的宿主细胞,主要是转化细胞;4工程细胞系:利用细胞融合技术或基因工程技术对转化细胞系的遗传物质进行修饰改造或重组,获得的具有稳定遗传特性的细胞系;4.常用的动物细胞培养基有哪几类答:天然培养基、合成培养基及无血清培养基;5.动能细胞大规模培养有哪几种方式答:悬浮培养法、微载体培养法、多孔载体培养法、微囊化培养法、中空纤维培养法;6.利用动物细胞生产的药物主要有哪些答:疫苗、单克隆抗体、激素、淋巴因子、多肽生长因子、酶类等;第四章:抗体工程制药思考题1.传统的鼠抗体在治疗应用上有哪些局限答:传统的鼠抗体在人体中反复使用会出现人抗鼠抗体反应HAMA,导致抗体在人体内会迅速被清除,半衰期缩短,甚至出现出现严重的不良反应;2.如何对鼠源性单抗进行改造答:将抗体的Fc段用人源替换,仅保留CDR区超可变区是鼠源的,即为构造成嵌合抗体;或者生产全人源化抗体;3.如何制备杂交瘤细胞答:用免疫原与免疫小鼠,从小鼠体内获得淋巴B细胞,制成细胞悬液,然后与骨髓瘤细胞一起混合,使用聚乙二醇诱导细胞融合,将融合后的细胞混合液在HAT选择性培养基上生长,在培养基上生长的即为杂交瘤细胞,进行抗体检测和克隆化培养,可以获得既能够产生单一性抗体,又能够无限增殖的杂交瘤细胞; 4.在制备单抗时为什么要进行两次筛选答:第一次筛选:获得淋巴B细胞与骨髓瘤细胞的融合细胞;第二次筛选:获得能够产生单克隆抗体的杂交瘤细胞;5.制备单抗时为什么要选用B淋巴细胞与骨髓瘤细胞融合形成杂交细胞答:能够产生抗体的淋巴B细胞不能够无限增殖,而骨髓瘤在体外培养具有无限增殖的特性,但是不能产生抗体,将二者融合,融合细胞继承了两个亲代细胞的特性,形成了能够产生抗体又能够无限增殖;第五章:疫苗及其制备技术思考题1.简述疫苗的概念、组成及其作用原理;答:1是将病原微生物如细菌、立克次氏体、病毒等及其代谢产物,经过人工减毒、灭活或利用基因工程等方法制成的用于预防传染病的自动免疫制剂;2组成:具有免疫保护性的抗原,如蛋白质、多肽、多糖及核酸等,与免疫佐剂混合制成;3当机体通过注射或口服等途径接种疫苗后,疫苗中的抗原分子就会发生免疫原性作用,刺激机体免疫系统产生高效价特异性的免疫保护物质,如特异性抗体、免疫细胞及细胞因子等,当机体再次接触到相同的抗原时候,机体的免疫系统便会依循免疫记忆,迅速制造出更多的保护物质来阻断病原菌的入侵,从而使机体获得针对病原体特异性的免疫力,使其免受侵害而得到保护;2.传统的灭活疫苗和减毒活疫苗在实际应用中存在哪些局限答:传统的减毒活疫苗,如果减毒程度不够,在使用时有致病的可能性,过分减毒又会使得免疫原性不足或丧失,失去活疫苗的效力;灭活疫苗常常需要多次接种,抗体滴度随时间而下降;3.简述基因工程亚单位疫苗的主要特点及制备方法;答:1优点:产量高、纯度高、安全性好,用于难以培养或具有潜在致癌性病毒的疫苗制备;缺点:生产成本比较高纯化,产品研发成本高,免疫接种成本高多次注射,与传统疫苗相比,免疫效果较差;2制备方法:在分离出病原体特异抗原编码基因的基础上,将外源基因转入另外一个非致病微生物或细胞中表达,然后通过分离纯化而获得特异的蛋白质;表达系统有大肠杆菌、酵母菌和高等植物;4.何为治疗性疫苗请比较治疗性疫苗与预防性疫苗的主要区别5.答:1治疗性疫苗是指在已感染病原微生物或已患有某些疾病的机体中,通过诱导特异性的免疫应答,达到治疗或防止疾病恶化的天然、人工合成或用基因重组技术表达的产品或制品;2治疗性疫苗兼有治疗和预防的作用,当机体已经处于感染或患病状态时,治疗性疫苗会诱导免疫应答,治疗疾病;预防性疫苗是使机体处于免疫保护状态,当病原菌再次入侵时候,依循免疫记忆,会迅速做出免疫应答,阻止病原菌的入侵;6.设计并简述禽流感H5N1灭活疫苗的主要制备流程;答:P122。
4.抗体制药

围从150,000到950,000道尔顿。分五类:
• IgG在血清中含量最高,达75~80%,是抗感染
的主要抗体;
• IgM是五类免疫球蛋白中分子量最大的,为
五聚体,是对一个抗原作出反应时产生的
第一个抗体;
• IgA在黏膜表面、乳腺、泪腺形成,主要参
与局部的免疫反应;
免疫球蛋白
• IgD在血清中含量很低;
2、杂瘤细胞的选择性培养
常用的选择培养基为HAT培养基。 次黄嘌呤(H)、氨基喋呤(A能阻断DNA合成)、
胸腺嘧啶(T)。 脾细胞具有次黄嘌呤鸟嘌呤磷酸核糖转移酶
(HGPRT),因此脾-瘤融合的杂交瘤细胞可利用 HGPRT酶,用次黄嘌呤(H)和胸腺嘧啶(T)合成 DNA,使杂交瘤细胞得以生长。
抗体药物市场销售额
160 140 120 100
80 60 40 20
0
年份 2002 2003 2004 2005 2006 2007 2008 2011
全球有超过200家上市或未上市公司正在研发
用于临床诊断和治疗的单克隆抗体
正在进行临床试验的抗体公司(38家):
Abgenix Alexion Pharm Altarex Applied Molecular Evolution BASF Biogen BioTransplant CAT(Cambridge Ab Tech) Celltech Centeon Centocor (Johnson & Johnson)
纯化单克隆抗体流程(大鼠)
三.单克隆抗体药物的现状
250多种抗体类药物在临床试验中
-1/3已进入三期临床 -1/4已通过临床III期试验
美国市场上有13种治疗用的抗体药物 抗体药物的销售额
《抗体工程制药》课件

随着抗体工程技术的发展,新型抗体药物不断涌现,如双特异性抗 体、抗体融合蛋白等。
抗体药物的生产技术的发展
随着生物技术的不断发展,抗体药物的生产技术也不断改进,如细 胞培养技术的优化、基因工程技术的应用等。
抗体工程制药的未来研究方向
新型抗体的研究与开发
研究新型抗体的结构和功能,开发具有新作用机制的抗体药物。
噬菌体展示技术
噬菌体展示技术是一种利用噬菌体展示肽库筛选特异 性抗体的技术。
该技术将外源基因插入噬菌体外壳蛋白基因中,使外 源基因编码的肽段在噬菌体外壳上展示,然后通过筛
选噬菌体展示肽库来获得特异性抗体。
噬菌体展示技术具有筛选效率高、特异性强等优点, 为抗体药物的研究和开发提供了新的工具。
蛋白质工程技术
蛋白质工程技术是通过改变蛋白 质的氨基酸序列和结构来改变其
功能的一种技术。
在抗体工程制药中,蛋白质工程 技术可用于优化抗体分子的结构 和功能,提高抗体的亲和力和稳
定性,降低免疫原性。
蛋白质工程技术为抗体药物的研 发提供了强有力的手段,有助于 推动抗体工程制药领域的发展。
03 抗体药物的药效学研究
CHAPTER
抗体药物的生产技术研究
优化抗体药物的生产工艺,降低生产成本,提高产量和质量。
抗体药物的免疫原性研究
研究抗体药物的免疫原性机制,寻找降低免疫原性的新方法。
谢谢
THANKS
抗体药物的药效学研究进展
1 2 3
新型抗体药物的开发
随着抗体工程技术的发展,越来越多的新型抗体 药物被开发出来,如人源化抗体、单域抗体、双 特异性抗体等。
抗体药物的疗效和安全性
随着临床试验的深入开展,抗体药物的疗效和安 全性得到进一步验证,为抗体药物的应用提供了 更可靠的依据。
生物技术制药题库

生物技术制药题库生物技术制药是一种利用现代生物技术,借助微生物、植物、动物等生物体生产药品的技术。
其中,基因工程制药利用重组DNA技术生产蛋白质或多肽类药物,细胞工程制药则是利用动、植物细胞培养生产药物的技术。
酶工程制药则是将酶或活细胞固定化后用于药品生产,而发酵工程制药则是利用微生物代谢过程生产药物的技术。
抗体工程制药则利用抗原和抗体的特异性结合性质生产药物。
先导化合物是指通过优化药用、减少毒性和副作用,使其转变为一种新药的化合物。
生物药物则是利用微生物学、生物学、医学、生物化学等的研究成果,从生物体、生物组织、细胞、体液等,综合利用微生物学、化学、生物化学、生物技术、药学等学科的原理和方法制造的一类用于预防、治疗和诊断的制品。
细胞的生长形态可以分为贴壁细胞和悬浮细胞,其中贴壁细胞需要有贴附的支持物表面,依靠贴附因子生长。
兼性贴壁细胞则生长不严格依赖支持物。
牛痘病毒可以构建多价疫苗腺病毒,逆转录病毒则用于基因治疗,杆状病毒则用于外源基因表达。
生物碱是一种含氮有机化合物,而生理活性物质则对细胞内生化代谢和生理活动起着调节作用。
植物抗毒素是指在植物防御系统内能对抗微生物进攻的某些次级代谢产物,有些时候连续合成,有些时候在被刺激下才会产生抗毒素,或仅在被诱导下其产量才能增加。
生物转化是利用生物离体培养细胞,固定化的植物(或微生物)细胞或从这些有机体中分离得到的酶等,对外源底物进行结构修饰而获得更有价值产物的一种技术。
抗体是B细胞在抗原的刺激下分化为浆细胞,产生具有与相应抗原发生特异性结合反应的免疫球蛋白。
免疫球蛋白具有抗体活性或化学结构与抗体相似的球蛋白,而多克隆抗体则由多个克隆细胞产生的针对多种抗原决定簇的混合抗体制剂,也称第一代人工抗体。
20、基因工程抗体是一种第三代抗体,利用DNA重组技术对抗体分子进行切割、拼接或修饰,或者直接合成基因序列,再将基因导入细胞表达产生的抗体。
21、药用酶是指可用于预防和治疗疾病的酶。
生物技术制药

生物技术制药生物技术制药是指利用生物学和生物工程学的理论、方法和技术,结合药物学和药剂学的原理,通过生物合成、发酵、分离纯化、逆向设计、基因工程等技术手段,生产包括蛋白质药物、抗体药物、基因治疗药物、细胞治疗药物、疫苗和诊断试剂等多种高效、安全、生物活性好的药物产品。
生物技术制药的发展历程生物制药起源于20世纪中叶,当时主要是利用动物和植物的生物体制生产药物。
20世纪60年代,随着分子生物学和基因工程学的发展,人们开始能够对药物的分子结构进行精确地解析和设计,从而开发出一系列独特的生物化合物药物。
1982年,人类重组蛋白质药物——重组人胰岛素上市,开启了生物技术制药的新时代。
此后,经过不断的发展,生物技术制药已成为当代制药业的重要组成部分,其产品已被广泛用于人类疾病的治疗和预防。
生物技术制药的原理生物技术制药的基本原理是生物合成。
生物合成是利用细胞的代谢、调节和信号传递等生物学过程,使其生产特定的化合物或分子物质的过程。
其基本实现原理是将生产特定的化合物或分子物质的基因DNA插入到细胞内,调节细胞的代谢通路,从而使其生产需要的药物。
为了实现此目的,需要对生产药物的细胞进行改造和筛选。
生物技术制药的主要技术主要技术包括:基因克隆、重组蛋白质工程、细胞培养与生物反应器工程、单克隆抗体技术和DNA疫苗技术。
其中,基因克隆技术是生物技术制药的核心技术之一,它是指将人工合成或从生物体中提取的特定DNA座插入到细胞或生物体中,从而使其产生新的表型和特性。
重组蛋白质工程技术则包括多种蛋白质的表达系统和蛋白质纯化技术,主要用于生产临床上应用的生物类似物和仿生药。
细胞培养与生物反应器工程技术则是指“农业化”的细胞培养技术,它用于大规模、连续、稳定地培养细胞。
单克隆抗体技术和DNA疫苗技术则是生物技术制药的新兴技术。
单克隆抗体技术是指通过对产生单克隆抗体的B细胞进行体外培养,生产大量单克隆抗体。
DNA疫苗技术则是通过轻松、经济和安全的方法来刺激机体的免疫反应,生产抗病毒和抗细菌的疫苗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单克隆抗体人源化(humanized antibody)
➢ 降低HAMA反应 人一鼠嵌合抗体是将 鼠源单抗的可变区与 人抗体的恒定区融合 而得到的抗体。
(1)嵌合抗体(chimeric antibody)
➢ 从杂交瘤细胞分离出功能性可变区基因,与人Ig恒 定区基因连接,插入适当表达载体,转染宿主细胞, 表达人-鼠嵌合抗体。
MabThera for the treatment of non-Hodgkin-lymphomas
➢ Simulect;(basiliximab 舒莱,巴利西单抗, 诺华):嵌合性人/鼠抗IL-2受体(CD25)单克隆抗 体,
➢ Remicade:(infliximab,英利昔单抗,抗TNFa 的单克隆抗体),治疗炎性肠症(Crohn氏病),类 风湿性关节炎
➢ 特点:减少了鼠源性抗体的免疫原性,同时保留了 亲本抗体特异性结合抗原的能力。人源化程度达到 70%左右
➢ 1984年出现嵌合重组技术,1994年批准第一个嵌 合抗体药物上市,至今总数已达6个如:rituxan , simulect ,remicade
可变区基因的获得
杂交瘤细胞
mRNA分离 cDNA RT PCR
➢ 为了减少嵌合抗体中鼠源性序列,人们又将鼠抗 体V区(H、L链)中的3个超变区基因插入人抗 体的V区的框架(FR)基因中,这样构建的抗体 保留了鼠抗体与抗原结合的特异性。这种抗体几 乎百分之百人源化了。
➢ 异源单抗上六个CDR通过PCR等方法克隆到人抗 体相应的框架区(FR) 上构建成新抗体
Humanizing Antibodies
(4-3)小分子抗体
➢ 小分子抗体包括Fab、Fv或ScFv、单域抗体及最 小识别单位等几种。
➢ 基因工程小分子抗体仅表达鼠源性单克隆抗体的 V区片段,其相对分子质量仅为原抗体的1/801/3。
单区抗体
Fab
最小识别单位
Fv
ScFv
(1)Fab片段抗体:VH+CH1
(2)FV抗体:VH+VL
(3)单链抗体:VH-Linker-VL
➢ 人源性可达90%以上
➢ 现在以及未来几年,人源化抗体药物将占有主体 地位。
➢ 目前该方法是人源化单抗最常用、最基本的方法
问题
➢ 改型单抗亲和力仅为原来鼠抗体的亲和力的1/40 ➢ 亲和力下降,亲和力是影响改型单链抗体应用于
临床的重要因素 ➢ 人Ig分子的框架区一些氨基酸与鼠Ig的CDR区不
协调 ➢ 三维蛋白结构等需进一步丰富
第四节 基因工程抗体 (Genetic engineering antibody)
概念:采用基因工程方法,在基因水平,对免疫球 蛋白基因进行切割、拼接或修饰后导入受体 细胞进行表达,产生新型抗体。主要包括嵌 合抗体、单链抗体、人源化抗体、双价抗体 和双特异性抗体。
目的:一是降低免疫源性; 二是降低相对分子量, 三增加组织通透性。
VL
VH
VL
VH
Humanized Antibody with Mouse Loops
VL
VH
Mouse Human
CDR序列 CDR序列
鼠单克隆抗体
人抗体
人源化抗体(该型抗体) 鼠单克隆V区人源化(CDR移植)
➢ 经过CDR移植,抗体的免疫原性极低,而其抗原 结合能力保持不变,到现在已有数百种人源化抗 体。
VH或VL基因
克隆鼠单抗的可变区基因,可从基因组中分离, 也可用PCR技术分离。人-鼠嵌合抗体基因工程改造策略
启动子
Pr 鼠VH 人 CH
Pr 鼠VL 人 CL
免疫球蛋白 基因载体的构建
H链嵌合载体
L 链嵌合载体
VH+人Igr1载体
VL+人IgCL载体
共转染细胞
➢共转染SP2/0细胞
抗体分泌细胞
➢ Herceptin(贺赛汀):针对HER-2/neu原癌基因产 物的人/鼠嵌合单抗,特异地作用于HER-2受体过 度表达的乳腺癌细胞
(2)改型抗体(人源化抗体)
1. 将小鼠的CDR(互补决定区)序列移植到人 抗体可变区框架中,产生的抗体称为CDR移 植抗体。
重构抗体 (Reshape d Antibody)
➢ 重组Fab片断是单价的VH-CH(Fd)和轻链的VLCL两个片断由二硫键连接而成。它具有与抗体相 同的抗原结合活性,其特点是结构稳定,制作简
便。细菌表达的Fab与酶解Ig后所获得的Fab具有
相同的功能。
Fab antibody molecule
Pr VH CH1
Pr
VL CL
免疫球蛋白 基因载体的构建
(4)单域抗体:VH或VL
小分子抗体有很多优点: ➢ 可以用细菌或酵母菌发酵生产,成本低; ➢ 分子小,穿透力强; ➢ 不含Fc,没有Fc带来的效应; ➢ 在体内循环的半衰期短,易清除,利于解毒排出; ➢ 易于与毒素或酶基因连接,便于直接获得免疫毒
素或酶标抗体等。
(1)Fab
由完整的轻链和Fd组成,大小为完整分子的1/3。 把Fab与细菌的前导肽相连,在前导肽的作用下Fab进 入质周腔,装配折叠后,它具有结合抗原的活性。
H链表达载体
L链表达载体
共转染细胞
Fab 抗体分子的制备
抗体分泌细胞
VH
VL
பைடு நூலகம்
CH1
CL
-S-S-
Fab 抗体分子的制备
➢ Fab抗体易于穿透血管壁和组织屏障进入病灶 ➢ 无Fc段,减少了非特异反应和排斥反应 ➢ 无ADCC和细胞毒CDC ➢ 主要作为载体分子用于导向诊断和治疗
(2)单链抗体(single chain antibody)
鼠VH 人CH
鼠VL 人CL
人-鼠嵌合基因工程抗体
现临床应用的嵌合抗体
➢ Rituxan (美罗华,利妥昔单 抗 ) : 第一个人源化单抗, 针对CD20的人/鼠嵌合单抗, 含人IgG1κ恒定区,用于治疗 低度恶性B 淋巴瘤; 抗淋巴 瘤作用主要可能来自于补体 作用、ADCC和诱导肿瘤细 胞凋亡
Rituximab(1997)
已上市人源化改型抗体
➢ 1997年美国批准第一个人源化抗体药物上市,如 今总数已达10个,占上市抗体药物总数的50%, 如
➢ 曲妥珠单抗 (Trastuzum):重组DNA人单克隆抗 体,选择性作用于HER-2
➢ 贝伐珠单抗(Bevacizumab):重组DNA人单克隆 抗体,选择性作用于VEGF