电力系统潮流计算计算计算法
电力系统的潮流计算

Z T 1 Z T 2
*
ST1
ZT2SLD
*
*
Scir
ZT1ZT2
*
ST2
ZT1SLD
*
*
Scir
ZT1ZT2
E V A 1 V A 2 V A ( k 1 k 2 )——环路电势 V N H —— 高压侧额定电压
S cir
变比不同的变压器并联运行 时的功率分布
环路电势可由环路的开口电压确定。
Q P L 1 2 V Q 2 1 R 1 2 ( Q b V Q 2 c Q 1 ) R 2 2 ( Q V 1 2 Q b ) R 3 0
得到经济 功率分布:
P 1ecP b(R R 1 2 R R 2 3) R P 3cR 2
简单环网的功率分布
Q 1ecQ b(R R 1 2 R R 2 3) R Q 3cR 2
3.电源初步功率分布方程的一般形式
k*
Sa1i1* ZiSi (V *a * V *b)V NSa1,L DScir
Z
Z
k*
Sbki 1* ZiSi (V *b * V *a)V NSbk,L DScir
Z
Z
沿线有多个负荷的两端供电网络
对于均一网络〔各线段单位长度的阻抗值都相等或各线段的R/X相等〕有:
k*
k
k
k
SiZ0li
Sili
P ili
Q ili
Sa1i 1* Z0l
i 1 l
i 1 l
ji 1 l
k
k
k
Sili
Pili
Qili
Sbk
i1 l
i1 l
ji1 l
结论:在均一电力网中有功功率和无功功率的分布彼此无关。
电力系统中的潮流计算与优化方法

电力系统中的潮流计算与优化方法潮流计算是电力系统运行和规划中的重要环节,它用于计算电力系统中各节点的电压、相角、有功、无功功率以及线路、变压器等的潮流分布情况。
对电力系统进行潮流计算可以帮助电力系统运行人员了解系统的稳定性、可靠性以及容载能力,也可以为电力系统规划提供数据支持。
本文将介绍电力系统潮流计算的基本方法与优化技术。
一、潮流计算的基本方法1.1 普通潮流计算方法潮流计算的基本方法是牛顿-拉夫逊迭代法(Newton-Raphson Iteration Method)和高尔顿法(Gauss-Seidel Method)。
牛顿-拉夫逊迭代法主要是通过不断迭代求解雅可比矩阵的逆,直到迭代误差小于给定阀值时停止迭代;高尔顿法则是逐一更新所有节点的电压与相角,直至所有节点的迭代误差都小于给定阀值。
1.2 快速潮流计算方法在大型电力系统中,普通的潮流计算方法计算速度较慢。
因此,研究人员提出了一些针对快速潮流计算的方法,如快速牛顿-拉夫逊法(Fast Newton-Raphson Method)和DC潮流计算方法。
快速牛顿-拉夫逊法通过简化牛顿-拉夫逊法的迭代公式,减少计算量,提高计算速度;DC潮流计算方法则是将潮流计算问题转化为一个线性方程组的求解问题,进一步提升计算效率。
二、潮流计算的优化技术2.1 改进的潮流计算算法为了提高潮流计算的准确性和收敛速度,研究人员提出了一些改进的潮流计算算法。
其中,改进的牛顿-拉夫逊法(Improved Newton-Raphson Method)是一种结合牛顿-拉夫逊法和割线法的算法,通过混合使用这两种方法,实现在减小迭代误差的同时加快计算速度。
此外,基于粒子群优化算法(Particle Swarm Optimization)和遗传算法(Genetic Algorithm)的潮流计算算法也得到了广泛研究和应用。
2.2 潮流优化潮流计算不仅可以用于分析电力系统的工作状态,还可以作为优化问题的约束条件。
有关电力系统三种潮流计算方法的比较.docx

电 力 系 统 三 种 潮 流 计 算 方 法 的 比 较一、高斯 -赛德尔迭代法:以导纳矩阵为基础, 并应用高斯 -- 塞德尔迭代的算法是在电力系统中最早得到应用的潮流计算方法,目前高斯一塞德尔法已很少使用。
将所求方程 f ( x ) 0 改写为 x( x )不能直接得出方程的根,给一个猜测值x 0 得 x 1( x 0 )又可取 x1 为猜测值,进一步得:x 2 ( x 1 )反复猜测x k 1 迭代则方程的根( x k )优点:1. 原理简单,程序设计十分容易。
2. 导纳矩阵是一个对称且高度稀疏的矩阵,因此占用内存非常节省。
3. 就每次迭代所需的计算量而言,是各种潮流算法中最小的,并且和网络所包含的节点数成正比关系。
缺点:1. 收敛速度很慢。
2. 对病态条件系统,计算往往会发生收敛困难:如节点间相位角差很大的重负荷系统、包含有负电抗支路 (如某些三绕组变压器或线路串联电容等 )的系统、具有较长的辐射形线路的系统、长线路与短线路接在同一节点上,而且长短 线路的长度比值又很大的系统。
3. 平衡节点所在位置的不同选择,也会影响到收敛性能。
二、牛顿 -拉夫逊法: 求解 f ( x ) 0设 x x 0 x ,则 按牛顿二项式展开:当 △x 不大,则取线性化(仅取一次项) 则可得修正量对 得:作变量修正:x k 1xk x k ,求解修正方程 20 世纪 牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。
自从60 年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了其他方法,成为直到目前仍被广泛采用的方法。
优点:1. 收敛速度快,若选择到一个较好的初值,算法将具有平方收敛特性,一般迭代 4—5 次便可以收敛到一个非常精确的解。
而且其迭代次数与所计算网络的规模基本无关。
2. 具有良好的收敛可靠性, 对于前面提到的对以节点导纳矩阵为基础的高斯一塞德尔法呈病态的系统,牛顿法均能可靠地收敛。
电力系统三种潮流计算方法的比较

电力系统三种潮流计算方法的比较电力系统潮流计算是电力系统分析和运行控制中最重要的问题之一、它通过计算各节点电压和各支路电流的数值来确定电力系统各个节点和支路上的电力变量。
常见的潮流计算方法有直流潮流计算方法、高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。
以下将对这三种方法进行比较。
首先,直流潮流计算方法是最简单和最快速的计算方法之一、它假设整个系统中的负载功率都是直流的,忽略了交流电力系统中的复杂性。
直流潮流计算方法非常适用于传输和配电系统,尤其是对于稳定的系统,其结果比较准确。
然而,该方法忽略了交流电力系统中的变压器的磁耦合和饱和效应,可能会导致对系统状态误判。
因此,直流潮流计算方法的适用范围有限。
其次,高斯-赛德尔迭代法是一种迭代方法,通过反复迭代计算来逼近系统的潮流分布。
该方法首先进行高斯潮流计算,然后根据计算结果更新节点电压,并再次进行计算,直到收敛为止。
高斯-赛德尔迭代法考虑了变压器的复杂性,计算结果比直流潮流计算方法更准确。
然而,该方法可能发生收敛问题,尤其是在系统变压器的串联较多或系统中存在不良条件时。
此外,该方法的计算速度较慢,尤其是对于大型电力系统而言。
最后,牛顿-拉夫逊迭代法是一种基于牛顿法的迭代方法,用于解决非线性潮流计算问题。
该方法通过线性化系统等式并迭代求解来逼近系统的潮流分布。
与高斯-赛德尔迭代法相比,牛顿-拉夫逊迭代法收敛速度更快,所需迭代次数更少。
此外,该方法可以处理系统中的不平衡和非线性元件,计算结果更准确。
然而,牛顿-拉夫逊迭代法需要建立和解算雅可比矩阵,计算量相对较大。
综上所述,电力系统潮流计算方法根据应用需求和系统特点选择合适的方法。
直流潮流计算方法适用于稳定的系统,计算简单、快速,但适用范围有限。
高斯-赛德尔迭代法适用于一般的交流电力系统,考虑了变压器复杂性,但可能存在收敛问题和计算速度较慢的缺点。
牛顿-拉夫逊迭代法适用于复杂的非线性系统,收敛速度快且计算结果准确,但需要较大的计算量。
电力系统潮流计算

电力系统潮流计算电力系统潮流计算是电力系统运行分析中的重要环节。
它通过对电力系统中各节点的电压、相角以及功率等参数进行计算和分析,从而得出电力系统的稳态运行状态。
本文将从潮流计算的基本原理、计算方法、应用及其发展等方面进行阐述。
一、潮流计算的基本原理电力系统潮流计算的基本原理是基于潮流方程建立的。
潮流方程是一组非线性的方程,描述了电力系统中各节点的电压、相角以及功率之间的关系。
潮流计算的目的就是求解这组非线性方程,以确定电力系统的电压幅值、相角及有功、无功功率的分布情况。
二、潮流计算的基本方法潮流计算的基本方法主要有直接法、迭代法以及牛顿-拉夫逊法。
直接法是通过直接求解潮流方程得到电力系统的潮流状况,但对于大规模复杂的电力系统来说,直接法计算复杂度高。
迭代法是通过对电力系统的节点逐个进行迭代计算,直到满足预设的收敛条件。
牛顿-拉夫逊法是一种较为高效的迭代法,它通过近似潮流方程的雅可比矩阵,实现了计算的高效和稳定。
三、潮流计算的应用潮流计算在电力系统运行与规划中起着重要作用。
首先,潮流计算可以用于电力系统的稳态分析,确定电力系统在各种工况下的电压、相角等参数,以判断电力系统是否存在潮流拥挤、电压失调等问题。
其次,潮流计算还可以用于电力系统的优化调度,通过调整电力系统的发电机出力、负荷组织等参数,以改善电力系统的经济性和可靠性。
此外,潮流计算还可以用于电力系统规划,通过对电力系统进行潮流计算,可以为新建电源、输电线路以及变电站等设备的规划和选择提供科学依据。
四、潮流计算的发展随着电力系统的规模不断扩大和复杂度的提高,潮流计算技术也得到了迅速的发展。
传统的潮流计算方法在计算效率和计算精度上存在一定的局限性。
因此,近年来研究者提出了基于改进的迭代方法、高精度的求解算法以及并行计算等技术,以提高潮流计算的速度和准确性。
此外,随着可再生能源的不断融入电力系统,潮流计算还需要考虑多种能源的互联互通问题,这对潮流计算提出了新的挑战,需要进一步的研究和改进。
电力系统潮流计算方法分析

电力系统潮流计算方法分析1.黎曼法是最简单和最直接的计算方法。
该方法直接利用电力系统的基本方程式,即功率平衡方程式和节点电压方程式来计算潮流分布。
然而,黎曼法需要利用复杂的矩阵方程式来解决系统中节点电压的计算,计算量大且计算速度较慢,对大型复杂系统不适用。
2.高斯-赛德尔法是一种迭代法,将电网中的节电清设置为未知数,并采用全局迭代求解。
该方法通过迭代计算不断逼近潮流分布,直到满足系统中所有节点的电压和功率平衡方程为止。
高斯-赛德尔法具有迭代次数多、耗时较长的缺点,但计算稳定可靠,对于小型系统具有较好的适用性。
3.牛顿-拉夫逊法是一种基于牛顿迭代思想的高效潮流计算方法。
该方法通过利用电力系统中的雅可比矩阵,将潮流计算问题转化为解非线性方程组的问题。
牛顿-拉夫逊法的迭代速度和稳定性较高,适用于大型复杂系统的潮流计算。
综上所述,电力系统潮流计算方法可以选择黎曼法、高斯-赛德尔法和牛顿-拉夫逊法等不同的算法进行计算。
选择合适的计算方法应根据系统的规模、复杂度以及计算时间要求来综合考虑。
实际应用中,通常会根据具体情况采用不同的方法进行潮流计算,以获得准确和高效的结果。
同时,随着电力系统的发展和智能化技术的应用,也出现了一些基于机器学习和深度学习的潮流计算方法。
这些方法利用大数据和智能算法,通过学习和分析系统历史数据,能够更好地预测和计算系统潮流分布,提高计算效率和准确性。
这些方法在未来的电力系统潮流计算中具有潜力和广阔的应用前景。
总结起来,电力系统潮流计算是电力系统分析和规划的重要工作,不同的计算方法有不同的优劣势,合理选择计算方法对于准确评估系统稳定性和可靠性至关重要。
随着技术的进步和应用的发展,电力系统潮流计算方法也在不断演化和改进,以满足电力系统智能化和可持续发展的需求。
电力系统潮流计算

(k ) f ( x ) (k ) x f ( x ( k ) )
迭代过程的收敛判据为 f ( x ( k ) ) 1
x ( k ) 2
或
牛顿—拉夫逊法实质上就是切线法,是一种逐步线性化的 方法。牛顿法不仅用于求解单变量方程,它也是求解多变 量非线性方程的有效方法。
有
(0) (0) (0) (0) f1 ( x1(0) x1(0) , x2 x2 , , xn xn )0 (0) (0) (0) (0) f 2 ( x1(0) x1(0) , x2 x2 , , xn xn )0
(0) (0) (0) (0) f n ( x1(0) x1(0) , x2 x2 , , xn xn )0
牛顿-拉夫逊法潮流计算
一、牛顿—拉夫逊法的基本原理 单变量非线性方程: x=x(0)+ Δx(0) 即 f(x=x(0)+ Δx(0) ) = 0 f(x)=0 (11—29) 解的近似值x(0),它与真解的误差为Δx(0)
展成泰勒级数
f (x
(0)
x ) f ( x ) f ( x )x
f1 (0) xn )0 xn 0 f (0) 2 xn )0 xn 0
(0) f n ( x1(0) , x2 ,
写成矩阵形式:
f n f (0) x1(0) n x2 x1 0 x2 0 f1 x1 0 (0) (0) (0) f1 ( x1 , x2 , , xn ) f 2 (0) (0) (0) f 2 ( x1 , x2 , , xn ) x 1 0 (0) (0) (0) f ( x , x , , x n 1 2 n ) f n x1 0
简单电力系统分析潮流计算

简单电力系统分析潮流计算电力系统潮流计算是电力系统分析中的一项重要任务。
其目的是通过计算各个节点的电压、电流、有功功率、无功功率等参数,来确定系统中各个元件的运行状态和互相之间的相互影响。
本文将介绍电力系统潮流计算的基本原理、计算方法以及应用。
潮流计算的基本原理是基于电力系统的节点电压和支路功率之间的网络方程。
通过对节点电压进行迭代计算,直到满足所有支路功率平衡方程为止,得到系统的运行状态。
潮流计算的基本问题可以表示为以下方程组:P_i = V_i * (G_i * cos(θ_i - θ_j ) + B_i * sin(θ_i -θ_j )) - V_j * (G_i * cos(θ_i - θ_j ) - B_i * sin(θ_i -θ_j )) (1)Q_i = V_i * (G_i * sin(θ_i - θ_j ) - B_i * cos(θ_i -θ_j )) - V_j * (G_i * sin(θ_i - θ_j ) + B_i * cos(θ_i -θ_j )) (2)其中,P_i为节点i的有功功率注入;Q_i为节点i的无功功率注入;V_i和θ_i分别为节点i的电压幅值和相角;V_j和θ_j分别为节点j的电压幅值和相角;G_i和B_i分别为支路i的导纳的实部和虚部。
对于一个电力系统,如果知道了节点注入功率和线路的导纳,就可以通过潮流计算求解出各节点的电压和功率。
这是一种不断迭代的过程,直到系统达到平衡状态。
潮流计算的方法有多种,常见的有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法等。
其中,高斯-赛德尔迭代法是最常用的一种方法。
高斯-赛德尔迭代法的思想是从已知节点开始,逐步更新其他节点的电压值,直到所有节点的电压值收敛为止。
具体步骤如下:1.初始化所有节点电压的初始值;2.根据已知节点的注入功率和节点电压,计算其他节点的电压值;3.判断节点电压是否收敛,如果收敛则结束计算,否则继续迭代;4.更新未收敛节点的电压值,返回步骤2高斯-赛德尔迭代法的优点是简单有效,但其收敛速度较慢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统潮流计算算法设计及实现潮流计算是电力系统分析中的一种最基本的计算,它的任务是对给定的运行条件确定系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。
建模是用数学的方法建立的数学模型,但它严格依赖于物理系统。
根据电力系统的实际运行条件,按给定的变量不同,一般将节点分为PQ节点,PV节点,平衡节点三种类型。
当这三个节点与潮流计算的约束条件结合起来时,便是潮流计算的数学模型。
PQ节点:有功功率P和无功功率Q是已知的,节点电压(V,δ)是待求量。
通常变电所都是这一类型的节点。
PV节点:有功功率P和电压复制V是已知的,节点的无功功率Q和电压相位δ是待求量。
一般选择有一定无功储备的发电厂和具有可调无功电源设备的变电所作为PV节点。
平衡节点:在潮流分布算出之前,网络中的功率损失是未知的,所以,网络中至少有一个节点的有功功率P不能给定,这个节点承担了系统的有功功率平衡,所以称为平衡节点。
一般选择主调频发电厂为平衡节点。
潮流计算的约束条件是:1、所有的节点电压必须满足:这一约束主要是对PQ节点而言。
2、2、所有电源节点的有功功率和无功功率必须满足:对平衡节点的P和Q以及PV节点的Q按以上条件进行检验。
3、某些节点之间电压的相位差应满足:稳定运行的一个重要条件。
功率方程的非线性雅可比矩阵的特点:●各元素是各节点电压的函数●不是对称矩阵●因为Y =0,所以H =N =J =L =0,另R =S =0,故稀疏两种常见的求解非线性方程的方法:1)高斯-赛德尔迭代法;2)牛顿-拉夫逊迭代法。
高斯-赛德尔迭代法潮流计算1、方程表示:①用高斯-赛德尔计算电力系统潮流首先要将功率方程改写成能收敛的迭代形式;②Q:设系统有n个节点,其中m个PQ节点,n-(m+1)个是PV节点,一个平衡节点,平衡节点不参加迭代;③功率方程改写成:2、求解的步骤:1)上述迭代公式假设n个节点全部为PQ节点。
2)始终等号右边采用第k次迭代结果,当j<i时,采用经(k+1)次迭代后的值,当j>i时,采用第k次迭代结果。
对于PV及诶单,节点有功功率P和电压幅值V是给定的。
但节点的无功功率只在迭代开始时给出初值Q(在给定初值时,对该类节点增加初值Q =0.5P ,此后的迭代值必须在迭代过程中逐次算出。
所以,在每次的迭代中,需要对PV 节点做以下几项计算。
①修正节点电压:保留节点电压相位δ,而把其幅值直接取为给定值V ,令:②计算节点无功功率:③无功功率越线检查:第二步计算出的无功功率要按下面的不等式进行检验:a) Q <Q 计算的得到的结果比允许的最小值还小,不能以计算得到的结果再代入进行迭代,以Q 作为PV节点的无功功率,此时,PV节点转为PQ节点;b) Q >Q 计算的得到的结果比允许的最大值还大,不能以计算得到的结果再代入进行迭代,以Q作为PV节点的无功功率,此时,PV节点转为PQ节点;c) Q <Q <Q 满足不等式,将结果继续代入第二步无功功率的公式计算。
平衡节点的电压幅值和相位都是给定的,不用进行迭代。
迭代收敛的判据:牛顿-拉夫逊法潮流计算节点电压可表示为:导纳矩阵元素表示为:PQ节点:PV节点:直角坐标缩写形式:雅可比矩阵各元素值:●当i=j时●当i≠j时牛顿-拉夫逊法潮流计算的基本步骤:1、形成节点导纳矩阵;2、设各节点电压的初值;3、把节点电压的初值带入功率方程,求修正方程式中的不平衡量;4、将各节点电压的初值代入雅可比矩阵系数求解公式求修正方程式的系数矩阵;5、解修正方程式,求各节点电压的变化量,即修正量;6、计算各节点电压的新值,即修正后的值;7、运用各节点的电压新值自第三步开始进入下一次迭代;8、计算平衡点功率和线路功率。
用极坐标法时,节点电压表示为:节点功率方程为:雅可比矩阵元素的表达式●当i≠j时,当i=j时极坐标法矩阵表示(修正方程)PV节点PQ节点每一个PQ节点或每一个PV节点的一个有功功率不平衡量方程式:每一个PQ节点的一个无功功率不平衡量方程式:极坐标法的基本步骤:1、输入原始数据和信息:y,C,P ,Q ,U ,约束条件;2、形成节点导纳矩阵:Y =C yC;3、设置各节点电压初值4、将初值带入上面有功功率和无功功率不平衡量方程式,求不平衡量5、计算雅可比矩阵各元素(H 、L 、N 、J )6、解上面修正方程,求7、求节点电压新值:8、判断是否收敛:9、重复迭代第4、5、6、7步,知道满足第8步的条件;10求平衡节点的功率和PV节点的Q 及各支路的功率P-Q分解法潮流计算P-Q分解法就是利用牛顿-拉夫逊法修正方程的极坐标形式,考虑的电力系统的一些特性,得出的一种简化形式。
图形解释:将上面牛顿-拉夫逊法中的修正方程简写成为下面的式子:节点的有功功率不平衡量只用于修正电压的相位,节点的无功功率不平衡量只用于修正电压的幅值。
这两组方程分别轮流进行迭代,这就是所谓的有功-无功功率分解法。
矩阵H和L的元素的表达式被简化成:系数矩阵H和L可以分别写成:简化了的修正方程式为:也可以展开写成:P-Q分解法的修正方程式的特点:●以一个(n-1)阶和一个(m-1)阶系数矩阵B’、B’’,替代原有的(n+m-2)阶系数矩阵J,提高了计算速度,降低了对存储容量的要求;●以迭代过程中不变的系数矩阵B’、B’’替代变化的系数矩阵J,显著的提高了计算速度;以对称的系数矩阵B’、B’’代替不对称的系数矩阵J,使求逆等运算量和所需的存储容量大为减少。
P-Q分解法的潮流计算的基本步骤:1.形成系数矩阵B’、B’’,并求其逆矩阵;2.设各节点电压的初值3.按牛-拉法中的PQ、PV节点的有功功率不平衡量方程式计算有功不平衡量4.解修正方程式,求各节点电压相位的变量5.求各节点电压相位的新值6.按牛-拉法中的PQ节点的无功不平衡量方程式计算无功功率不平衡量7.解修正方程式,求各节点电压幅值的变量8.求各节点电压幅值的新值9.不收敛时,运用各节点电压的新值自第3步开始进入下一次迭代;10.计算平衡节点功率和线路功率。
牛顿-拉夫逊法和P-Q分解法的特性图:灵敏度分析为什么要进行灵敏度分析?在系统规划设计和运行中,有时潮流计算的结果不能满足安全可靠或经济性的要求,因而需要进行适当的调整和控制。
在分析电力系统调整问题时,总是希望知道对某些变量的调整能在多大程度上影响系统的运行状况。
因此,需要进行灵敏度分析。
所谓灵敏度分析,就是研究当一个或几个扰动变量或控制变量发生变化时,状态变量有什么变化。
或者说,研究系统的运行状态对控制变量和扰动变量的影响和敏感程度。
灵敏度方程为:它描述了三类变量(不可控变量、可控变量、状态变量)的偏移向量之间的关系。
-负荷功率出现了一个小的扰动;-发电机功率做的相应调整;-此刻系统的状态发生的小的偏离;式中J 、J 、J 都取(x ,u ,p )处的值。
由灵敏度方程可以解出状态变量的偏离值:称为灵敏度矩阵。
令x= x+ x式中,分别表示有控制变量的变化和扰动变量的变化所引起的状态变量的偏移。
状态变量偏移的这两种分量可以分别由下面方程解出:对于任意给定的控制变量或扰动变量的变化,利用上面方程即可求得状态变量的相应变化,从而阐明系统对于控制变量或扰动变量给定变化所作的响应。
潮流计算的任务电力系统潮流计算是研究电力系统稳态运行的一种计算。
他的任务是在给点的电力系统运行条件下,计算电力系统的运行状态。
电力系统运行条件是指电力系统各母线的负荷功率,发电机功率,某些母线保持的电压值等。
运行状态是指电力系统各母线的电压幅值和相角。
电力系统运行状态一经确定,便可以计算出电力网络中功率分布和网损。
潮流计算的发展史最初,电力系统潮流计算是通过人工手算的。
后来为了适应电力系统日益发展的需要,采用了交流计算台。
随着电子数字计算机的出现,1956年Ward 等人编制了实际可行的计算机潮流计算程序。
这样,就为日趋复杂的大规模电力系统提供了极其有力的计算手段。
经过几十年的时间,电力系统潮流计算已经发展的十分成熟。
电力系统潮流计算形式分为离线计算各在线计算两种。
前者主要用于电力系统规划设计、安排系统的运行方式,后者则用于正在运行系统的实时监视和实时控制。
在计算原理上离线和在线潮流计算是相同的,都要求满足以下几点:1、计算方法可靠,收敛性好;2、占用较少的计算机内存;3、计算速度高;4、用于界面良好,方便使用。
潮流计算的用途在下列各种情况下都需要进行电力系统潮流计算:1、对建成的电力系统来说,根据给定的运行条件和网络的结构形式确定整个网络的运行条件。
2、在负荷增长或网络扩建的条件下,执行基本情况和预想事故的潮流计算,就能对所需扩建的装机容量和必要增添的输变电设备提供可行的依据,使之在保证供电可靠性的前提下,节省投资费用。
3、在计算电力系统的暂态稳定和静态稳定之前,也要利用潮流计算来确定系统的初始正常运行凡是,用以确定电力系统在该运行条件下的抗干扰能力。
所以,潮流计算是电力系统分析中使用最广泛、最基本和最重要的一项计算。
附:MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
基本功能:MATLAB和Mathematica、Maple并称为三大数学软件。
它在数学类科技应用软件中在数值计算方面首屈一指。
MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。
在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。
可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用。