脱硝技术介绍(SCR)
SCR脱硝技术

SCR脱硝技术及其脱硝催化剂生产工艺1、概述SCR(selective catalytic reduction)是烟气选择性催化还原法脱硝技术的简称,是指在催化剂的作用下,利用还原剂(如NH3)“有选择性”地与烟气中的NOx反应并生成无毒无污染的N2和H2O。
也就是说SCR工艺的实质就是燃煤锅炉排放烟气中的NOx污染物与喷入烟道的还原剂NH3,在催化剂的作用下发生氧化还原反应,生成无害的N2和H2O。
该工艺于20世纪70年代末首先在日本开发成功,80年代和90年代以后,欧洲和美国相继投入工业应用,现已在世界范围内成为大型工业锅炉烟气脱硝的主流工艺。
为避免烟气再加热消耗能量,一般将SCR反应器布置在锅炉省煤器出口与空气预热器之间,即高飞灰布置。
此时烟气温度(300℃-430℃)正好是催化剂的最佳活性温度窗口。
氨气在加入空气预热器前的水平管道上加入,与烟气混合,NOx在催化剂的作用下被还原为N2和H2O。
目前常规应用的SCR技术为中温催化剂(280℃-420℃),而现在正在研究开发的低温催化剂,可应用于200℃以下的烟气温度。
2、SCR反应过程SCR技术是在金属氧化物催化剂作用下,以NH3作为还原剂,将NOx还原成N2和H2O。
NH3不和烟气中的残余的O2反应,而如果采用H2、CO、CH4等还原剂,它们在还原NOx的同时会与O2作用,因此称这种方法为“选择性”。
主要反应方程式为:4NH3+4NO+O2─>4N2+6H2O (1)NO+NO2+2NH3─>2N2+3H2O (2)3、SCR系统设计条件•烟气流量•烟气温度•烟气成分和灰分成分•烟气入口NOx浓度•脱硝效率•空间速率•NH3/NOx摩尔比•SO2转化率•NH3逃逸率•反应器运行压降4 、SCR脱硝系统主要装置•氨存储和供应系统•氨/空气喷射系统•SCR反应器•SCR催化剂•SCR控制系统•吹灰和灰输送系统5、SCR催化反应还原剂用于SCR烟气脱硝的还原剂一般有3种:液氨、氨水、及尿素。
SCR脱硝技术概述

SCR脱硝技术概述我国年煤耗量的84 %直接用于燃烧,对于燃煤电厂则是100 %的燃烧。
如此大量的煤炭燃烧将会导致NOX 排放量剧增。
由于NOX 对人类和自然界存在危害,所以必须控制NOX 的生成和排放。
烟气脱硝是目前发达国家普遍采用的减少NOX 排放的方法,具有很高的脱除效率,应用较多的是选择性催化还原法( SCR) 。
1SCR技术的原理SCR是一个燃烧后NOX 控制工艺,其包括将氨气喷入电站锅炉燃煤产生的烟气中;含有氨气的烟气通过一个含有专用催化剂的反应器;在催化剂的作用下,氨气同NOX 发生反应,转化成水和氮气等几个过程。
反应基本方程式:4NH3 + 4NO +O2 →4N2 + 6H2O4NH3 + 6NO→5N2 + 6H2O8NH3 + 6NO2 →7N2 + 12H2O4NH3 + 2NO2 +O2 →3N2 + 6H2O通过使用适当的催化剂,上述反应可以在200 ℃- 450 ℃的温度范围内有效进行。
在NH3 /No = 1 (物质的量比) 的条件下, 可以得到80 % - 90 %的脱硝率。
在反应过程中, NH3 可以选择性地和NOX 反应生成N2 和H2O,而不是被O2 所氧化,因此反应又被称为“选择性”。
2国外SCR应用情况选择性催化还原( selective catalytic reduction:SCR)技术是一项降低NOX 排放量的有效技术,另外它被证明在当前的流行的技术安装消费中是高性能,比较经济的解决方案,是应用最多且是最成熟的技术之一。
采用该法脱硝的反应温度取决于催化剂的种类,该方法能达到80% ~90%的NOX 降低率。
目前这一技术在发达国家已经得到了比较广泛的应用,欧洲、日本、美国是当今世界上对燃煤电厂NOX 排放控制最先进的地区和国家,他们除了采取燃烧控制之外,大量使用的是SCR烟气脱硝技术。
日本和德国的一些燃煤电厂燃用中硫煤的实际应用数据表明,无论是烟气中的飞灰、SO2 /SO 3, NH3 的过量渗漏,还是SO2 过多生成SO3 ,都不会给SCR技术的操作带来异常困难。
SCRSNCRSNCR40脱硝技术优缺点

SCRSNCRSNCR40脱硝技术优缺点首先,SCR(Selective Catalytic Reduction)是一种高效的脱硝技术,其原理是将氨水(NH3)或尿素蒸汽注入废气中,并在催化剂的作用下,使氨和氮氧化物(NOx)发生反应生成氮气(N2)和水蒸气(H2O)。
SCR技术的优点如下:1.高脱硝效率:SCR技术能够将NOx排放物转化为无害的氮气和水蒸气,其脱硝效率通常可达到90%以上。
2.广泛适用性:SCR技术可以适用于各种不同类型的燃烧设备,包括煤炭锅炉、发电机组等。
3.低消耗:SCR技术在脱硝过程中所需的氨水或尿素用量相对较低,因此具有较低的运行成本。
然而,SCR技术也存在一些缺点:1.对催化剂的要求高:SCR技术需要使用催化剂来促进反应,但催化剂的选择和维护较为复杂,且催化剂的失效可能会影响脱硝效率。
2.需要较高的运行温度:SCR脱硝需要在相对较高的温度下进行,因此该技术的适用范围受到温度限制。
SNCR(Selective Non-Catalytic Reduction)是另一种常见的脱硝技术,其原理是在废气中喷射氨水或尿素溶液,使其与NOx发生反应生成氮气和水。
SNCR技术的优点如下:1.简单操作:SNCR技术相对于SCR技术而言,设备结构较为简单,操作和维护相对较为容易。
2.适用范围广:SNCR技术适用于各类燃烧设备,无论是煤炭锅炉、发电机组还是工业炉等。
3.较低的投资和运营成本:相对于SCR技术,SNCR技术的投资和运营成本较低。
然而,SNCR技术也存在一些缺点:1.脱硝效率较低:相对于SCR技术,SNCR技术的脱硝效率较低,通常在60-70%之间。
2.可能产生副产品:在SNCR过程中,由于NOx与氨水或尿素的非选择性反应,可能还会产生有害气体,如亚硝酸和二氧化氮等。
3.受温度和氨浓度的限制:SNCR技术对温度和氨浓度有一定的要求,因此在应用中需要针对不同的工况进行调整。
SNCR40是SNCR技术的改进版本,其主要的区别在于SNCR40在喷射氨水前加入了特殊催化剂,并在反应过程中通过优化喷射量和喷射方式来提高脱硝效率。
SCR脱硝技术

SCR脱硝技术SCR脱硝技术介绍第一部分:脱硝理论一、脱硝的意义1、NOx的产生机理:NOx主要包括N2O、NO、N2O3、NO2、N2O4、N2O5等化合物,其中最重要的是NO和NO2。
烟气中的NO约占90,左右,排入大气后部分再氧化成NO2,故研究NOx 的生成机理,主要是研究NO的生成机理。
NO的生成形式有燃料型、温度型和快速温度型三种。
1、热力型NOx,它是空气中的氮气在高温下氧化而生成的NOx。
2、快速型NOx,是燃烧时空气中的氮和燃料中的碳氢离子团如HC等反应生成的NOx。
3、燃料型NOx,它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx。
这三种类型的NOx,其各自的生成量和煤的燃烧温度有关,在电厂锅炉中燃料型NOx 是最主要的,其占NOx总量的60,80%,热力型其次,快速型最少。
2、NOx的危害:NO相对无害,但NO极易被进一步氧化成NO2,而NO2是一种氧化剂对人体有毒害作用,可引起呼吸疾病(如咳嗽和咽喉痛),如再加上NO2的影响则可加重支气管炎、哮喘病和肺气肿。
NO2在强阳光照射下与挥发性有机物之间的光化学反应产生臭氧、过氧乙酰硝酸酯等更强的氧化剂,对眼晴有强烈的刺激作用,对健康影响很大。
NOx可以通过皮肤接触和摄入被污染的食品进入消化道,对人体造成危害,也可以通过呼吸道吸入人体,给人体造成更为严重的伤害。
危害主要有:(1)NOx对人体的致毒作用,危害最大的是NO2,主要影响呼吸系统,可引起支气管炎和肺气肿等疾病;(2)NOx对植物的损害;(3)NOx是形成酸雨、酸雾的主要污染物;1(4)NOx与碳氢化合物可形成光化学烟雾;5)NOx参与臭氧层的破坏。
燃煤锅炉排放的烟气中含有SO2、NOx和粉尘等多种有害成份,其中氮氧化物(NOx)是重点控制的污染物之一。
二、脱硝的常见方法1、脱硝方法NOx的治理技术可分为燃烧的前处理、燃烧方式的改进及燃烧的后处理三种。
(1)燃烧前的处理:通过脱氮,减少燃料中的含氮量,从而减少燃烧过程NOx的生成量(2)燃烧技术的改进:有低氧燃烧、排气循环燃烧、注入蒸汽或水、二级燃烧、分段燃烧、降低空气比和浓差燃烧。
SCR法脱硝技术简介

SCR 法脱硝技术简介一、SCR 脱硝原理SCR 的全称为选择性催化还原法(Selective Catalytic Reducation)。
催化还原法是用氨或尿素之类的还原剂,在一定的温度下通过催化剂的作用,还原废气中的NO x (NO 、NO 2),将NO x 转化非污染元素分子氮(N 2),NO x 与氨气的反应如下:CO(NH 2)2+H 2O→2NH 3+CO 2(尿素热解,氨水无热解直接使用)4NO + 4NH 3 + O 2 → 4N 2 + 6H 2O6NO 2+8NH 3→7N 2+12H 2OSCR 系统包括催化剂反应器、还原剂制备系统、氨喷射系统及相关的测试控制系统。
SCR 工艺的核心装置是催化剂和反应器,有卧式和立式两种布置方式,本项目采用卧式。
该工艺为最新成熟工艺。
二、工艺流程变化现有生产工艺流程:增加SCR 系统工艺流程:氮氧化物 一级水吸收 二级水吸收 碱吸收 总碱塔吸收 氧化塔转化吸收 总塔吸收后排放 氮氧化物 一级水吸收 二级水吸收 碱吸收 总碱塔吸收氧化塔转化吸收 SCR 系统催化还原 总塔吸收后排放三、工艺变更的目的及效果:3.1现有工艺全部采用水、碱喷射强制吸收,喷射泵运行较多,运行成本高。
尾气排放每天监测大约在80~110mg/m3,虽符合国家及当地排放要求,但是排放指标偏上。
3.2根据国家政策,在原有工艺基础上,在氧化塔与总吸收排放塔之间增加SCR催化还原吸收系统,在原有排放的基础上再次深度治理,可保证尾气排放指标≤50mg/m3。
前面工序喷射泵可停止部分使用,降低能耗及噪声污染。
四、项目投资:SCR系统总投资为:78万元。
配套辅助工程管道、原料储罐投资约4万元。
合计投资:84万元。
以上投资全部为环保设备设施投资。
scr工艺脱硝原理

scr工艺脱硝原理SCR工艺脱硝原理一、介绍SCR(Selective Catalytic Reduction)工艺是一种利用氨水或尿素作为还原剂,通过催化剂将NOx转化为N2和H2O的脱硝技术。
该技术具有高效、稳定、可靠等特点,在电力、石化、钢铁等领域得到广泛应用。
二、反应机理1. NOx的生成NOx是指氮氧化物,包括NO和NO2两种。
在燃烧过程中,空气中的氮和氧反应生成N2和O2,但当温度较高时,氮分子会与游离的氧原子相遇形成NO。
此外,在燃料中含有较多的有机物或硫时,也会产生NOx。
2. SCR反应SCR反应是指将NH3或尿素注入到烟道脱硝装置中,与NOx发生化学反应生成N2和H2O。
SCR反应需要催化剂的存在,在催化剂表面上进行。
3. 催化剂常用的SCR催化剂是钒钛催化剂。
该催化剂具有高活性、耐久性好等特点。
在催化剂表面上,NH3或尿素分解为NH2和NH4,NH2与NOx反应生成N2和H2O。
三、工艺流程1. 氨水或尿素的制备氨水或尿素是SCR脱硝过程中的还原剂。
氨水通过合成氨法制备,尿素则通过碳酸二铵和氨水反应得到。
2. 进出口烟气处理进入SCR反应器前,需要对烟气进行预处理。
主要包括除尘、脱硫等工艺。
出口烟气需要再次进行除尘处理,以保证排放标准。
3. SCR反应器SCR反应器是SCR脱硝过程的核心部件。
在该装置中,将制备好的氨水或尿素喷入烟道中,在催化剂表面上与NOx发生化学反应生成N2和H2O。
4. 氨水或尿素喷雾系统在SCR反应器中喷洒氨水或尿素需要使用喷雾系统。
该系统需要保证稳定、均匀的喷洒量,并且能够适应不同温度下的使用。
5. 余热回收系统SCR脱硝过程会产生大量废热,如果不能有效回收利用,则会造成能源浪费。
因此,在SCR脱硝过程中需要设计余热回收系统,将废热回收利用。
四、影响因素1. 温度SCR反应需要在一定温度范围内进行。
通常情况下,SCR反应的最佳温度为250℃~400℃。
SCR烟气脱硝技术

添加标题
烟气排放口:排放处 理后的烟气满足环保 要求
采用选择性催化还原技术将NOx转化为N2和H2O 工艺流程简单操作方便易于控制 脱硝效率高可达到90%以上 设备投资和运行成本相对较低 适用于各种类型的锅炉和工业炉窑 具有较好的环保效益和社会效益
影响因素:反应温度是影响SCR烟气脱硝技术效果的重要因素之一 反应温度范围:SCR烟气脱硝技术通常在300-400℃的反应温度范围内进行 温度过高:反应温度过高会导致催化剂失活影响脱硝效果 温度过低:反应温度过低会导致反应速率降低影响脱硝效率
减少NOx排放:有 效降低烟气中的 NOx含量
提高燃烧效率:提 高锅炉燃烧效率降 低燃料消耗
降低运行成本:减 少脱硝剂消耗降低 运行成本
提高环保性硝系统 的投资成本
运行成本:运行 SCR烟气脱硝系统 的运行成本
节能效果:SCR烟 气脱硝系统对节能 减排的贡献
加强环保监管:建 立完善的环保监管 体系确保脱硝技术 的有效实施
技术瓶颈:现有技术存在效率低、成本高等问题 创新方向:提高脱硝效率、降低成本、减少环境污染 技术研发:加强技术研发推动技术创新 政策支持:政府出台相关政策鼓励企业进行技术创新
汇报人:
其他行业: 如陶瓷、 有色金属 等
烟气预处理: 去除烟气中的 灰尘、水分等
杂质
氨气注入:将 氨气注入烟气 中形成氨气与 烟气的混合物
催化剂选择: 选择合适的催 化剂如V2O5、
TiO2等
反应器设计: 设计反应器使 烟气与氨气混 合物在反应器
中充分反应
脱硝产物处理: 处理脱硝产物 如NOx、NH3
等
烟气排放:将 处理后的烟气 排放到大气中
scr脱硝技术指标

SCR脱硝技术指标1. 简介SCR(Selective Catalytic Reduction)脱硝技术是一种常用于燃煤电厂和工业锅炉等燃煤设备中的脱硝技术。
它通过在烟气中注入尿素溶液或氨水,利用催化剂将氮氧化物(NOx)转化为无害的氮气和水蒸气,从而实现减少大气污染物排放的目的。
2. SCR脱硝技术原理SCR脱硝技术的主要原理是在适宜的温度、催化剂和氨(尿素)溶液浓度条件下,将烟气中的氮氧化物与氨发生反应,生成氮气和水。
该反应需要催化剂作为催化剂,常用的催化剂包括钛酸钾、钒酸钾等。
反应的化学方程式如下:4NO + 4NH3 + O2 → 4N2 + 6H2O3. SCR脱硝技术指标SCR脱硝技术的指标主要包括以下几个方面:3.1 脱硝效率脱硝效率是指SCR脱硝系统对烟气中氮氧化物去除的能力,通常以百分比表示。
脱硝效率越高,说明系统对氮氧化物的去除能力越强。
3.2 氨逃逸率氨逃逸率是指SCR脱硝系统中氨逃逸到大气中的比例。
氨逃逸率越低,说明系统对氨的利用率越高,同时也减少了对环境的污染。
3.3 催化剂活性催化剂活性是指催化剂在SCR脱硝反应中的催化性能,主要包括催化剂的转化效率和稳定性。
催化剂活性越高,反应速率越快,脱硝效果越好。
3.4 温度窗口SCR脱硝反应需要在一定的温度范围内进行,称为温度窗口。
温度窗口是指SCR脱硝反应的最佳温度范围,通常在250-400摄氏度之间。
在温度窗口内,催化剂的活性最高,脱硝效果最好。
3.5 氨氧比氨氧比是指SCR脱硝反应中氨与氮氧化物的摩尔比。
氨氧比的选择对SCR脱硝效果有重要影响,过高或过低的氨氧比都会影响脱硝效率。
4. SCR脱硝技术的优势SCR脱硝技术相比其他脱硝技术具有以下优势:4.1 高效SCR脱硝技术具有高脱硝效率,能够将烟气中的氮氧化物去除率达到90%以上,甚至可以接近100%。
4.2 适应性强SCR脱硝技术对烟气中的氮氧化物浓度变化范围较大,适应性强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锅炉负荷信号
FIC NOX信号
无水氨储罐
氨的流量分配 烟气 氨喷射栅格 稀释空气 省煤器 锅炉
SCR 反应器 空预器
烟气出口 氨蒸发器
19
Typical SCR System
三.SCR系统主要设备
反应器/催化剂系统
主要设备:反应器
催化剂
吹灰器
20
Typical SCR System
催化剂主要的供应商
板式 Argillon Babcock Hitachi (BHK) 波纹板式 Haldor Topsoe Hitachi Zosen (Hitz)
蜂窝式 Cormetech Argillon Ceram CCIC 东方凯瑞特
Typical SCR System
6
Vdaf>20% 10%≤Vdaf≤20% Vdaf<10%
General
NOX 形成机理
A. 热力型 NOX
主要反应 N2+O→NO+N N+O2→NO+O N+OH→NO+H 相关因素 高温环境 燃料与空气的充分混合 无烟煤燃烧中,热力型NOx可到一半以上
7
General
11
燃烧中NOX 生成的控制
General
烟气中NOx脱除--SNCR & SCR
• A. 选择性非催化还原法 (SNCR)
主要反应
氨 尿素 CO2 4NO + 4NH3 + O2 →4N2 + 6H2O 2NO + (NH2)2CO + 1/2O2 → 2N2 + 2H2O +
反应温度:
760 ~ 1090C 最佳反应温度:870~1050C
SCR 催化剂安装
40
Typical SCR System
SCR 催化剂安装
41
Typical SCR System
SCR 催化剂安装
42
Typical SCR System
SCR 催化剂的吹灰
43
Typical SCR System
SCR 催化剂的吹灰
44
五. SCR装置的影响
空预器
45
四 .催化剂
脱硝的主要反应
4NO + 4NH3 + O2 → 4N2 + 6H2O 2NO2 + 4NH3 + O2 → 3N2 + 6H2O 6NO2 + 8NH3 → 7N2 + 12H2O
33
Typical SCR System
催化剂型式
波纹板式
蜂窝式 板式
Typical SCR System
尿素
25Leabharlann Typical SCR System
氨的储备与供应系统
氨的存储系统
26
Typical SCR System
氨的储备与供应系统
氨的蒸发器
27
Typical SCR System
三.SCR系统主要设备
烟道系统
挡板(有旁路)
膨胀节
导流板 烟道
28
Typical SCR System
对于燃煤锅炉,快速型NOx所占份额一般低于5
%。
9
General
NOX 的控制 技术
•燃烧中NOx生成的控制 •烟气中NOx的脱除
10
General
• 控制原理 降低燃烧温度 控制燃料和空气的混合速度与时机 • 主要控制手段 燃烧器设计参数(风速、风温、旋流强度等)优化 煤粉浓缩技术 OFA分级送风技术 • 注意事项 锅炉的燃烧效率 煤粉的着火和稳燃
转化效率在70~90%之间。
15
General
NOx脱除技术-SCR
a) 高尘SCR系统--首选 b)低尘SCR系统
16
SCR 布置图
Typical SCR System
二. SCR系统组成
反应器/催化剂系统
烟气/氨的混合系统
氨的储备与供应系统
烟道系统
SCR的控制系统
18
Typical SCR System
对空预器的影响
烟气中部分SO2转化成SO3 由于SO3的增加,由此酸腐蚀和酸沉积堵灰程度增加 NH3+SO3+H2ONH4HSO4/(NH4)2SO4 NH4HSO4 沉积温度150~200℃,粘度较大,加剧对 空气预热器换热元件的堵塞和腐蚀
空气预热器热端压差增加,空气预热器漏风略有增加
氨的喷射栅格和静态混合器
22
Typical SCR System
烟气/氨的混合
氨的流 量分配阀门站 MVS
23
Typical SCR System
三.SCR系统主要设备
氨的储备与供应系统
卸料压缩机
氨蒸发器(电/蒸汽)
氨罐 缓冲罐 稀释槽
24
Typical SCR System
氨的储备与供应系统
三.SCR系统主要设备
SCR的控制系统 DCS、PLC 仪表、盘柜等
31
Typical SCR System
SCR的控制系统
一. 控制系统方案
控制系统纳入机组DCS
独立的控制系统
吹灰系统 氨的卸载、储存和供应系统 烟气挡板调节系统 脱硝主体控制系统
二. 主要受控系统
32
Typical SCR System
脱硝效率
对于城市固体垃圾炉转化效率在30~50%之间,大型 电站锅炉的转化效率控制在20~40%之间。 12
General
NOx脱除技术-SNCR
13
General
NOx脱除技术-SNCR
SNCR的优点:投资费用低 SNCR的缺点:
脱硝效率较低
对电站锅炉控制要求高,可靠性差 氨的逃逸率较大
氨的原料
反应剂原料
优点 缺点
无水氨
反应剂纯度最高 原料成本最低 设备成本最低 容易运输 浓度低于20%时不 划分为高危险性的原 料 比无水氨危险性 安全的原料 (化肥) 干态或湿态 容易运输
高危险性的原料 运输和存储问题
氨水 (19% or 29%)
需要更大的运输设备 以及更频繁的运输 需要更大的储存罐 蒸发成本 工艺复杂 成本昂贵 存储的问题
SCR 催化剂设计中要考虑其它因素
催化剂的寿命
SO2 到 SO3 的转化率 使用NH3 的烟气最低温度
高温下催化剂的烧结
As的毒化 碱土金属(CaO) 碱金属(Na,K)的毒化 卤素(Cl)的毒化 飞灰磨损
38
Typical SCR System
SCR 催化剂安装
39
Typical SCR System
烟道系统
要点 省煤器旁 路
Damper Economizer Bypass Damper
SCR Bypass
Ammonia Injection System
Seal Air Piping
SCR Reactor
Catalyst Layer Economizer Sootblower
Future Sootblower Future Catalyst
46
采取的措施
采用多介质吹灰器 空气预热器由高中低温段改为高低温两段,取消中温 段,避免空预器在NH4HSO4沉积温度区域分段。 换热元件选用合适的板型 在空预器冷段采用镀搪瓷元件
严格控制漏氨率
采用较低的SO2到SO3的转化率
47
48
49
50
51
52
53
结束语
谢谢!
54
三.SCR系统主要设备
烟气/氨的混合系统
主要设备:稀释风机
静态混合器、
氨喷射格栅(AIG) 空气/氨混合器
21
Typical SCR System
NH3 喷射栅格A IG
静态混合器
Photo courtesy of Siemens’ Flow Model Tests brochure, 1998.
板式和蜂窝式催化剂的比较
形式 优点 缺点
蜂窝式
比表面积大
抗热冲积能力强
抗灰阻塞能力一般
板式
抗阻塞性好 烟气阻力小 结构强度高
多层结构,表层活 性材料易脱落
36
Typical SCR System
催化剂选型主要因素
烟气中飞灰的含量 烟气中飞灰颗粒尺寸 反应器布置空间 SCR烟气阻力要求
37
Typical SCR System
14
General
NOx脱除技术--SCR
B. 选择性催化还原法 (SCR) 主要反应
4NO + 4NH3 + O2 → 4N2 + 6H2O 2NO2 + 4NH3 + O2 → 3N2 + 6H2O 6NO2 + 8NH3 → 7N2 + 12H2O
反应温度
230~450 ℃ 一般应用温度:320~400 ℃
NOX 形成机理
B. 燃料型 NOX
燃料中的有机氮化合物在燃烧过程中氧化生 成的氮氧化物