2020年河南省郑州市中考数学模拟试卷(c卷)
2023年河南省郑州市中考数学一模试卷(含解析)

2023年河南省郑州市中考数学一模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 在东西向的马路上,把出发点记为0,向东与向西意义相反.若把向东走2km记做“+2km”,那么向西走1km应记做( )A. ―2kmB. ―1kmC. 1kmD. +2km2. 星载原子钟是卫星导航系统的“心脏”,对系统定位和授时精度具有决定性作用.“北斗”三号卫星导航系统装载国产高精度星载原子钟,保证“北斗”优于20纳秒的授时精度.1纳=1×10―9秒,那么20纳秒用科学记数法表示为( )A. 2×10―8秒B. 2×10―9秒C. 20×10―9秒D. 2×10―10秒3. 如图1是由6个相同的小正方块组成的几何体,移动其中一个小正方块,变成图2所示的几何体,则移动前后( )A. 主视图改变,俯视图改变B. 主视图不变,俯视图改变C. 主视图不变,俯视图不变D. 主视图改变,俯视图不变4. 把一块等腰直角三角板和一把直尺按如图所示的位置构成,若∠1=25°,则∠2的度数为( )A. 15°B. 20°C. 25°D. 30°5. 下列调查中,最适宜采用普查的是( )A. 调查郑州市中学生每天做作业的时间B. 调查某批次新能源汽车的电池使用寿命C. 调查全市各大超市蔬菜农药残留量D. 调查运载火箭的零部件的质量6. 如图,五线谱由五条等距离的平行横线组成,同一条直线上的三个点A,B,C都在横线上,若线段AB=6,则线段BC的长是( )A. 4B. 3C. 2D. 17. 若关于x的方程x2+ax+1=0有两个相等的实数根,则a值可以是( )A. 2B. 1C. 0D. ―18.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=2,则△ADE的周长为( )A. 6B. 9C. 12D. 159. 已知点(―3,y1)、(―1,y2)、(1,y3)在下列某一函数图象上,且y3<y1<y2,那么这个函数是( )A. y=3xB. y=3x2C. y=3x D. y=―3x10. 如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为( )A. m(cosα―sinα)B. m(sinα―cosα)C. m(cosα―tanα)D. msinα―mcosα二、填空题(本大题共5小题,共15.0分)11. 数学具有广泛的应用性.请写出一个将基本事实“两点之间,线段最短”应用于生活的例子: .12. 不等式组―2x <6,x ―2<0的解集是______.13. 甲乙两人参加社会实践活动,随机选择“做社区志愿者”和“做交通引导员”两项中的一项,那么两人同时选择“做社区志愿者”的概率是______.14.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,m),C(3,m +6),反比例函数y =k x(x >0)的图象同时经过点B 与点D ,则k的值为______.15. 如图,△ABC 与△BDE 均为等腰直角三角形,点A ,B ,E 在同一直线上,BD ⊥AE ,垂足为点B ,点C 在BD 上,AB =2,BE =5.将△ABC 沿BE 方向平移,当这两个三角形重叠部分的面积等于△ABC 面积的一半时,△ABC 平移的距离为 .三、解答题(本大题共8小题,共75.0分。
2023年河南省郑州市河南省实验中学中考三模数学试题

2023年河南省郑州市河南省实验中学中考三模数学试题学校:___________姓名:___________班级:___________考号:___________6.已知1x =是一元二次方程220x ax +-=的一个实数根,则a 的值是( ) A .1 B .1- C .2 D .2-7.下列选项中,最适宜采用全面调查(普查)方式的是( )A .调查一批节能灯的使用寿命B .调查东风渠的水质状况C .调查河南省中学生的体育运动情况D .检测长征二号F 遥17火箭的零部件 8.作为中原大省,河南省是我国的人口大省、农业大省、经济大省,2022年,河南省凭借6.13万亿元的经济总量占据全国各省份第五位,占全国的5.0%,将数据“6.13万亿”用科学计数法表示为( )A .86.1310⨯B .106.1310⨯C .126.1310⨯D .146.1310⨯ 9.如图,抛物线2y ax bx c =++的对称轴为直线1x =,则下列结论中,错误的是( )A .0ac <B .240b ac ->C .20a b -=D .0a b c -+= 10.正方形ABCD 与正方形BEFG 按照如图所示的位置摆放,其中点E 在AB 上,点G 、B 、C 在同一直线上,且4AB =,2BE =,正方形BEFG 沿直线BC 向右平移得到正方形B EFG '''',当点G '与点C 重合时停止运动,设平移的距离为x ,正方形B E F G ''''与正方形ABCD 的重合部分面积为S ,则S 与x 之间的函数图象可以表示为( )A .B .C .D .二、填空题11.请写出一个与x 轴有公共点的函数表达式:______.12.不等式14x +<的非负整数解为______.13.第十一届中国(郑州)国际园林博览会于2017年9月29日在郑州航空港经济综合三、解答题20.卫龙辣条是现市场上销售的一种品牌休闲食品,在学生中很受欢迎.俭学街某便利店批发一部分该食品进行销售,已知每包卫龙辣条的进价是每包普通辣条进价的2倍,用40 元购进的卫龙辣条比用10元购进的普通辣条多10包.(1)求卫龙辣条和普通辣条每包的进价分别是多少元?(2)该便利店每月用1000元购进卫龙辣条、普通辣条,并分别按3.5元/包、2元/包的价格全部售出.若普通辣条的数量不超过卫龙辣条数量的3倍,请你帮该便利店设计进货方案,使得每月所获总利润最大.21.足球比赛中,当守门员远离球门时,进攻队员常常使用吊射战术(把球高高地挑过守门员的头顶,射入球门).一般来说,吊射战术中足球的轨迹往往是一条抛物线.摩洛哥与葡萄牙比赛进行中,摩洛哥一位球员在离对方球门30米的点O 处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球达到最大高度8米.以点O 为坐标原点,建立如图所示的平面直角坐标系.(1)求该抛物线的函数表达式;(2)此时,葡萄牙队的守门员在球门前方距离球门线1米处,原地起跳后双手能达到的最大高度为2.8米,在没有摩洛哥队员干扰的情况下,那么他能否在空中截住这次吊射?请说明理由.22.水车又称孔明车,是中国最古老的农业灌溉工具,是先人们在征服世界的过程中创造出来的高超劳动技艺,是珍贵的历史文化遗产.相传为汉灵帝时毕岚造出雏形,经三国时孔明改造完善后在蜀国推广使用,隋唐时广泛用于农业灌溉,已有1700余年历史.小明对水车进行了研究,如图,水渠CD 与水车O e 相切于点D ,连接DO ,已知O e 的半径为1.2米,支柱OA 、BC 与水面AB 垂直,支柱OA 的高度为3.5米,点A 与点B 之间的距离为3.6米,点O ,A ,B ,C ,D 在同一平面内.。
2020年中考数学模拟试卷03含解析 (2)

2020年中考数学模拟试卷第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数实数0,−√5,√6,﹣2中,最小的是( ) A .0 B .−√5C .√6D .﹣2【答案】B【解析】∵−√5<﹣2<0<√6, ∴所给的数中,最小的数是−√5. 故选B . 2.函数1x y x+=-的自变量取值范围是( ) A .0x > B .0x <C .0x ≠D .1x ≠-【答案】C【解析】当0x ≠时,分式有意义。
即1x y x+=-的自变量取值范围是0x ≠。
故答案为:C3.下列说法正确的是( )A .调查某班学生的身高情况,适采用抽样训查B .对端午节期间市场上粽子质量情况的调查适合采用全面调查C .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的率是1D .“若,m n 互为相反数,则0m n +=”,这一事件是必然事件 【答案】D【解析】A 、调查你所在班级同学的身高,采用普查;B 、调查端午节期间市场上粽子质量情况,采用抽样调查;C 、小南抛掷两次硬币都是正面向上,不能说明抛掷硬币正面向上的率是1;D 、若,m n 互为相反数,则有0m n +=成立,故这一事件是必然事件;故选D . 4.点()2,3A -关于原点对称的点的坐标为( ) A .()2,3 B .()3,2-C .()2,3-D .()3,2-【答案】C【解析】点()2,3A -关于原点对称的点的坐标为()2,3- 故选C.5.如图是一个几何体的三视图,则此几何体是( )A .圆柱B .棱柱C .圆锥D .棱台【答案】A【解析】由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选A .6.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A .34B .23C .25D .16【答案】D【解析】画树状图如下:由树状图知,共有12种等可能结果,其中抽取的2人恰巧都来自九(1)班的有2种结果,所以抽取的2人恰巧都来自九(1)班的概率为21= 126,故选D.7.已知关于x,y的方程组24x y mx y m+=⎧⎨-=⎩的解为3x+2y=14的一个解,那么m的值为( )A.1 B.-1 C.2 D.-2 【答案】C【解析】解方程组24x y mx y m+=⎧⎨-=⎩,得3x my m=⎧⎨=-⎩,把3x m=,y m=-代入3214x y+=得:9214m m-=,2m∴=,故选C.8.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】①由抛物线可知:a >0,c <0,对称轴x =﹣2ba<0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:﹣2ba=﹣1, ∴b =2a ,∵x =1时,y =a+b+c =0, ∴c+3a =0,∴c+2a =﹣3a+2a =﹣a <0,故②正确; ③(1,0)关于x =﹣1的对称点为(﹣3,0), ∴x =﹣3时,y =9a ﹣3b+c =0,故③正确; ④当x =﹣1时,y 的最小值为a ﹣b+c , ∴x =m 时,y =am 2+bm+c , ∴am 2+bm+c ≥a-b+c ,即a ﹣b ≤m (am+b ),故④错误; ⑤抛物线与x 轴有两个交点, ∴△>0, 即b 2﹣4ac >0,∴4ac ﹣b 2<0,故⑤正确;故选A .9.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A.6 B.8 C.10 D.12 【答案】C【解析】连接BD交AC于O,∵四边形ABCD是正方形,∴AC⊥BD,OD=OB,即D、B关于AC对称,∴DN=BN,连接BM交AC于N,则此时DN+MN最小,∴DN=BN,∴DN+MN=BN+MN=BM,∵四边形ABCD是正方形,∴∠BCD=90°,BC=8,CM=8-2=6,由勾股定理得:=,∴DN+MN的最小值为10,故选C .10.如图,在半径为6的⊙O 中,正六边形ABCDEF 与正方形AGDH 都内接于⊙O ,则图中阴影部分的面积为( )A .27﹣B .C .54﹣D .54【答案】C【解析】设EF 交AH 于M 、交HD 于N ,连接OF 、OE 、MN ,如图所示: 根据题意得:△EFO 是等边三角形,△HMN 是等腰直角三角形, ∴EF =OF =6,∴△EFO 的高为:OF •sin60°=6×2=MN =2(6﹣12﹣∴FM =12(6﹣12+3,∴阴影部分的面积=4S △AFM =4×12(3)×54﹣ 故选C .二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解:3x 3﹣12x=_____. 【答案】3x (x+2)(x ﹣2) 【解析】3x 3﹣12x =3x (x 2﹣4) =3x (x+2)(x ﹣2), 故答案为3x (x+2)(x ﹣2).12.在学校举行“中国诗词大会”的比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,这组数据的众数是_____. 【答案】90【解析】这组数据中数据90出现了2次,出现次数最多,所以这组数据的众数为90, 故答案为:90.13.化简2221m m nm n ---的结果是____.【答案】1m n+. 【解析】原式=2()()()()m m n m n m n m n m n +-+-+-=()()m n m n m n -+-=1m n+.故答案为:1m n+14.如图,在▱ABCD中,AB AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_____.【答案】3【解析】∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=4,∴BE=2,∴3AE===.故答案为3.15.如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为____.【答案】98.【解析】如图,∵将直线y=1x2向上平移2个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=12x+2,如图:分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,32 x),),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=13 OD,∵点B在直线y=12x+2上,∴B(x,12x+2),∵点A、B在双曲线y=kx,∴313222x x x x⎛⎫⋅=⋅+⎪⎝⎭,解得x=12,∴111922228k⎛⎫=⨯⨯+=⎪⎝⎭.故答案为:9 816.如图,∠AOC=90°,P为射线OC上任意一点(点P不与点O重合),分别以AO,AP为边在∠AOC的内部作两个等边△AOE和△APQ,连接QE并延长交OP于点F,则∠OEF的度数是_____.【答案】30°【解析】∵△AOE,△APQ都是等边三角形,∴AE=AO,AQ=AP,∠EAO=∠QAP=60°,∴∠QAE=∠PAO,∴△QAE≌△PAO(SAS),∴∠AEQ=∠AOP,∵∠AOP=90°,∴∠AEQ=∠AEF=90°,∵∠AEO=60°,∴∠OEF=30°,故答案为30°.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解不等式组:3(2)421152x x x x --⎧⎪-+⎨<⎪⎩…. 【解析】3(2)4(1)211(2)52x x x x --⎧⎪-+⎨<⎪⎩… 不等式()1可化为364x x -+≥,解得1x ≤,不等式()2可化为()()22151x x -<+,4255x x -<+,解得7x >-.把解集表示在数轴上为:∴原不等式组的解集为71x -<≤.18.(本小题满分8分)如图,点B 在DC 上,BE 平分∠ABD ,∠ABE =∠C ,求证:BE ∥AC .【解析】∵BE 平分∠ABD,∴∠DBE=∠ABE;∵∠ABE=∠C,∴∠DBE=∠C,∴BE∥AC.19.(本小题满分8分)某服饰公司为我学校七年级学生提供L码、M码、S码三种大小的校服,我校1000名学生购买校服,随机抽查部分订购三种型号校服的人数,得到如图统计图:(1)一共抽查了人;(2)购买L码人数对应的圆心角的度数是;(3)估计该服饰公司要为我校七年级学生准备多少件M码的校服?【解析】(1)本次调查的总人数为22÷22%=100人,故答案为100;(2)购买L码人数对应的扇形的圆心角的度数是360°×30100=108°,故答案为108°;(3)估计该服饰公司要为我校七年级学生准备M码的校服1000×1003022100--=480(件).20.(本小题满分8分)如图,在下列9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图示所示的网格中,用无刻度的直尺,画出线段PQ,并直接写出P、Q两点的坐标.=;【解析】(1)AE2(2)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.∴P(3,4),Q(6,6).21.(本小题满分8分)如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D(1)求证:AC是⊙O的切线;(2)如图2,连接CD,若BC的长.【解析】(1)证明:连接OD ,OA ,作OF⊥AC 于F ,如图,∵△ABC 为等腰三角形,O 是底边BC 的中点,∴AO⊥BC,AO 平分∠BAC,∵AB 与⊙O 相切于点D ,∴OD⊥AB,而OF⊥AC,∴OF=OD ,∴AC 是⊙O 的切线;(2)过D 作DF⊥BC 于F ,连接OD ,∵tan∠BCD=4,∴4DF CF设DF a ,OF =x ,则CF =4a ,OC =4a ﹣x ,∵O 是底边BC 中点,∴OB=OC =4a ﹣x ,∴BF=OB﹣OF=4a﹣2x,∵OD⊥AB,∴∠BDO=90°,∴∠BDF+∠FDO=90°,∵DF⊥BC,∴∠DFB=∠OFD=90°,∠FDO+∠D OF=90°,∴∠BDF=∠DOF,∴△DFO∽△BFD,∴BF DFDF FO=,x=,解得:x1=x2=a,∵⊙O∵DF2+FO2=DO2,x)2+x2=)2,∴x1=x2=a=1,∴OC=4a﹣x=3,∴BC=2OC=6.22.(本小题满分10分)某校两次购买足球和篮球的支出情况如表:(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?【解析】(1)设购买一个足球需要x元,购买一个篮球的花费需要y元,根据题意,得23310 52500x yx y+=⎧⎨+=⎩,解得:8050 xy=⎧⎨=⎩.答:购买一个足球和一个篮球的花费各需要80和50元;(2)设购买a个足球,根据题意,得:(1+10%)×80a+(1﹣10%)×50(60﹣a)≤4000,解得:a≤1300 43,又∵a为正整数,∴a的最大值为30.答:最多可以购买30个足球.23.(本小题满分10分)如图,正方形ABCD的对角线交于点O,点E在边BC上,BE=1n BC,AE交OB于点F,过点B作AE的垂线BG交OC于点G,连接GE.(1)求证:OF=OG.(2)用含有n的代数式表示tan∠OBG的值.(3)若BF=2,OF=1,∠GEC=90°,直接写出n的值.【解析】(1)∵四边形ABCD是正方形,∴AO=BO,AC⊥BD,∴∠AFO+∠FAO=90°,∵AE⊥BG,∴∠BFE+∠FBG=90°,且∠BFE=∠AFO,∴∠FAO=∠FBG,且OA=OB,∠AOF=∠BOG,∴△AOF≌△BOG(ASA),∴OF=OG;(2)以B为原点,BC所在直线为x轴,AB所在直线为y轴建立平面直角坐标系,∵BE=1n BC,∴设BC=n,则BE=1,∴点A(0,n),点E(1,0),点C坐标(n,0),∴直线AC解析式为:y=﹣x+n,直线AE解析式为:y=﹣nx+n,∵BG⊥AE,∴直线BG的解析式为:y=1nx,∴1nx=﹣x+n,∴x=21nn +,∴点G坐标(21nn+,1nn+),∵点A(0,n),点E(1,0),点C坐标(n,0),∴BO=2n,点O坐标(2n,2n),∴OG=() ()1 21nn-+,∴tan∠OBG=11 OG nOB n-=+;(3)∵OB=OF+BF,BF=2,OF=1,∴OB=3,且OF=OG,OC=OB,BO⊥CO,∴OC=3,OG=1,BC=,∴CG=2,∵∠GEC=90°,∠ACB=45°,∴GE=EC∴BE=BC﹣EC=,∴23 BEBC=,∴BE=23BC=1nBC,∴n=32.24.(本小题满分12分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.【解析】(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB,BC,AC∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(,1)或(,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x,∴P(,-3),或(,-3),综上可知:点P的坐标为(,1)、(,1)、(,-3)或(,-3).。
2024年河南省郑州市中原区郑州桐柏一中九年级中考三模数学试题

2024年河南省郑州市中原区郑州桐柏一中九年级中考三模数学试题一、单选题1.下列各数中最大的数是( )A .1B .CD .02.如下图所示的几何体的左视图为( )A .B .C .D .3.从河南省农业农村厅获悉,截至6月5日17时,我省已收获小麦7992万亩,约占全省种植面积的93.7%.当日投入联合收割机5.4万台,日收获小麦454万亩.“7992万”用科学记数法表示为( ) A .4799210⨯B .5799210⨯C .77.99210⨯D .87.99210⨯4.光线在不同介质中的传播速度不同,从一种介质射向另一种介质时会发生折射.如图是一块玻璃的a ,b 两面,且a b ∥,现有一束光线CD 从玻璃中射向空气时发生折射,光线变成DE ,F 为射线CD 延长线上一点,已知1135∠=︒,223∠=︒,则3∠的度数为( )A .20︒B .22︒C .32︒D .35︒5.《九章算术》有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”用现在的话说就是:“有几个人一起去买物品,每人出8元,多3元;每人出7元,少4元.问人数、物价各是多少?”设人数为x 人,物价是y 元,可列方程组( )A .8374y x y x -=⎧⎨-=⎩B .8374x y y x -=⎧⎨-=⎩C .8374x y x y -=⎧⎨-=⎩D .8374y x x y -=⎧⎨-=⎩6.如图,圆O 是ABC V 的外接圆,已知AB =45C ∠=︒,则圆O 的半径OA 的长为( )A B .1C D .27.数形结合是我们解决数学问题常用的思想方法.如图,一次函数=1y x --与y mx n =+ (m ,n 为常数,0m ≠)的图象相交于点(1)2-,,则不等式1x mx n --<+的解集在数轴上表示正确的是( )A .B .C .D .8.圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究,某学校进行校园文化建设,拟从以上4位数学家的画像中随机选用2幅,则其中至少有一幅是中国数学家的概率是( )A .16B .12C .56D .19.如图,在平面直角坐标系xOy 中,已知四边形OABC 为平行四边形,其中点()3,0A ,()1,4C ,M 为对角线OB 的中点.现将平行四边形OABC 绕原点O 顺时针旋转,每次转90︒,则第71次旋转结束时,点M 的坐标为( )A .32,2⎛⎫- ⎪⎝⎭B .()2,2-C .32,2⎛⎫- ⎪⎝⎭D .()2,2-10.某款纯电动汽车采取智能快速充电模式进行充电,当充电量达到电池容量的80%时,为保护电池,充电速度会明显降低.如图是该款电动汽车某次充电时,汽车电池含电率y (电池含电率=100%⨯电池中的电量电池的容量)随充电时间x (分钟)变化的函数图象,下列说法错误的是( )A .本次充电开始时汽车电池内仅剩10%的电量B .本次充电40分钟,汽车电池含电率达到80%C .本次充电持续时间是120分钟D .若汽车电池从无电状态到充满电需要耗电70千瓦时,则本次充电耗电63千瓦时二、填空题11.代数式3n 可表示的实际意义是.12.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足ab bc cd -=,那么称这个四位数为“递减数”.例如:四位数4129,∵411229-=,∴4129是“递减数”;又如:四位数5324,∵53322124-=≠,∴5324不是“递减数”.若一个“递减数”为312a ,则a 的值为.13.某市中招体育考试规定:除耐力类的长跑为必考项目外,考生还需在“A .掷实心球”“B .立定跳远”“C .1分钟跳绳”“D .50米跑”这四个项目中选考两项.为了解学生选考项目的选择情况,随机抽取部分九年级学生进行调查,并将调查结果绘制成了统计图(部分信息不完整),请问在被调查的学生中选择“1分钟跳绳”的人数是.14.如图,在ABC V 中,1310AB AC BC ===,,以AB 为直径的O e 交BC 于点D ,O e 的切线DE 交AC 于点E ,则DE 的长为.15.在矩形ABCD 中,1AB =,E 为CD 的中点,取AE 的中点F ,连接BE BF ,,当BEF △为直角三角形时,BC 的长为.三、解答题16.(1)计算:112sin 452-⎛⎫︒ ⎪⎝⎭;(2)化简:()2(2)4x y x x y +-+.17.为了改进几何教学,张老师选择A ,B 两班进行教学实验研究,在实验班B 实施新的教学方法,在控制班A 采用原来的教学方法.在实验开始前,进行一次几何能力测试(前测,总分25分),经过一段时间的教学后,再用难度、题型、总分相同的试卷进行测试(后测),得到前测和后测数据并整理成表1和表2. 表1:前测数据表2:后测数据(1)A ,B 两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A ,B 两班的后测数据. (3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价. 18.如图,ABC 是一张锐角三角形纸片.(1)按下面的步骤完成尺规作图(保留作图痕迹,不写作法) ①作BAC ∠的平分线,交BC 于点D ;②作AD 的垂直平分线,分别交AB 、AC 于点E 和F . (2)连接DE ,若3AB =,4AC =,求DE 的长.19.小晃同学借助反比例函数图像设计一个轴对称图形.如图,正方形ABCD 的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,反比例函数ky x=的图象经过正方形的顶点()2,2A ,以点C 为圆心,CB 的长为半径作扇形»,BCD BD交AC 于点F ;以CF 为对角线作正方形CEFG ,再以点C 为圆心,CE 的长为半径作扇形ECG .(1)求反比例函数的解析式;(2)求¼EG 的长;(3)直接写出图中阴影部分面积之和.20.图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角围内才能被识别),其示意图如图2,摄像头A 的仰角、俯角均为15︒,摄像头高度160cm OA =,识别的最远水平距离150cm OB =.(1)身高208cm 的小杜,头部高度为26cm ,他站在离摄像头水平距离130cm 的点C 处,请问小杜最少需要下蹲多少厘米才能被识别.(2)身高120cm 的小若,头部高度为15cm ,踮起脚尖可以增高3cm ,但仍无法被识别.社区及时将摄像头的仰角、俯角都调整为20︒(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm ,参考数据sin150.26,cos150.97,tan150.27,sin 200.34,cos200.94,tan 200.36︒≈︒≈︒≈︒≈︒≈︒≈)21.水龙头关闭不严会造成滴水.为了调查漏水量与漏水时间的关系,某兴趣小组进行以下试验与探究:试验:在滴水的水龙头下放置一个能显示水量的容器量筒,每5min 记录一次容器中的水量,但由于操作延误,开始计时的时候量筒中已经有少量水,因而得到如表中的一组数据.(1)探究:根据上表中的数据,拟用下面三个函数模型模拟水量y 与时间t 的关系:①my t=,②y kt b =+,③2y pt qt r =++,你认为选用函数_______(填序号)模拟最合理(不必说明理由),并求出相应的函数表达式和漏记的a 值; (2)应用:①兴趣小组用100mL 量筒进行测量,请估计在第30分钟量筒是否滴满?②成年人每天大约需饮水1600mL ,请估算这个水龙头一天的漏水量可供一位成年人饮用多少天?(结果保留一位小数)22.某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为348m ,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求价出了两个设计方案,现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一,抛物线型拱门的跨度12m ON =,拱高4m PE =其中,点N 在x 轴上,PE ON ⊥,OE EN =.方案二,抛物线型拱门的跨度8m ON '=,拱高6m P E ''=其中,点N '在x 轴上,P E O N ''''⊥,O E E N ''''=.要在拱门中设置高为3m 的矩形框架,其面积越大越好(框架的粗细忽略不计),方案一中,矩形框架ABCD 的面积记为1S ,点A 、D 在抛物线上,边BC 在ON 上;方案二中,矩形框架A B C D ''''的面积记为2S ,点A ',D ¢在抛物线上,边B C ''在ON '上,现知,小华已正确求出方案二中,当3m A B ''=时,22S =,请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当3m AB =时,求矩形框架ABCD 的面积1S 并比较1S ,2S 的大小. 23.【综合与实践】综合实践课上,老师带领同学们研究“菱形背景下的旋转问题”. 问题情境:在菱形ABCD 中,60,ABC E ∠=︒为边AD 上一点(与A ,D 不重合),连接BE ,并将射线BE 绕点B 在平面内顺时针旋转,记旋转角为α 0°<α<360°.操作感知:(1)小华取60a =︒,如图1,射线BE 与射线AC 交于点F ,请你帮小华同学补全下面两个问题的答案:①线段BE 与BF 的数量关系是________________;②线段AB AE AF ,,的数量关系是________________.猜想论证:(2)小夏取120α=︒,如图1,射线BF 与射线DC 交于点F ,小夏在笔记本上记录了自己的思考过程:线段BE 与BF 的数量关系与(1)①相同…… 但线段AB AE AF ,,的数量关系好像不再成立……我发现线段AB AE CF ,,之间好像具有与(1)②类似的数量关系...... 请你帮小夏同学完成线段AB AE CF ,,之间数量关系的猜想并给出证明.拓展探究:(3)小梦测量得到2,3AB BE ==,如图2,在旋转过程中,设点E 的对应点为F ,当点F 落在菱形ABCD 的边或对角线所在直线上时,记点F 到直线BC 的距离为d ,请你帮d 的值.。
2020年河南省中考数学模拟考试试卷(经典一) (解析版)

2020年河南省中考数学模拟试卷(经典一)一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.2019年上半年,河南接待海内外旅游人数4.9亿人次,旅游总收入5150亿元,数据“5150亿”用科学记数法表示为()A.5150×108B.5.15×1011C.515×109D.0.515×1013 3.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.4.下列运算结果正确的是()A.(﹣a3)2=﹣a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(﹣)﹣2=45.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大6.一元二次方程(2x+1)(2x﹣1)=8x+15的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.58.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.﹣12B.﹣6C.6D.129.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S=CD•OE四边形OCED10.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A.(22019,22019)B.(﹣22019,22019)C.(﹣22020,22020)D.(22020,22020)二.填空题(共5小题)11.﹣3﹣1=.12.不等式组的解集是.13.同时掷两枚普通的骰子,“出现数字之积为奇数”的概率为.14.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为.三.解答题(共8小题)16.先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷17.在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.18.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?19.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A 型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于点A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及B点坐标;(2)求△ABC的面积.22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.23.如图,直线y=﹣2x+12与x轴交于点C,与y轴交于点B,抛物线y=3ax2+10x+3c经过B,C两点,与x轴交于另一点A,点E是直线BC上方抛物线上的一动点,过E作EF∥y轴交x轴于点F,交直线BC于点M.(1)求抛物线的解析式;(2)求线段EM的最大值;(3)在(2)的条件下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.【分析】根据绝对值的定义直接进行计算.【解答】解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.2019年上半年,河南接待海内外旅游人数4.9亿人次,旅游总收入5150亿元,数据“5150亿”用科学记数法表示为()A.5150×108B.5.15×1011C.515×109D.0.515×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5150亿=515000000000=5.15×1011.故选:B.3.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选:A.4.下列运算结果正确的是()A.(﹣a3)2=﹣a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(﹣)﹣2=4【分析】分别根据积的乘方运算法则,同底数幂的除法法则,完全平方公式以及负整数指数幂的定义逐一判断即可.【解答】解:A.(﹣a3)2=a6,故本选项不合题意;B.a8÷a2=a6,故本选项不合题意;C.(a+b)2=a2+2ab+b2,故本选项不合题意;D.(﹣)﹣2=,符合题意.故选:D.5.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大【分析】根据三视图可得主视图,左视图,俯视图都是4个正方形,因此面积一样大.【解答】解:正视图(主视图),左视图,俯视图都是4个正方形,因此面积一样大,故选项A、B、C错误,D正确;故选:D.6.一元二次方程(2x+1)(2x﹣1)=8x+15的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先把方程化为一般式,再计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:方程化为x2﹣2x﹣4=0,∵△=(﹣2)2﹣4×(﹣4)=20>0,∴方程有两个不相等的实数根.故选:A.7.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.5【分析】直接利用每部分分数所占百分比进而计算得出答案.【解答】解:由题意可得,小桐这学期的体育成绩是:95×20%+90×30%+85×50%=19+27+42.5=88.5(分).故选:A.8.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.﹣12B.﹣6C.6D.12【分析】设菱形的两条对角线相交于点D,如图,根据菱形的性质得OB⊥AC,BD=OD =2,CD=AD=3,再由菱形ABCD的对角线OB在y轴上得到AC∥x轴,则可确定C (﹣3,2),然后根据反比例函数图象上点的坐标特征求k的值.【解答】解:设菱形的两条对角线相交于点D,如图,∵四边形ABCD为菱形,∴OB⊥AC,BD=OD=2,CD=AD=3,∵菱形ABCO的对角线OB在y轴上,∴AC∥x轴,∴C(﹣3,2),∴k=﹣3×2=﹣6.故选:B.9.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S=CD•OE四边形OCED【分析】利用基本作图得出角平分线的作图,进而解答即可.【解答】解:由作图步骤可得:OE是∠AOB的角平分线,∴∠CEO=∠DEO,CM=MD,S=CD•OE,四边形OCED但不能得出∠OCD=∠ECD,故选:C.10.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A.(22019,22019)B.(﹣22019,22019)C.(﹣22020,22020)D.(22020,22020)【分析】根据题意得出B点坐标变化规律,进而得出点B2020的坐标位置,进而得出答案.【解答】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,﹣4),B3(﹣8,8),B4(16,16),∵2020÷4=505,∴点B2020与B同在一个象限内,∵﹣4=﹣22,8=23,16=24,∴点B2020(22020,22020).故选:D.二.填空题(共5小题)11.﹣3﹣1=.【分析】首先计算乘方、开方,然后计算减法,求出算式的值是多少即可.【解答】解:﹣3﹣1=3﹣=故答案为:.12.不等式组的解集是x<5.【分析】此题可通过对不等式组里的两个一元一次不等式求解,再写出两个不等式的公共解集.【解答】解:解不等式①得:x<5,解不等式②得:x≤9,∴不等式组的解集为x<5,故答案为:x<5.13.同时掷两枚普通的骰子,“出现数字之积为奇数”的概率为.【分析】列举出所有情况,看出现数字之积为奇数的情况数占所有情况数的多少即可.【解答】解:根据题意列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)共有36种等情况数,其中数字之积为奇数的有9种情况,所以“出现数字之积为奇数”的概率是=;故答案为:.14.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是9π.【分析】根据旋转变换的性质可得△ABC与△A′BC′全等,从而得到阴影部分的面积=扇形ABA′的面积﹣小扇形CBC′的面积.【解答】解:根据旋转变换的性质,△ABC≌△A′BC′,∵∠BCA=90°,∠BAC=30°,AB=6,∴BC=AB=3,∴阴影面积=﹣=9π.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为3或6.【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时四边形ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC==10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故答案为:3或6.三.解答题(共8小题)16.先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷【分析】首先计算括号里面的减法,然后再算括号外的除法,化简后,根据分式有意义的条件确定x的取值,再代入x的值即可.【解答】解:原式=[﹣]•,=(﹣)•,=•,=x+2,∵x﹣2≠0,x﹣4≠0,x+2≠0,∴x≠2或4或﹣2,∴x取3,当x=3时,原式=3+2=5.17.在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.【分析】(1)连接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根据切线的判定得出即可;(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切线;(2)解:∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠PBC==,AB=10,∴BD=2,由勾股定理得:AD==4,∴BC=2BD=4,∵由三角形面积公式得:AD×BC=BE×AC,∴4×4=BE×10,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴=,∴PB===.18.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?【分析】(1)根据专注听讲的人数是224人,所占的比例是40%,即可求得抽查的总人数;(2)利用360乘以对应的百分比即可求解;(3)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;(4)利用6000乘以对应的比例即可.【解答】解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).(4)6000×=1800(人),答:在试卷评讲课中,“独立思考”的初三学生约有1800人.19.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)【分析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.【解答】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH=,∴AH=CH•tan∠ACH≈0.51CH,在Rt△BHC中,tan∠BCH=,∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH﹣0.4CH=33,解得,CH=300,∴EH=CH﹣CE=220,BH=120,∴AH=AB+BH=153,∴DH=AH=153,∴HF=DH﹣DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A 型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【分析】(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据:“1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元”列方程组求解即可;(2)首先根据“A型节能灯的数量不多于B型节能灯数量的3倍”确定自变量的取值范围,然后得到有关总费用和A型灯的只数之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50﹣m)=﹣2m+350,∵﹣2<0,∴W随m的增大而减小,又∵m≤3(50﹣m),解得:m≤37.5,而m为正整数,∴当m=37时,W=﹣2×37+350=276,最小此时50﹣37=13,答:当购买A型灯37只,B型灯13只时,最省钱.21.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于点A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及B点坐标;(2)求△ABC的面积.【分析】(1)先把A(1,a)代入y=2x中求出a得到A(1,2);再把A点坐标代入y=中可确定k的值,然后利用反比例函数和正比例函数图象的性质确定B点坐标;(2)设C(1,t),根据两点间的距离公式和勾股定理得到(1+1)2+(t+2)2+(1+1)2+(2+2)2=(2﹣t)2,求出t得到C(1,﹣3),从而得到AC的长,然后关键三角形面积公式求得即可.【解答】解:(1)把A(1,a)代入y=2x得a=2,则A(1,2);把A(1,2)代入y=得k=1×2=2,∵点A与点B关于原点对称,∴B(﹣1,﹣2);(2)∵CA∥y轴,∴C点的横坐标为1,设C(1,t),∵∠ABC=90°.∴BC2+AC2=AB2,即(1+1)2+(t+2)2+(1+1)2+(2+2)2=(2﹣t)2,解得t=﹣3,∴C(1,﹣3),∴AC=5,=AC(x A﹣x B)==5.∴S△ABC22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=1;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.【分析】(1)先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE∽△CDF,再判断出△ADC∽△CDB即可;(2)方法和(1)一样,先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE ∽△CDF,再判断出△ADC∽△CDB即可;(3)由(2)的结论得出△ADE∽△CDF,判断出CF=2AE,求出DE,再利用勾股定理,计算出即可.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF=2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),③如图1,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE﹣)]2=40,∴CE=2,或CE=﹣(舍)即:CE=2或CE=.23.如图,直线y=﹣2x+12与x轴交于点C,与y轴交于点B,抛物线y=3ax2+10x+3c经过B,C两点,与x轴交于另一点A,点E是直线BC上方抛物线上的一动点,过E作EF∥y轴交x轴于点F,交直线BC于点M.(1)求抛物线的解析式;(2)求线段EM的最大值;(3)在(2)的条件下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.【分析】(1)点C、B的坐标分别为:(6,0)、(0,12),抛物线y=3ax2+10x+3c 经过B,C两点,则3c=12,将点C的坐标代入抛物线表达式,即可求解;(2)设点E(x,﹣2x2+10x+12),则点M(x,﹣2x+12),EM=﹣2x2+12x,即可求解;(3)分AM是边、AM是对角线两种情况,分别求解即可.【解答】解:(1)直线y=﹣2x+12与x轴交于点C,与y轴交于点B,则点C、B的坐标分别为:(6,0)、(0,12),抛物线y=3ax2+10x+3c经过B,C两点,则3c=12,故抛物线的表达式为:y=3ax2+10x+12,将点C的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣2x2+10x+12;(2)设点E(x,﹣2x2+10x+12),则点M(x,﹣2x+12),EM=(﹣2x2+10x+12)﹣(﹣2x+12)=﹣2x2+12x,∵﹣2<0,故EM有最大值,最大值为18,此时x=3;(3)y=﹣2x2+10x+12,令y=0,则x=﹣1或6,故点A(﹣1,0),由(2)知,x=3,则点M(3,6),设点P的横坐标为:m,点Q的坐标为:(,s),①当AM是边时,当点A向右平移4个单位向上平移6个单位得到点M,同样,点P(Q)向右平移4个单位向上平移6个单位得到点得到点Q(P),即m±4=,解得:m=﹣或,故点P(﹣,﹣)或(,﹣);②当AM是对角线时,由中点公式得:﹣1+2=m+,解得:m=﹣,故点P(﹣,);综上,点P的坐标为:(﹣,﹣)或(,﹣)或(﹣,).。
2020年河南省中考数学试题(含答案解析)

2020年河南省中考数学试卷(共23题,满分120分)一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.2的相反数是()A.﹣2B.C.D.22.如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.3.要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程4.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°5.电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B6.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y17.定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x =0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.500(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=75009.如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(﹣2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A.(,2)B.(2,2)C.(,2)D.(4,2)10.如图,在△ABC中,AB=BC,∠BAC=30°,分别以点A,C为圆心,AC 的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3二、填空题(每小题3分,共15分)11.请写出一个大于1且小于2的无理数.12.已知关于x的不等式组其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为.13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是.14.如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(1),其中a1.17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498 502 503 501 490 501 502 511 499 499 501[整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.质量频数机器485≤x<490490≤x<495495≤x<500500≤x<505505≤x<510510≤x<515甲224741乙135731 [分析数据]根据以上数据,得到以下统计量.统计量机器平均数中位数方差不合格率甲499.7501.542.01b乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a=,b=;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40, 1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,.求证:.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.22.(10分)小亮在学习中遇到这样一个问题:如图,点D是上一动点,线段BC=8cm,点A是线段BC的中点,过点C 作CF∥BD,交DA的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:(1)根据点D在上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0 CD/cm8.07.77.2 6.6 5.9a 3.9 2.40 FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:①“当点D为的中点时,BD=5.0cm”.则上表中a的值是;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).23.(11分)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为,连接BD,可求出的值为;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出的值.2020年河南省中考数学试卷答案解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.2的相反数是()A.﹣2B.C.D.2【解答】解:2的相反数是﹣2.故选:A.2.如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.【解答】解:A、主视图和左视图是长方形,一定相同,故本选项不合题意题意;B、主视图和左视图都是等腰三角形,一定相同,故选项不符合题意;C、主视图和左视图都是圆,一定相同,故选项不符合题意;D、主视图是长方形,左视图是正方形,故本选项符合题意;故选:D.3.要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程【解答】解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;D、调查某品牌新能源汽车的最大续航里程,适合抽查,故本选项不合题意.故选:C.4.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:B.5.电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B 【解答】解:由题意得:210×210×210B=210+10+10=230B,故选:A.6.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1【解答】解:∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y 的图象上,∴y16,y23,y32,又∵﹣3<﹣2<6,∴y1>y3>y2.故选:C.7.定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x =0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根【解答】解:由题意可知:1☆x=x2﹣x﹣1=0,∴△=1﹣4×1×(﹣1)=5>0,故选:A.8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.500(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=7500【解答】解:设我国2017年至2019年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.9.如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(﹣2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A.(,2)B.(2,2)C.(,2)D.(4,2)【解答】解:如图,设正方形D′C′O′E′是正方形OCDE沿x轴向右平移后的正方形,∵顶点A,B的坐标分别为(﹣2,6)和(7,0),∴AC=6,OC=2,OB=7,∴BC=9,∵四边形OCDE是正方形,∴DE=OC=OE=2,∴O′E′=O′C′=2,∵E′O′⊥BC,∴∠BO′E′=∠BCA=90°,∴E′O′∥AC,∴△BO′E′∽△BCA,∴,∴,∴BO′=3,∴OC′=7﹣2﹣3=2,∴当点E落在AB边上时,点D的坐标为(2,2),故选:B.10.如图,在△ABC中,AB=BC,∠BAC=30°,分别以点A,C为圆心,AC 的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3【解答】解:连接BD交AC于O,∵AD=CD,AB=BC,∴BD垂直平分AC,∴BD⊥AC,AO=CO,∵AB=BC,∴∠ACB=∠BAC=30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC,∴AD=CD AB=3,∴四边形ABCD的面积=23,故选:D.二、填空题(每小题3分,共15分)11.请写出一个大于1且小于2的无理数.【解答】解:大于1且小于2的无理数是,答案不唯一.故答案为:.12.已知关于x的不等式组其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为x>a.【解答】解:∵b<0<a,∴关于x的不等式组的解集为:x>a,故答案为:x>a.13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是.【解答】解:自由转动转盘两次,指针所指区域所有可能出现的情况如下:共有16种可能出现的结果,其中两次颜色相同的有4种,∴P(两次颜色相同),故答案为:.14.如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【解答】解:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF,∵点G,H分别是EC,FD的中点,∴CG=FH,∵∠DCF=90°,CO⊥DF,∴CF2=OF•DF,∴OF,∴OH,OD,∵OC2=OF•OD,∴OC,∴OG=CG﹣OC,∴HG1,故答案为:1.15.如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.【解答】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′2,的长l,∴阴影部分周长的最小值为2.故答案为:.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(1),其中a1.【解答】解:=a﹣1,把a1代入a﹣11﹣1.17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501[整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.质量频数机器485≤x<490490≤x<495495≤x<500500≤x<505505≤x<510510≤x<515甲224741乙135731 [分析数据]根据以上数据,得到以下统计量.统计量机器平均数中位数方差不合格率甲499.7501.542.01b乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a=501,b=15%;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.【解答】解:(1)将乙的成绩从小到大排列后,处在中间位置的两个数都是501,因此中位数是501,b=3➗20=15%,故答案为:501,15%;(2)选择乙机器,理由:乙的不合格率较小,18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40, 1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【解答】解:(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,∴BC=MN=16m,DE=CN=BM=1.6m,∵∠AED=90°,∠ACE=45°,∴△ACE是等腰直角三角形,∴CE=AE,设AE=CE=x,∴BE=16+x,∵∠ABE=22°,∴tan22°0.40,∴x≈10.7(m),∴AD=10.7+1.6=12.3(m),答:观星台最高点A距离地面的高度约为12.3m;(2)∵“景点简介”显示,观星台的高度为12.6m,∴本次测量结果的误差为12.6﹣12.3=0.3m,减小误差的合理化建议为:为了减小误差可以通过多次测量取平均值的方法.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【解答】解:(1)∵y1=k1x+b过点(0,30),(10,180),∴,解得,k1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元,b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),则k2=25×0.8=20;(3)选择方案一所需费用更少.理由如下:由题意可知,y1=15x+30,y2=20x.当健身8次时,选择方案一所需费用:y1=15×8+30=150(元),选择方案二所需费用:y2=20×8=160(元),∵150<160,∴选择方案一所需费用更少.20.(9分)我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB =OB,EN切半圆O于F.求证:EB,EO就把∠MEN三等分.【解答】解:已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN切半圆O于F.求证:EB,EO就把∠MEN三等分,证明:∵EB⊥AC,∴∠ABE=∠OBE=90°,∵AB=OB,BE=BE,∴△ABE≌△OBE(SAS),∴∠1=∠2,∵BE⊥OB,∴BE是⊙E的切线,∵EN切半圆O于F,∴∠2=∠3,∴∠1=∠2=∠3,∴EB,EO就把∠MEN三等分.故答案为:AB=OB,EN切半圆O于F;EB,EO就把∠MEN三等分.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【解答】解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴分别交于点B,∴点B(0,c),∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点G为(1,4);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为6,∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标(6,﹣21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴﹣21≤y Q≤4或﹣21≤y Q≤﹣5.22.(10分)小亮在学习中遇到这样一个问题:如图,点D是上一动点,线段BC=8cm,点A是线段BC的中点,过点C 作CF∥BD,交DA的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:(1)根据点D 在上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几组对应值.0 1.0 2.0 3.0 4.0 5.0 6.07.08.0BD/cmC8.07.77.2 6.6 5.9a 3.9 2.40 D/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0FD/cm操作中发现:①“当点D 为的中点时,BD=5.0cm”.则上表中a的值是5;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).【解答】解:(1)∵点D为的中点,∴,∴BD=CD=a=5cm,故答案为:5;(2)∵点A是线段BC的中点,∴AB=AC,∵CF∥BD,∴∠F=∠BDA,又∵∠BAD=∠CAF,∴△BAD≌△CAF(AAS),∴BD=CF,∴线段CF的长度无需测量即可得到;(3)由题意可得:(4)由题意画出函数y CF的图象;由图象可得:BD=3.8cm或5cm或6.2cm时,△DCF为等腰三角形.23.(11分)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为等腰直角三角形,连接BD,可求出的值为;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出的值.【解答】解:(1)∵AB绕点A逆时针旋转至AB′,∴AB=AB',∠BAB'=60°,∴△ABB'是等边三角形,∴∠BB'A=60°,∴∠DAB'=∠BAD﹣∠BAB'=90°﹣60°=30°,∵AB'=AB=AD,∴∠AB'D=∠ADB',∴∠AB'D75°,∴∠DB'E=180°﹣60°﹣75°=45°,∵DE⊥B'E,∴∠B'DE=90°﹣45°=45°,∴△DEB'是等腰直角三角形.∵四边形ABCD是正方形,∴∠BDC=45°,∴,同理,∴,∵∠BDB'+∠B'DC=45°,∠EDC+∠B'DC=45°,∴BDB'=∠EDC,∴△BDB'∽△CDE,∴.故答案为:等腰直角三角形,.(2)①两结论仍然成立.证明:连接BD,∵AB=AB',∠BAB'=α,∴∠AB'B=90°,∵∠B'AD=α﹣90°,AD=AB',∴∠AB'D=135°,∴∠EB'D=∠AB'D﹣∠AB'B=135°45°,∵DE⊥BB',∴∠EDB'=∠EB'D=45°,∴△DEB'是等腰直角三角形,∴,∵四边形ABCD是正方形,∴,∠BDC=45°,∴,∵∠EDB'=∠BDC,∴∠EDB'+∠EDB=∠BDC+∠EDB,即∠B'DB=∠EDC,∴△B'DB∽△EDC,∴.②3或1.若CD为平行四边形的对角线,点B'在以A为圆心,AB为半径的圆上,取CD的中点.连接BO交⊙A于点B',过点D作DE⊥BB'交BB'的延长线于点E,由(1)可知△B'ED是等腰直角三角形,∴B'D B'E,由(2)①可知△BDB'∽△CDE,且BB'CE.∴1111=3.若CD为平行四边形的一边,如图3,点E与点A重合,∴1.综合以上可得3或1.。
(完整word版)2020年河南省中考数学模拟试卷解析版

2020年河南省中考数学模拟试卷解析版一.选择题(共10小题,满分30分,每小题3分)1.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|2.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A.1。
3×106B.130×104C.13×105D.1。
3×1053.将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A.B.C.D.4.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°5.为迎接体育中考,九年级(1)班八名同学课间练习垫排球,记录成绩(个数)如下:40,38,42,35,45,40,42,42,则这组数据的众数与中位数分别是( )A.40,41 B.42,41 C.41,42 D.41,406.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB的中点,连接OE,若OE=3,∠ADC=60°,则BD 的长度为()A.6B.6 C.3D.38.两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.9.如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D 是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)10.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE 的长为x,y关于x的函数图象如图2,则△EFG的最小面积为( )A.B.C.2 D.二.填空题(共5小题,满分15分,每小题3分)11.计算:(﹣π)0﹣=.12.如图,在⊙O中,直径EF⊥CD,垂足为M,EM•MF=12,则CD的长度为.13.如果函数y=﹣2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是.14.如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C为旋转中心将△ABC顺时针旋转,当点B落在AB 上点D处时,点A的对应点为E,则阴影部分面积为.15.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(x﹣2﹣)÷,其中x=2﹣4.17.(9分)某超市对今年“元旦"期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?18.(9分)如图,⊙O中,AB为直径,点P为⊙O外一点,且PA=AB,PA、PB交⊙O于D、E两点,∠PAB 为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时,四边形OBED为菱形.19.(9分)济南大明湖畔的“超然楼"被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,则该楼的高度CD多少米?(结果保留根号)20.(9分)如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.21.(10分)开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.22.(10分)已知:AD是△ABC的高,且BD=CD.(1)如图1,求证:∠BAD=∠CAD;(2)如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,若BE=BC,求∠BFC的大小;(3)如图3,在(2)的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,若BF=10,EG=6,求线段CF的长.23.(11分)如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A、B两点(A在B左边),与y轴交于点C.连接AC、BC,D为抛物线上一动点(D在B、C两点之间),OD交BC于E点.(1)若△ABC的面积为8,求m的值;(2)在(1)的条件下,求的最大值;(3)如图2,直线y=kx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连MA,作NH⊥x轴于H,过点H作HP∥MA交y轴于点P,PH交MN于点Q,求点Q的横坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据绝对值的定义进行分析即可得出正确结论.【解答】解:选项A、B、C中,a与b的关系还有可能互为相反数.故选D.【点评】绝对值相等的两个数的关系是相等或互为相反数.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将130万用科学记数法表示为1。
2023年河南省中考数学模拟试卷(经典三)及答案解析

2023年河南省中考数学模拟试卷(经典三)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.(3分)﹣的绝对值是()A.﹣3B.3C.D.﹣2.(3分)如图是由4个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.(3分)下列运算正确的是()A.3a﹣a=2B.a2•a3=a6C.a6÷2a2=D.(2a2b)3=6a8b24.(3分)2022年11月2日,焦作市山阳区举办“学习二十大出彩组工人”主题演讲比赛.下表是5位评委对某参赛选手的打分情况,则该组数据的中位数是()评委甲乙丙丁戊打分9.59.69.6109.8 A.9.6B.9.7C.9.8D.105.(3分)如图为两直线m、n与△ABC相交的情形,其中m、n分别与BC、AB平行.根据图中标示的角度,∠A的度数为()A.75°B.60°C.55°D.50°6.(3分)若方程kx2﹣2x+1=0没有实数根,则k的值可以是()A.﹣1B.0C.1D.27.(3分)如图,在边长为5的菱形ABCD中,对角线BD=8,点O为菱形的中心,作OE ⊥BC,垂足为E,则sin∠COE的值为()A.B.C.D.8.(3分)在“河南美食简介”竞答活动中,第一题组共设置“河南烩面”“胡辣汤”“洛阳酸浆面条”“开封双麻火烧”四种美食,参赛的甲、乙二人从以上四种美食中随机选取一个进行简介,则两人恰好选中同一种美食的概率是()A.B.C.D.9.(3分)中国古代涌现包括“锝、钧、镒、铢”等在内的质量单位,而现代的质量单位有:吨(t)、千克(kg)、克(g)、毫克(mg)、微克(μg)等.其中1t=103kg,1kg=103g,1g=103mg,则1t等于()A.109mg B.1027mg C.3×103mg D.39mg10.(3分)血药浓度(PlasmaConcentration)指药物吸收后在血浆内的总浓度,已知药物在体内的浓度随着时间而变化.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如图所示,根据图中提供的信息,下列关于成人患者使用该药血药浓度(mg/L)5a最低中毒浓度(MTC)物的说法中正确的是()A.从t=0开始,随着时间逐渐延长,血药浓度逐渐增大B.当t=1时,血药浓度达到最大为5amg/LC.首次服用该药物1单位3.5小时后,立即再次服用该药物1单位,不会发生药物中毒D.每间隔4h服用该药物1单位,可以使药物持续发挥治疗作用二、填空题(每小题3分,共15分)11.(3分)请写出一个图象经过点(1,2)的函数的关系式.12.(3分)不等式组的解集是.13.(3分)如图,Rt△ABC中∠ACB=90°,线段CO为斜边AB的中线.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于P,Q两点,作过P、Q两点的直线恰过点C,交AB于点D,若AD=1,则BC的长是.14.(3分)如图,在▱ABCD中,E为BC的中点,以E为圆心,CE长为半径画弧交对角线BD于点F,若∠BAD=116°,∠BDC=39°,BC=4,则扇形CEF的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AB=4,E为斜边AB 的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EPA′,当折叠后△EPA′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一,则此时BP的长为.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:;(2)化简:.17.(9分)中国是世界上最早使用铸币的国家.距今3000年前殷商晚期墓葬出土了不少“无文铜贝”,为最原始的金属货币.下列装在相同的透明密封盒内的古钱币材质相同,其密封盒上分别标有古钱币的尺寸及质量(例如:钱币“状元及第”密封盒上所标“48.1*2.4mm,24.0g”是指该枚古钱币的直径为48.1mm,厚度为2.4mm,质量为24.0g).根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径数据的平均数是,所标厚度数据的众数是;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.18.(9分)如图,直线y=kx+b与双曲线相交于A(﹣3,1),B两点,与x 轴相交于点C(﹣4,0).(1)分别求一次函数与反比例函数的解析式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x<0时,关于x的不等式的解集.19.(9分)宝轮寺塔,为供奉舍利由尼姑道秀主持建筑,始建于隋文帝仁寿元年(601年),故又称仁寿建塔,位于河南省三门峡市陕州风景区.数学活动小组欲测量宝轮寺塔DE的高度,如图,在A处测得宝轮寺塔塔基C的仰角为15°,沿水平地面前进23米到达B处,测得宝轮寺塔塔顶E的仰角∠EBD为53°,测得塔基C的仰角∠CBD 为30°(图中各点均在同一平面内).(1)求宝轮寺塔DE的高度;(2)实际测量时会存在误差,请提出一条减小误差的合理化建议.(结果精确到0.1米,参考数据:20.(9分)当前我国约有十分之一的教师因为种种原因患上嗓音疾病.针对于此,某校工会计划为超课时任务的教师配备音频放大器.已知购买2个A型音频放大器和3个B型音频放大器共需352元;购买3个A型音频放大器和4个B型音频放大器共需496元.(1)求A、B两种类型音频放大器的单价;(2)该校准备采购A、B两种类型的音频放大器共30个,且A型音频放大器的数量不少于B型音频放大器数量的2倍,请给出最省钱的购买方案,并说明理由.21.(9分)某跳台滑雪运动员进行比赛,起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,已知标准台的高度OA为66m,当运动员在距标准台水平距离25m处达到最高,最高点距地面76m,建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k.其中x(m)是运动员距标准台的水平距离,y(m)是运动员距地面的高度.(2)已知着陆坡上有一基准点K,且K到标准台的水平距离为75m,高度为21m.判断该运动员的落地点能否超过K点,并说明理由.22.(10分)如图,△ABC为⊙O的内接三角形,其中AB为⊙O的直径,且AC=3,BC=4.(1)尺规作图:分别以B、C为圆心,大于长为半径画弧,在BC的两侧分别相交于P、Q两点,画直线PQ交BC于点D,交劣弧于点E,连接CE;(2)追根溯源:由所学知识可知,点O(填“在”或“在”)直线PQ上;(3)数据运算:在(1)所作的图形中,求点O到BC的距离及∠DCE的余弦值.23.(10分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时;PA与DC的数量关系为;∠DCP的度数为;(2)如图2,当α=120°时,请问(1)中PA与DC的数量关系还成立吗?∠DCP的度数呢?说明你的理由.(3)当α=120°时,若,请直接写出点D到CP的距离.2023年河南省中考数学模拟试卷(经典三)参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C. D.
7.(3分)2019年9月8日第十一届全国少数民族传统体育运动会在郑州奥体中心隆重开幕,某单位得到了两张开幕式的门票,为了弘扬劳动精神,决定从本单位的劳动模范小李、小张、小杨、小王四人中选取两人去参加开幕式,那么同时选中小李和小张的概率为
A. B. C. D.
8.(3分)已知有理数 ,我们把 称为 的差倒数,如:2的差倒数是 , 的差倒数是 ,如果 , 是 的差倒数, 是 的差倒数, 是 的差倒数, ,依此类推,那么 的值是
12.(3分)如图,五边形 是正五边形.若 ,则 72 .
【解答】解:过 点作 ,
五边形 是正五边形,
,
, ,
,
, ,
,
.
故答案为:72.
13.(3分)如果一元二次方程 有两个不相等的实数根,那么 的值可以为0.(写出一个值即可)
【解答】解:根据题意得△ ,
解得 ,
课题
测量旗杆的高度
成员
组长: 组员: , ,
测量工具
角度的仪器,皮尺等
测量示意图
说明:线段 表示学校旗杆,测量角度的仪器的高度 ,测点 , 与 在同一条水平直线上, , 之间的距离可以直接测得,且点 , , , , , 都在同一竖直平面内,点 , , 在同一条直线上,点 在 上.
测量数据
测量项目
第一次
20.(9分)如图,在平面直角坐标系中,已知点 ,等边三角形 的顶点 在反比例函数 的图象上.
(1)求反比例函数的表达式;
(2)把 沿 轴向上平移 个单位长度,对应得到△ .当这个函数的图象经过△ 一边的中点时,求 的值.
21.(10分)《郑州市城市生活垃圾分类管理办法》于2019年12月起施行.某社区要投放 , 两种垃圾桶,负责人小李调查发现:
A. B. C. D.
二、填空题(每小题3分,共15分)
11.(3分)计算: .
12.(3分)如图,五边形 是正五边形.若 ,则 .
13.(3分)如果一元二次方程 有两个不相等的实数根,那么 的值可以为.(写出一个值即可)
14.(3分)如图,四边形 和四边形 都是平行四边形,点 为 的中点, 分别交 , 于点 , .平行四边形 的面积为6,则图中阴影部分的面积为.
3.(3分)下列运算正确的是
A. B. C. D.
4.(3分)如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体 放到小正方体 的正上方,则它的
A.左视图会发生改变B.俯视图会发生改变
C.主视图会发生改变D.三种视图都会发生改变
5.(3分)如图,平行四边形 中, , .以点 为圆心,适当长为半径画弧,交 于点 ,交 于点 ,再分别以点 , 为圆心,大于 的长为半径画弧,两弧相交于点 ,射线 交 的延长线于点 ,则 的长是
3.(3分)下列运算正确的是
A. B. C. D.
【解答】解: 、结果是 ,故本选项符合题意;
、项不符合题意;
、结果是 ,故本选项不符合题意;
故选: .
4.(3分)如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体 放到小正方体 的正上方,则它的
第二次
平均值
的度数
的度数
, 之间的距离
任务一:两次测量 , 之间的距离的平均值
任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆 的高度.
(参考数据: , , , , ,
任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)
购买数量
种类
购买数量少于100个
购买数量不少于100个
原价销售
以原价的7.5折销售
原价销售
以原价的8折销售
若购买 种垃圾桶80个, 种垃圾桶120个,则共需付款6880元;若购买 种垃圾桶100个, 种垃圾桶100个,则共需付款6150元.
(1)求 , 两种垃圾桶的单价各为多少元?
(2)若需要购买 , 两种垃圾桶共200个,且 种垃圾桶不多于 种垃圾桶数量的 ,如何购买使花费最少,最少费用为多少元?请说明理由.
A. B. C. D.
9.(3分)用三个不等式 , , 中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为
A.0B.1C.2D.3
10.(3分)使用家用燃气灶烧开同一壶水所需的燃气量 (单位: 与旋钮的旋转角度 (单位:度) 近似满足函数关系 .如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度 与燃气量 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为
22.(10分)(一 发现探究
在 中, ,点 在平面内,连接 并将线段 绕点 顺时针方向旋转与 相等的角度,得到线段 ,连接 .
【发现】如图1,如果点 是 边上任意一点,则线段 和线段 的数量关系是;
【探究】如图2,如果点 为平面内任意一点.前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);
A. B. C. D.
【解答】解: ,
, , ,
这个数列以 , , 依次循环,
,
的值是 .
故选: .
9.(3分)用三个不等式 , , 中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为
A.0B.1C.2D.3
【解答】解:①若 , ,则 ;假命题:
理由: , ,
,
;
②若 , ,则 ,假命题;
实心球
8.1
7.7
7.5
7.5
7.3
7.2
7.0
6.5
一分钟仰卧起坐
42
47
47
52
49
其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生 的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.
18.(9分)在 中, , 是 边上的中线,点 为 的中点,过点 作 交 的延长线于点 ,连接 .
(二 拓展应用
【应用】如图3,在 中, , , , 是线段 上的任意一点,连接 ,将线段 绕点 顺时针方向旋转 ,得到线段 ,连接 .请直接写出线段 长度的最小值.
23.(11分)如图,在平面直角坐标系中,直线 与 轴, 轴分别交于点 ,点 ,抛物线 过 , 两点,且交 轴于另一点 ,连接 .
(1)求抛物线的表达式;
1.(3分) 的相反数是
A. B. C. D.
【解答】解: 的相反数是 .
故选: .
2.(3分)华为 30 系列是近期相当火爆的 国产手机,它采用的麒麟990 芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为
A. B. C. D.
【解答】解:103亿 0000 ,
故选: .
.一分钟仰卧起坐成绩如图所示:
根据以上信息,回答下列问题:
(1)①表中 的值为;
②一分钟仰卧起坐成绩的中位数为;
(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.
①请估计全年级女生实心球成绩达到优秀的人数;
②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:
女生代码
15.(3分)如图,在矩形 中, ,点 是 的中点,分别连接 , ,且 ,点 为 的中点,点 为边 上一个动点,连接 ,点 关于直线 的对称点为点 ,分别连接 , .当 时, 的长为.
三、解答题(共75分)
16.(8分)已知分式 .
(1)请对分式进行化简;
(2)如图,若 为正整数,则该分式的值对应的点落在数轴上的第段上.(填写序号即可)
17.(9分)某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.
.实心球成绩的频数分布如表所示:
分组
频数
2
10
6
2
1
.实心球成绩在 这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3
A. B. C.1D.2
【解答】解: 由题意可知 是 的平分线,
.
四边形 是平行四边形,
,
,
,
,
,
,
故选: .
6.(3分)郑州市某中学获评“2019年河南省中小学书香校园”,学校在创建过程中购买了一批图书.已知购买科普类图书花费12000元,购买文学类图书花费10500元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本,求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是 元,则可列方程为
A. B.
C. D.
【解答】解:设科普类图书平均每本的价格是 元,则可列方程为: .
故选: .
7.(3分)2019年9月8日第十一届全国少数民族传统体育运动会在郑州奥体中心隆重开幕,某单位得到了两张开幕式的门票,为了弘扬劳动精神,决定从本单位的劳动模范小李、小张、小杨、小王四人中选取两人去参加开幕式,那么同时选中小李和小张的概率为
2020年河南省郑州市中考数学模拟试卷(C卷)
一、选择题(每小题3分,共30分)
1.(3分) 的相反数是
A. B. C. D.
2.(3分)华为 30 系列是近期相当火爆的 国产手机,它采用的麒麟990 芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为
A. B. C. D.