3.3 分式的加减法(A卷)及答案
(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》检测卷(有答案解析)(3)

一、选择题1.若关于x 的分式方程3111m x x-=--的解是非负数,则m 的取值范围是( ) A .4m ≥-,1m ≠ B .4m ≥-且3m ≠- C .2m ≥且3m ≠D .4m >-2.八年级学生去距学校10Km 的春蕾社区参加社会实践活动,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生的速度的2倍,求骑自行车学生的速度.若设骑自行车学生的速度为xKm/h ,列方程正确的是( ) A .1010302x x -= B .102010602x x += C .1010302x x+= D .102010602x x-= 3.已知113x y -=,则代数式21422x xy y x xy y----的值( ) A .4B .9C .-4D .-84.若关于x 的一元一次不等式组312(2)213x x x a +≤-⎧⎪-⎨<⎪⎩的解集为x≤-5,且关于x 的分式方程24233ax x x ++=--有非负整数解,则符合条件的所有整数a 的和为( ) A .-6 B .-4 C .-2 D .05.若关于x 的方程2033x a x x ++=++有增根,则 a 的值为( ) A .1 B .3 C .4 D .56.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x -= B .6000600052x x -= C .6000600052x x -=+ D .6000600052x x-=+ 7.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( )A .扩大到原来的3倍B .缩小到原来的13C .保持不变D .无法确定8.若分式293x x -+的值为0,则x 的值为( )A .4B .4-C .3或-3D .39.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯=B .6608400147660840010x x⨯=++C .660840014147660840010x x⨯=⨯++ D .7840066010146608400x x++⨯=10.计算2m m 1m m-1+-的结果是( ) A .mB .-mC .m +1D .m -111.若关于x 的分式方程222x m x x=---的解为正数,则满足条件的正整数m 的值为( ) A .1,2,3 B .1,2 C .2,3D .1,312.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1-B .1C .3D .3-二、填空题13.已知44a b b a +=,则代数式2a b b a⎛⎫+ ⎪⎝⎭的值为_________. 14.已知2a b=,则a b a b +-=_____.15.若x 2-x -1=0,则232x x x--=___.16.x 的取值范围是______. 17.要使分式3x 2-有意义,则x 的取值范围是___________.18.如果2y =,那么y x =_______________________. 19.计算22111m m m---,的正确结果为_____________. 20.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______.三、解答题21.先化简2222121a a a a ⎛⎫-- ⎪-+⎝⎭÷221a aa +-,然后从0,1,2中选一个合适的数作为a 的值代入求值.22.计算:2291369m m m m m -⎛⎫-÷ ⎪+++⎝⎭. 23.先化简,再求值:221b a a b a b ⎛⎫÷- ⎪--⎝⎭,其中12a =,13b =-. 24.为应对新冠疫情,某药店到厂家选购A B 、两种品牌的医用外科口罩,B 品牌口罩每个进价比A 品牌口罩每个进价多0.8元,若用7000元购进A 品牌数量是用4900元购进B 品牌数量的2倍.(1)求A B 、两种品牌的口罩每个进价分别为多少元?(2)若A 品牌口罩每个售价为2.2元,B 品牌口罩每个售价为3.3元,药店老板决定一次性购进A B 、两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B 品牌口罩多少个? 25.先化简,再求值:221111x x x ⎛⎫-÷ ⎪+-⎝⎭,其中2021x =. 26.(1)化简:221111x x x ⎛⎫÷- ⎪-+⎝⎭(2)先化简再求值:22224221121a aa a a a --⎛⎫-+÷ ⎪+--+⎝⎭,其中2=a .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先去分母得到整式方程m+3=x﹣1,再由整式方程的解为非负数得到m+4≥0,由整式方程的解不能使分式方程的分母为0得到m+4≠1,然后求出不等式的公共部分得到m的取值范围.【详解】解:去分母得m+3=x﹣1,整理得x=m+4,因为关于x的分式方程311mx x-=--1的解是非负数,所以m+4≥0且m+4≠1,解得m≥﹣4且m≠﹣3,故选:B.【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.2.D解析:D【分析】设骑车学生每小时走x千米,则设乘车学生每小时走2x千米,根据题意可得等量关系:骑车学生所用时间-乘车学生所用时间=20分钟,根据等量关系列出方程即可.【详解】解:设骑车学生每小时走x千米,则设乘车学生每小时走2x千米,由题意得:102010602x x-=,故选:D.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.3.A解析:A【分析】由11x y=3,变形得y-x=3xy,然后整体代入代数式,计算化简,即可得到结论.【详解】解:由11x y=3,得y xxy-=3,即y -x =3xy ,x -y =-3xy , 则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xyxy xy----=4.故选:A . 【点睛】本题主要考查了分式化简求值,利用整体代入法是解决本题的关键.4.D解析:D 【分析】先解不等式组,根据不等式组的解集得到a 的范围,再解分式方程,根据分式方程的解为非负数得到a 的值,即可求解. 【详解】解:不等式组整理得:523x x a -⎧⎨<+⎩,由解集为5x -,得到235a +>-,即4a >-, 分式方程去分母得:()2234ax x --+-=, 整理得:(2)12a x -=, 解得:122x a=-, 由x 为非负整数,且3x ≠,得到21a -=,2,3,6,12, 解得1a =或0或1-或4-或10-4a >-,1a 或0或1-,符合条件的所有整数a 的和为1010+-=. 故选:D . 【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.5.A解析:A 【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+3=0,求出x 的值,代入整式方程求出a 的值即可. 【详解】解:分式方程去分母得:20x a ++=, 由分式方程有增根,得到x+3=0,即x=-3, 把x=-3代入整式方程得:320a -++=,解得1a =故选:A . 【点睛】本题主要考查了分式方程的增根,牢牢掌握增根的概念是解答本题的重难点.6.A解析:A 【分析】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天列分式方程. 【详解】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 根据题意得:6000600052x x-=, 故选:A . 【点睛】此题考查分式方程的实际应用,正确理解题意找到等量关系从而列出方程是解题的关键.7.A解析:A 【分析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案. 【详解】222(3)93333()x x x x y x y x y==⨯+++,故分式的值扩大到原来的3倍, 故选:A . 【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键.8.D解析:D 【分析】先根据分式的值为0可得290x ,再利用平方根解方程可得3x =±,然后根据分式的分母不能为0即可得. 【详解】由题意得:2903x x -=+,则290x ,即29x =,由平方根解方程得:3x =±, 分式的分母不能为0, 30x ∴+≠,解得3x≠-,则x的值为3,故选:D.【点睛】本题考查了分式的值、分式有意义的条件、利用平方根解方程,掌握理解分式的值是解题关键.9.B解析:B【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可.【详解】5月份厨余垃圾分出率=660660x+,12月份厨余垃圾分出率=84007840010x+,∴由题意得6608400147 660840010x x⨯=++,故选:B.【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.10.A解析:A【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】原式=211m mm m---=21m mm--=(1)1m mm--=m,故选:A.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.第II卷(非选择题)请点击修改第II卷的文字说明11.D解析:D【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【详解】等式的两边都乘以(x - 2),得x = 2(x-2)+ m , 解得x=4-m ,且x≠2,由关于x 的分式方程的解为正数, ∴4-m >0,4-m≠2 ∴m<4且m≠2则满足条件的正整数 m 的值为m=1,m=3, 故选: D. 【点睛】本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.12.D解析:D 【分析】先将分式方程化为整式方程,再将1x =代入求解即可. 【详解】解:原式化简为81233ax a x +=-, 将1x =代入 得81233a a +=- 解得-3a =.当a =-3时a -x=-3-1=-4≠0 ∴a =-3 故选则:D . 【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.二、填空题13.【分析】解方程得到代入代数式即可得到结论【详解】解:两边同时乘以得:故答案为:【点睛】本题考查了分式的化简求值求得的值是解题的关键解析:92【分析】 解方程得到2ab=,代入代数式即可得到结论. 【详解】 解:44a b b a+=,两边同时乘以a b得:2()44a a b b +=⨯,∴2ab=, 2219()222a b b a ∴+=+=. 故答案为:92. 【点睛】本题考查了分式的化简求值,求得ab的值是解题的关键. 14.3【分析】首先由可设a =2kb =k 然后将其代入即可求得答案【详解】解:∵∴设a =2kb =k ∴==3故答案为:3【点睛】本题考查了分式的化简求值本题的关键是能利用设k 法设出未知数解析:3 【分析】首先由2a b=,可设a =2k ,b =k ,然后将其代入a b a b +-,即可求得答案.【详解】解:∵2ab=, ∴设a =2k ,b =k ,∴a b a b +-=22k kk k +-=3. 故答案为:3. 【点睛】本题考查了分式的化简求值,本题的关键是能利用设k 法,设出未知数.15.2【分析】把x2-x-1=0变形得x2-1=x 然后对分式进行化简再代入求值【详解】∵x2-x-1=0∴x2-1=x ∵故答案是:2【点睛】本题主要考查分式的化简求值掌握分式的减法运算是解题的关键解析:2 【分析】把x 2-x -1=0变形得x 2 -1=x ,然后对分式进行化简,再代入求值. 【详解】 ∵x 2-x -1=0, ∴x 2 -1=x ,∵232x x x --=()222221322222x x x x x x x x x----====,故答案是:2. 【点睛】本题主要考查分式的化简求值,掌握分式的减法运算是解题的关键.16.且【分析】根据分式的分母不能为0二次根式的被开方数大于或等于0列出式子求解即可得【详解】由题意得:解得且故答案为:且【点睛】本题考查了分式和二次根式有意义的条件熟练掌握分式和二次根式的定义是解题关键解析:3x ≤且2x ≠- 【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得. 【详解】 由题意得:2030x x +≠⎧⎨-≥⎩,解得3x ≤且2x ≠-, 故答案为:3x ≤且2x ≠-. 【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.17.x≠2【分析】根据分式有意义得到分母不为0即可求出x 的范围【详解】解:要使分式有意义须有x-2≠0即x≠2故填:x≠2【点睛】此题考查了分式有意义的条件分式有意义的条件为:分母不为0解析:x≠2 【分析】根据分式有意义得到分母不为0,即可求出x 的范围. 【详解】 解:要使分式3x 2-有意义,须有x-2≠0,即x≠2, 故填:x≠2. 【点睛】此题考查了分式有意义的条件,分式有意义的条件为:分母不为0.18.【分析】根据二次根式的有意义的条件可求出x 进而可得y 的值然后把xy 的值代入所求式子计算即可【详解】解:∵x -3≥03-x≥0∴x=3∴y=﹣2∴故答案为:【点睛】本题考查了二次根式有意义的条件和负整解析:19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可. 【详解】解:∵x -3≥0,3-x ≥0,∴x =3,∴y =﹣2, ∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.19.【分析】根据分式的加减法运算法则平方差公式因式分解计算即可解答【详解】解:===故答案为:【点睛】本题考查分式的加减运算平方差公式因式分解熟记公式掌握分式的加减运算法则是解答的关键 解析:11m - 【分析】根据分式的加减法运算法则、平方差公式因式分解计算即可解答.【详解】 解:22111m m m --- =22111m m m +-- =1(1)(1)m m m ++- =11m -, 故答案为:11m -. 【点睛】本题考查分式的加减运算、平方差公式因式分解,熟记公式,掌握分式的加减运算法则是解答的关键.20.【分析】通过观察可发现规律:则原式=即可计算出结果【详解】故答案为:【点睛】本题考查分式的运算解题的关键是发现已知式子的规律 解析:1n n + 【分析】通过观察可发现规律:()11111n n n n =-++,则原式=11111111112233411n n n n -+-+-+⋯+-+--+,即可计算出结果. 【详解】()()111111111111111111223344511223341111n n n n n n n n n n n ++++⋯++=-+-+-+⋯+-+-=-=⨯⨯⨯-+-+++ 故答案为:1n n +. 【点睛】本题考查分式的运算,解题的关键是发现已知式子的规律. 三、解答题21.1a a +,32【分析】 先根据分式的混合运算顺序和运算法则化简原式,再根据分式有意义的条件确定a 的值,继而代入计算可得答案.【详解】解:原式=[22(1)(1)a a a --﹣1]÷(1)(1)(1)a a a a ++- =(2111a a a a ----)÷1a a - =111a a a a +-⋅- =1a a+, ∵a≠1且a≠0,∴a =2,当a =2时, 原式=21322+=. 【点睛】 本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 22.33m - 【分析】根据分式的性质化简即可;【详解】原式()()()2333333m m m m m m m +⎛⎫+=- ⎪+++-⎝⎭, ()()()233333m m m m +=++-, 33m =-; 【点睛】本题主要考查了分式的化简,准确计算是解题的关键.23.1a b+,6 【分析】 根据分式的性质将分式进行化简,再将a 和b 的值代入即可求解.【详解】原式()()()b b a b a b a b =÷+-- ()()()b a b a b a b b -=⨯+- 1a b=+ 将12a =,13b =-代入上式,得:原式6= 【点睛】 本题考查了分式的化简求值,解题关键是熟练掌握分式的性质,在计算除法时,要注意除以一个数等于乘以这个数的倒数.24.(1)A 品牌口罩每个进价为2元,B 品牌口罩每个进价为2.8元;(2)最少购进B 品牌口罩2000个.【分析】(1)设A 品牌口罩每个进价为x 元,则B 品牌口罩每个进价为(0.8)x +元,根据用7000元购进 A 品牌数量是用4900元购进B 品牌数量的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购进B 品牌口罩m 个,则购进A 品牌口罩(6000)m -个,根据总利润 =每个的利润⨯销售数量(购进数量)结合这批口罩全部出售后所获利润不低于1800元,即可得出关于m 的一元一次不等式,解之即可得出结论.【详解】解:(1)设A 品牌口罩每个进价为x 元,则B 品牌口罩每个进价为(0.8)x +元, 依题意,得:7000490020.8x x =⨯+, 解得:2x =,经检验,2x =是所列方程的解,且符合题意,0.820.8 2.8x ∴+=+=,答:A 品牌口罩每个进价为2元,B 品牌口罩每个进价为2.8元.(2)设购进B 品牌口罩m 个,则购进A 品牌口罩(6000)m -个,依题意,得:(2.22)(6000)(3.3 2.8)1800m m --+-≥,解得:2000m ≥.答:最少购进B 品牌口罩2000个.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,理解题目的意思列出方程和不等式是解题的关键.25.1x x-,20202021 【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】 解:221111x x x ⎛⎫-÷ ⎪+-⎝⎭ 211(1)(1)1x x x x x +-+-=⋅+ 2(1)(1)1x x x x x +-=⋅+ 1x x-=, 当2021x =时, 原式202112021-=20202021=. 【点睛】 此题主要考查了分式的化简求值,正确化简分式是解题关键.26.(1)21x -,(2)21a +,2- 【分析】(1)先计算括号内的分式减法,再算除法即可;(2)先依据分式运算法则和顺序化简,再代入求值即可.【详解】解:(1)221111x x x ⎛⎫÷- ⎪-+⎝⎭,2211111x x x x x +⎛⎫=÷- ⎪-++⎝⎭, 221·1x x x x+=-, ()()21·11x x x x x +=+-,21x =-; (2)22224221121a a a a a a --⎛⎫-+÷ ⎪+--+⎝⎭, ()()()()22212·1112a a a a a a a--=++-+-, 22(1)11a a a a -=-++, 21a =+, ∵2=a ,∴a=2(不符合题意,舍去)或a=-2,把a=-2代入,原式2221-+==-. 【点睛】本题考查了分式的运算和分式化简求值,解题关键是熟练运用分式的运算法则和运算顺序解题.。
3.3分式的加减法随堂测试(刚刚用过)

3.3分式的加减法随堂测试1,已知x 0≠,则xxx 31211++等于( ) A ,x21 B ,x61 C ,x65 D ,x6112,化简xyy x zxx z yzz y 649332232-+-+-可得到( )A ,零B ,零次多项式C ,一次多项式D ,不为零的分式 3,分式35,3,xa bxc ax b -的最简公分母是( )A ,5abx B,15ab 5x C,15abx D,15ab 3x4,在分式①;3yx x -②222baab-;③;23ba a -+④))((2b a b a ab -+-中分母相同的分式是( )A ,①③④B ,②③C ,②④D ,①③ 5,下列算式中正确的是( )A ,ac b a c a b 2+=+ B ,acd b dc ab +=+C ,ca db dc ab ++=+D ,acad bc dc ab +=+6,x 克盐溶解在a 克水中,取这种盐水m 克,其中含盐( ) A ,amx 克 B ,x am 克 C ,ax am +克 Dax mx +克7,=---+-+b a 2aab b ba 2b a 8,+-=+-+-1ba bab a 9,若ab=2,a+b=-1,则ba 11+ 的值为 10,计算=-+abba654332211,化简分式⎪⎪⎭⎫⎝⎛=-+⋅⎪⎪⎭⎫ ⎝⎛-+-y x xyy x y x xy y x 44的结果是 12,计算: (1)329122---m m(2)969392222++-+++x xx xxx x13,化简2142122+⋅--÷⎪⎭⎫ ⎝⎛+-a a a a a a a14,先化简,再求值:,21212⎪⎭⎫⎝⎛-÷⎪⎭⎫⎝⎛-x x x其中x=-3.5.15, 先化简,再求值:11123132--++-÷--x x xx x x ,其中x=2+1.16.请你先阅读下列计算过程,再回答所提出的问题:62)1(33)1)(1()1(3)1)(1(313)1)(1(313132--=+--=-++--+-=---+-=----x x x x x x x x x x x x x xxx (1)上述计算过程中,从哪一步开始出现错误:(2)从B 到C 是否正确; 。
分式的混合运算专项训练—2023-2024学年七年级数学下册(沪科版)(解析版)

分式的混合运算专项训练考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对分式的混合运算各种方法的理解!1.(2023上·山东菏泽·七年级统考期中)计算:(1)3x −61−x−x+5x2−x(2)x−yx+3y ÷x2−y2x2+6xy+9y2−2yx+y【答案】(1)8x(2)1【分析】(1)先对各个分式分子分母因式分解,再通分,利用分式加减运算法则运算后约分即可得到答案;(2)先对各个分式分子分母因式分解,根据分式混合运算顺序,先计算乘除,再利用分式加减运算法则运算后约分即可得到答案.【详解】(1)解:3x −61−x−x+5x2−x=3(x−1)x(x−1)+6xx(x−1)−x+5x(x−1)=8x−8 x(x−1)=8(x−1) x(x−1)=8x;(2)解:x−yx+3y ÷x2−y2x2+6xy+9y2−2yx+y=x−yx+3y ⋅(x+3y)2(x+y)(x−y)−2yx+y=x+3yx+y −2yx+y=x+y x+y=1.【点睛】本题考查分式混合运算,涉及通分、约分、因式分解等知识.掌握分式混合运算法则及运算顺序,熟记因式分解的方法,准确找到最简公分母通分是解决分式混合运算的关键.2.(2023上·天津东丽·七年级统考期末)计算(1)4a 3b⋅b 2a 4÷(1a )2 (2)a a−1÷a 2−a a 2−1−1a−1【答案】(1)23a ;(2)a a−1【分析】(1)先将除法写成乘法,再计算乘法,分子、分母约分化为最简分式;(2)先将除法写成乘法,计算乘法得到最简分式,再与后一项相减即可得到答案.【详解】(1)原式=4a 3b ⋅b 2a 4⋅a 2=23a ;(2)原式=a a−1⋅(a+1)(a−1)a(a−1)−1a−1=a+1a−1−1a−1=a a−1. 【点睛】此题考查分式的混合运算,先将除法化为乘法,再约分结果,再计算加减法.3.(2023上·山东菏泽·七年级统考期末)计算(1)12m 2−9−2m−3(2)(2a −12a a+2)÷a−4a 2+4a+4【答案】(1)−2m+3(2)2a 2+4a【分析】(1)通分计算即可;(2)先通分算减法,再算除法.【详解】(1)解:原式=12−2(m+3)(m+3)(m−3)=−2(m −3)(m +3)(m −3)=−2m+3;(2)解:原式=[2a(a+2)a+2−12a a+2]⋅(a+2)2a−4=2a 2+4a −12a a +2⋅(a +2)2a −4=2a 2−8a a +2⋅(a +2)2a −4=2a(a−4)a+2⋅(a+2)2a−4=2a(a+2)=2a2+4a,【点睛】此题考查分式的混合运算,通分、因式分解和约分是解答的关键.4.(2023下·江苏常州·七年级校考期中)计算:(1)2x+y −1x−y.(2)(1−1m+1)÷m2m+1.【答案】(1)x−3yx2−y2(2)1m【分析】(1)根据异分母分式减法运算法则,先通分,再根据同分母分数减法运算求解即可得到答案;(2)根据分式混合运算法则及运算顺序,先算括号里的异分母分式减法运算,再利用乘除互化将除法转化为乘法运算求解即可得到答案.【详解】(1)解:2x+y −1x−y=2(x−y)(x+y)(x−y)−x+y(x+y)(x−y)=2x−2y−x−y (x+y)(x−y)=x−3y (x+y)(x−y)=x−3yx2−y2;(2)解:(1−1m+1)÷m2m+1=(m+1m+1−1m+1)÷m2m+1=m+1−1m+1×m+1m2=mm+1×m+1m2=1m.【点睛】本题考查分式混合运算,涉及分式加减乘除运算、通分、约分等知识,熟练掌握分式混合运算法则及运算顺序是解决问题的关键.5.(2023下·江苏常州·七年级统考期中)计算:(1)4ac3b ⋅(−6b22ac2)(2)a+2a−3÷a2−42a−6(3)x23x−9−3x−3(4)(4a+2+a−2)÷aa+2【答案】(1)−4bc(2)2a−2(3)x+33(4)a【分析】(1)根据分式的乘法运算法则进行计算即可得到答案;(2)先将分式除法变为乘法,再根据分式的乘法运算法则和平方差公式进行计算即可得到答案;(3)先进行通分,再计算分式减法,最后利用平方差进行约分即可得到答案;(4【详解】(1)解:4ac3b ⋅(−6b22ac2)=−4bc;(2)解:a+2a−3÷a2−42a−6=a+2a−3×2(a−3)(a+2)(a−2)=2a−2;(3)解:x23x−9−3x−3=x23(x−3)−3×33(x−3)=x2−93(x−3)=(x+3)(x−3)3(x−3)=x+33;(4)解:(4a+2+a−2)÷aa+2=(4a+2+(a−2)(a+2)a+2)×a+2a=4+a2−4a+2×a+2a=a.【点睛】本题考查了分式的混合运算,平方差公式,熟练掌握相关运算法则是解题关键.6.(2023下·河南南阳·七年级统考期中)计算:(1)2x−6x2−6x+9÷3−xx2−9(2)(8a+3+a−3)÷a2+2a+1a+3【答案】(1)−2x+6x−3(2)a−1a+1【分析】(1)根据完全平方式、平方差公式化简,再把除法转化成乘法计算即可;(2)括号内先通分,再根据完全平方公式、平方差公式化简,再把除法转化成乘法计算即可.【详解】(1)解:原式=2(x−3)(x−3)2×(x+3)(x−3)3−x=−2x+6x−3(2)解:原式=(8+a2−9a+3)×a+3(a+1)2=(a+1)(a−1)×1(a+1)2=a−1a+1【点睛】本题考查分式计算,掌握完全平方式、平方差公式是关键.7.(2023下·江苏淮安·七年级校考期中)计算:(1)a2a−1−a−1(2)(a+2−42−a )÷(aa−2)【答案】(1)1a−1(2)a【分析】(1)先对原式通分变为同分母的分式,再相减即可解答本题;(2)先将括号内的进行计算,再将除法转换为乘法后,再约分即可得到答案.【详解】(1)a2a−1−a−1=a2 a−1−(a+1)(a−1)a−1=a2−(a+1)(a−1)a−1=a 2−(a 2−1)a−1 =a 2−a 2+1a−1=1a−1(2)(a +2−42−a )÷(a a−2)=(a +2+4a−2)÷(a a−2) =a 2−4+4a−2÷(a a−2) =a 2a−2×a−2a=a 【点睛】本题主要考查了分式的混合运算,解题的关键是明确分式混合运算的计算方法.8.(2023上·山东泰安·七年级统考期中)计算(1)x x−1−x 2+2x x 2−2x+1÷x+2x ; (2)(a+2a−2−a a+2)÷3a+2a 2+2a .【答案】(1)−x (x−1)2(2)2a a−2【分析】该题主要考查了分式的混合运算问题;(1)先算除法再算减法即可;(2)先算括号再算除法即可.【详解】(1)原式=x x−1−(x+2)x (x−1)2⋅x x+2=x x −1−x 2(x −1)2=x (x −1)−x 2(x −1)2=−x (x−1)2;=−x x 2−2x +1(2)原式=[(a+2)2(a−2)(a+2)−a(a−2)(a−2)(a+2)]÷3a+2a(a+2)=2(3a+2)(a−2)(a+2)⋅a(a+2)3a+2=2aa−2.9.(2023上·山东烟台·七年级统考期中)计算:(1)b2ca ×acb÷(−ca)2(2)a2−4a ÷(a+1−5a−4a)【答案】(1)a2b(2)a+2a−2【分析】(1)根据分式的乘除运算法则进行化简即可求出答案.(2)根据分式的加减运算以及乘除运算法则即可求出答案.【详解】(1)解:原式=bc2⋅a2c2=a2b.(2)解:原式=(a+2)(a−2)a ÷a2−4a+4a=(a+2)(a−2)a⋅a(a−2)2=a+2a−2.【点睛】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算法则以及乘除运算法则,本题属于基础题型.10.(2023上·山东东营·七年级校考期中)计算下列各式.(1)(−a2bc )3⋅(−c2a)2÷(bca)4;(2)a2a−1−a−1.【答案】(1)−a8bc3(2)1a−1【分析】(1)先根据积的乘方等于乘方的积,幂的乘方计算各分式,然后利用同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;进行分式的乘除运算即可;(2)先加括号,进行通分,根据平方差公式求解多项式乘多项式,然后进行加减运算即可.【详解】(1)解:(−a2bc )3⋅(−c2a)2÷(bca)4=−a6b3c3⋅c4a2÷b4c4a4=−a4b3c⋅a4 b4c4=−a8bc3;(2)解:a2a−1−a−1=a2a−1−(a+1)=a2−(a+1)(a−1)a−1=a2−a2+1a−1=1a−1.【点睛】本题考查了积的乘方,幂的乘方,分式的乘除混合运算,同底数幂的乘除运算,异分母分式的减法运算,平方差公式等知识.解题的关键在于熟练掌握各知识的运算法则并正确的运算.11.(2023上·河南许昌·七年级统考期末)计算:(3xx−1−xx+1)⋅x2−1x+1【答案】2x2+4xx+1【分析】利用分式的混合运算顺序:先括号内的分式减法运算,再括号外的分式2乘法运算即可化简原式.【详解】解:(3xx−1−xx+1)⋅x2−1x+1=3x(x+1)−x(x−1)(x−1)(x+1)⋅(x−1)(x+1)x+1=3x2+3x−x2+xx+1=2x2+4xx+1.【点睛】本题考查分式的混合运算,熟练掌握分式的混合运算法则并正确求解是解答的关键.12.(2023上·重庆沙坪坝·七年级重庆一中校考阶段练习)计算:(1)(x−y)2−x(x−3y)(2)m2−25m+3÷(1−8m+3)【答案】(1)xy+y2(2)m+5【分析】(1)先用完全平方公式与单贡式乘以多项式法则展开,再合并同类项即可.(2)先计算括号内的,再计算除法,用除法法则转化成乘法计算即可.【详解】(1)解:原式=x2−2xy+y2−x2+3xy=xy+y2;(2)解:原式=(m+5)(m−5)m+3÷m−5m+3=(m+5)(m−5)m+3⋅m+3m−5=m+5.【点睛】本题考查多项式混合运算,分式混合运算,熟练掌握多项式与分式混合运算法则是解题的关键.13.(2023上·山东菏泽·七年级统考期中)计算(1)4x22x−3+93−2x(2)3b24a2⋅(a−6b)(3)xx−1−x+3x2−1⋅x2+2x+1x+3(4)(1x−4+1x+4)÷2x2−16【答案】(1)2x+3(2)−b8a(3)−1x−1(4)x【分析】(1)利用分式的加法计算即可.(2)利用分式的乘法计算即可.(3)利用分式的混合运算法则计算即可.(4)利用分式的混合运算法则计算即可.【详解】(1)4x22x−3+93−2x=4x22x−3−92x−3=4x2−92x−3=(2x−3)(2x+3)2x−3=2x+3.(2)3b24a2⋅(a−6b)=−b8a.(3)xx−1−x+3x2−1⋅x2+2x+1x+3=xx−1−x+3(x−1)(x+1)⋅(x+1)2x+3=xx−1−x+1x−1=x−x−1x−1=−1x−1.(4)(1x−4+1x+4)÷2x2−16=(1x−4+1x+4)×(x+4)(x−4)2=1x−4×(x+4)(x−4)2+1x+4×(x+4)(x−4)2=x+42+x−42=x.【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.14.(2023下·重庆南岸·七年级统考期末)计算:(1)a−ba+b ÷a2−aba3−ab2;(2)(2x−3−1x)⋅x2−3xx2+6x+9【答案】(1)a−b(2)1x+3【分析】(1)直接根据分式的除法法则进行计算即可;(2)先将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】(1)解:原式=a−ba+b ⋅a3−ab2 a2−ab=a−ba+b⋅a(a2−b2)a(a−b)=(a+b)(a−b)a+b=a−b;(2)解:原式=[2x−(x−3)x(x−3)]⋅x(x−3)(x+3)2=x+3x(x−3)⋅x(x−3)(x+3)2=1x+3.【点睛】本题考查的是分式的混合运算,熟知分式的混合运算法则是解答此题的关键.15.(2023下·重庆北碚·七年级统考期末)计算:(1)2a2b÷(−a2b )2⋅a4b2;(2)(a2+3aa−3−3)÷a2+9a2−9.【答案】(1)2ab(2)a+3【分析】(1)先算乘方,再算乘除,即可解答;(2)先利用异分母分式加减法法则计算括号里,再算括号外,即可解答.【详解】(1)原式=2a2b⋅4b2a2⋅a 4b2=2ab(2)原式=(a2+3aa−3−3a−9a−3)⋅a2−9a2+9=a2+9a−3⋅(a+3)(a−3)a2+9=a+3【点睛】本题考查了分式的混合运算,准确熟练地进行计算是解题的关键.16.(2023下·广东清远·七年级统考期中)分式计算:(1)3x−3−xx−3(2)yxy+x +1xy−x(3)x2x+1−x+1(4)(3xx−2−xx+2)÷xx2−4.【答案】(1)−1(2)y2+1xy2−x(3)1x+1(4)2x+8【分析】(1)根据同分母的分式的加减法进行计算即可求解;(2)根据异分母的分式的加法进行计算即可求解;(3)根据分式与整式的运算进行计算即可求解;(4)先计算括号的分式的减法,再将除法转化为乘法进行计算即可求解.【详解】(1)3x−3−xx−3=3−xx−3 =−1;(2)yxy+x +1xy−x=y(y−1)+y+1x(y+1)(y−1)=y2+1xy2−x;(3)x2x+1−x+1=x2−(x−1)(x+1)x+1=x2−x2+1x+1=1x+1;(4)(3xx−2−xx+2)÷xx2−4=3x(x+2)−x(x−2)(x−2)(x+2)⋅(x+2)(x−2)x=3(x+2)−(x−2)=3x+6−x+2=2x+8.【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解题的关键.17.(2023上·山东济宁·七年级统考期末)计算:(xx+2−2x+2)÷x2−4x+4x+2.【答案】1x−2【分析】首先运用同分母分式减法法则计算括号内的,再利用分式除法运算法则求解即可.【详解】解:(xx+2−2x+2)÷x2−4x+4x+2=x−2x+2÷x2−4x+4x+2=x−2x+2⋅x+2x2−4x+4=x−2x+2⋅x+2(x−2)2=1x−2.【点睛】本题主要考查了分式的混合运算,解题的关键是熟练运用分式的减法运算法则和乘除运算法则18.(2023上·山东泰安·七年级统考期中)计算:(1)2x2x−y +yy−2x;(2)1−x−yx+2y ÷x2−y2x2+4xy+4y2.【答案】(1)1(2)−yx+y【分析】(1)本题考查了分式的加减,利用同分母分式加减法法则进行计算,即可解答;(2)本题考查了分式的混合运算,先算分式的除法,再算加减,即可解答;【详解】(1)解:原式=2x−y2x−y=2x−y 2x−y=1;(2)解:原式=1−x−yx+2y ×(x+2y)2(x+y)(x−y)=1−x+2y x+y=−yx+y.19.(2023下·江苏常州·七年级常州市第二十四中学校考期中)计算:(1)6x+3+2xx+3;(2)a2−b2a ÷(a+b2−2aba).【答案】(1)2(2)a+ba−b【分析】(1)根据同分母分式加法计算法则求解即可;(2)根据分式的混合计算法则求解即可.【详解】(1)解:6x+3+2xx+3=6+2x x+3=2(x+3) x+3=2;(2)解:a2−b2a ÷(a+b2−2aba)=a2−b2a÷a2+b2−2aba=(a+b)(a−b)a÷(a−b)2a=(a+b)(a−b)a⋅a(a−b)2=a+ba−b.【点睛】本题主要考查了分式的混合计算,同分母分式加法,熟知相关计算法则是解题的关键.20.(2023上·山东菏泽·七年级统考期末)计算:(1)4x2−1−2x2+x;(2)(2x2x−2−x−2)÷2x2+8x2−4.【答案】(1)2x2−x(2)x+22【分析】(1)利用提公因式和平方差公式进行计算即可; (2)利用提公因式和平方差公式进行计算即可. 【详解】(1)4x 2−1−2x 2+x=4(x +1)(x −1)−2x (x +1)=4x −2(x −1)x (x +1)(x −1)=2x +2x (x +1)(x −1)=2x 2−x ; (2)(2x 2x−2−x −2)÷2x 2+8x 2−4=[2x 2x −2−(x +2)(x −2)x −2]÷2x 2+8x 2−4=(2x 2−x 2+4x −2)⋅(x +2)(x −2)2(x 2+4)=x 2+4x −2⋅(x +2)(x −2)2(x 2+4) =x+22.【点睛】本题考查了分式的混合运算,熟练运用分式运算法则和平方差公式是解题的关键. 21.(2023下·江西鹰潭·七年级统考期末)先化简x 2−4x+4x 2−1÷x−2x+1+2x−1,再从−2,−1,1,2中选一个合适的整数作为x 的值代入求值. 【答案】x x−1,x =−2时,原式=23【分析】先把除法转化为乘法,再约分,然后计算加法,由分式有意义的条件确定x 的值,最后代入化简后的式子即可求出答案. 【详解】解:x 2−4x+4x 2−1÷x−2x+1+2x−1=(x −2)2(x +1)(x −1)⋅x +1x −2+2x −1 =x −2x −1+2x −1=xx−1,由分式有意义的条件可知:x ≠−1,x ≠1,x ≠2, ∴x =−2, 当x =−2时, 原式=−2−2−1=23.【点睛】本题考查分式的化简求值,熟练掌握运算法则是解题的关键. 22.(2023下·福建宁德·七年级统考期末)先化简,再求值:(1−a a+1)÷a+3a 2+2a+1,其中a =−5.【答案】a+1a+3,2【分析】先根据分式的减法法则算括号内的减法,再根据分式的除法法则把除法变成乘法,再根据分式的乘法法则进行计算,最后代入求出答案即可. 【详解】解:(1−aa+1)÷a+3a 2+2a+1 =1a +1⋅(a +1)2a +3 =a +1a +3当a =−5时,原式=a+1a+3=−5+1−5+3=2.【点睛】本题考查了分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序. 23.(2023下·江西景德镇·七年级统考期末)先化简,再求值:(x 2+2x+1x 2−1−3x−1)÷x 2−2x x−1其中x =17【答案】1x ,代数式的值为7【分析】根据乘法公式,分式的性质,分式的加减乘除混合运算化简,再代入求出即可. 【详解】解:(x 2+2x+1x 2−1−3x−1)÷x 2−2x x−1=[(x +1)2(x +1)(x −1)−3x −1]÷x(x −2)x −1=(x +1x −1−3x −1)×x −1x(x −2)=x −2x −1×x −1x(x −2)=1x ,当x =17时,原式=1x=117=7.【点睛】本题主要考查分式的化简求值,掌握乘法公式,分式的性质,分式的混合运算法则是解题的关键.24.(2023下·江苏淮安·七年级统考期末)先化简,再求值:当a =2时,求代数式(a −aa+1)÷a 2−2a a 2−4×1a+2的值.【答案】aa+1;23【分析】运用乘法公式,分式的性质,分式的混合运算进行化简,再代入求值即可. 【详解】解:(a −a a+1)÷a 2−2a a 2−4×1a+2=(a 2+a a +1−a a +1)÷a(a −2)(a +2)(a −2)×1a +2=a 2a +1×a +2a ×1a +2 =a a+1,当a =2时,原式=aa+1=22+1=23.【点睛】本题主要考查分式的化简求值,掌握乘法公式,分式的性质,分式的混合运算法则,代入求值等知识是解题的关键.25.(2023上·四川绵阳·七年级校联考阶段练习)先化简,再求值:(2x+2x 2−1+1)÷x+1x 2−2x+1,其中x =4 【答案】x −1,3【分析】根据分式混合运算法则先化简,再代值求解即可得到答案. 【详解】解:(2x+2x 2−1+1)÷x+1x 2−2x+1 =(2x +2x 2−1+x 2−1x 2−1)×x 2−2x +1x +1=x 2+2x+1x 2−1×x 2−2x+1x+1, =(x+1)2(x+1)(x−1)×(x−1)2x+1,=x −1;当x =4时,原式=4−1=3.【点睛】本题考查了分式的混合运算和求值,能正确运用分式的运算法则进行化简是解此题的关键. 26.(2023上·湖北武汉·七年级武汉外国语学校(武汉实验外国语学校)校考期末)(1)计算:[3a 3⋅a 3+(−3a 3)2]÷(−2a −2)3;(2)先化简,再求值:(a 2a−1−a −1)÷a−a 2a 2−2a+1,其中a =2.【答案】(1)−32a 12;(2)−1a ,−12【分析】(1)根据幂的混合运算法则求解即可;(2)首先根据分式的混合运算法则求解,然后将a =2代入求解即可. 【详解】解:(1)[3a 3⋅a 3+(−3a 3)2]÷(−2a −2)3 =(3a 6+9a 6)÷(−8a −6) =12a 6÷(−8a −6) =−32a 12; (2)(a 2a−1−a −1)÷a−a 2a 2−2a+1=(a 2a −1−a 2−1a −1)÷−a (a −1)(a −1)2=1a −1⋅a −1−a=−1a ,当a =2时,原式=−12.【点睛】此题考查了幂的混合运算,分式的混合运算,解题的关键是熟练掌握以上运算法则. 27.(2023上·吉林白山·七年级统考期末)先化简,再求值:1﹣x−2y x+y ÷x 2−4xy+4y 2x 2−y 2,其中x =﹣2,y =12.【答案】﹣yx−2y ,16.【分析】原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,之后将x 、y 代入计算即可求得答案. 【详解】解:原式=1﹣x−2yx+y ⋅(x+y )(x−y )(x−2y )2=1−x−y x−2y =﹣yx−2y ,当x =﹣2,y =12时,原式=16.【点睛】本题考查了分式的化简求值,熟练的掌握分式的运算法则是解本题的关键,在解题的时候,要注意式子的整理和约分.28.(2023上·广东惠州·七年级统考期末)已知A =xy−y 2y 2−x 2÷(1x−y −1x+y ). (1)化简A ;(2)当x 2+y 2=13,xy =−6时,求A 的值;(3)若|x −y |+√y +2=0,A 的值是否存在,若存在,求出A 的值,若不存在,说明理由.【答案】(1)−x−y2;(2)A=−52或52;(3)不存在,理由见详解.【分析】(1)先把括号里面的通分,再计算整式除法即可;(2)利用完全平方公式,求出x-y的值,代入化简后的A中,求值即可;(3)利用非负数的和为0,确定x、y的关系,把x、y代入A的分母,判断A的值是否存在.【详解】解:(1)A=xy−y2y2−x2÷(1x−y−1x+y)=y(x−y) (y−x)(y+x)×(x+y)(x−y)x+y−x+y=−y(x−y)(x−y)(x+y)×(x+y)(x−y)2y=−x−y2;(2)∵x2+y2=13,xy=-6∴(x-y)2=x2-2xy+y2=13+12=25∴x-y=±5,当x-y=5时,A=−52;当x-y=-5时,A=52.(3)∵|x−y|+√y+2=0,∴x-y=0,y+2=0当x-y=0时,A的分母为0,分式没有意义.∴当|x−y|+√y+2=0时,A的值不存在.【点睛】本题考查了分式的加减乘除运算、完全平方公式、非负数的和及分式有无意义的条件.题目综合性较强.初中阶段学过的非负数有:a的偶次幂,a(a≥0)的偶次方根,a|的绝对值.29.(2023上·山东泰安·七年级统考期中)(1)计算:3x(x−3)2−x3−x(2)计算:(x+1x2−1+xx−1)÷x+1x2−2x+1(3)先化简,再求值:已知ab =3,求a2+4ab+4b2a−b÷(3b2a−b−a−b)的值.【答案】(1)x2(x−3)2;(2)x﹣1;(3)a+2b2b−a,﹣5.【分析】(1)直接通分运算进而利用分式的混合运算法则计算得出答案; (2)直接将括号里面通分进而利用分式的混合运算法则计算得出答案; (3)直接将括号里面通分进而利用分式的混合运算法则计算得出答案. 【详解】解:(1)原式=3x+x(x−3)(x−3)2=x 2(x−3)2;(2)原式=x+1+x(x+1)(x−1)(x+1)⋅(x−1)2x+1=(x+1)2(x−1)(x+1)⋅(x−1)2x+1=x −1;(3)原式=(a+2b)2a−b÷3b 2−a(a−b)−b(a−b)a−b=(a+2b)2a−b⋅a−b(2b+a)(2b−a)=a+2b2b−a∵ab =3,∴a =3b ,所以原式=3b+2b 2b−3b=−5.【点睛】本题考查的知识点是分式的化简求值,掌握分式化简的一般步骤以及分式的混合运算法则是解此题的关键,注意化简过程中各项的符号变化. 30.(2023上·山东潍坊·七年级统考期中)计算: (1)aa+1+a−1a 2−1;(2)2aa+1−2a−4a 2−1÷a−2a 2−2a+1;(3)先化简再求值:(1−3x+2)÷x−1x 2+x−2,其中x 是﹣2,1,2中的一个数值. 【答案】(1)1;(2)2a+1;(3)x ﹣1,x =2时,原式=1. 【分析】(1)先约分,再相加即可求解;(2)先因式分解,将除法变为乘法约分,再通分,相减即可求解;(3)先计算括号里面的减法,再因式分解,将除法变为乘法约分化简,再把x =2代入计算即可求解. 【详解】(1)a a+1+a−1a 2−1,=aa+1+1a+1, =a+1a+1, =1;(2)2aa+1−2a−4a 2−1÷a−2a 2−2a+1, =2aa+1−2(a−2)(a+1)(a−1)⋅(a−1)2a−2,=2a a+1−2(a−1)a+1,=2a−2(a−1)a+1,=2a+1; (3)(1−3x+2)÷x−1x 2+x−2,=x+2−3x+2⋅(x−1)(x+2)x−1,=x ﹣1,∵x +2≠0,x ﹣1≠0, ∴x ≠﹣2,x ≠1,当x =2时,原式=2﹣1=1.【点睛】此题考查分式的混合运算及化简求值,正确将分式的分子与分母因式分解是解题的关键. 31.(2023上·吉林白城·七年级统考期末)先化简,再求值:x 2−1x 2−2x+1÷x+1x−1·1−x1+x,其中x =12.【答案】1−x1+x ,13.【分析】先将分式的分子和分母分解因式,将分式约分化简得到最简结果,再将未知数的值代入计算即可. 【详解】x 2−1x 2−2x+1÷x+1x−1·1−x1+x , =(x +1)(x −1)(x −1)2⋅x −1x +1⋅1−x1+x=1−x1+x ,当x =12时,原式=1−121+12=13.【点睛】此题考查分式的化简求值,化简时需先分解因式约去公因式得到最简分式,再将未知数的值代入求值即可.32.(2023上·山东烟台·七年级统考期中)先化简(a 2−4a+4a 2−4﹣aa+2)÷a−1a+2,再从a ≤2的非负整数解中选一个适合的整数代入求值. 【答案】−2a−1,2【分析】先将分式的分子和分母分解因式,再根据分式的化简求值的过程计算即可求解. 【详解】解:原式=[(a−2)2(a−2)(a+2)−aa+2]⋅a+2a−1,=(a−2a+2−aa+2)⋅a+2a−1,=−2a+2⋅a+2 a−1,=−2a−1.∵a≤2的非负整数解有0,1,2,又∵a≠1,2,∴当a=0时,原式=2.【点睛】此题考查分式的化简求值,化简时需先分解因式约去公因式得到最简分式,求值时选的数需满足分母不为0的数才可代入求值.33.(2023下·江苏盐城·七年级东台市三仓镇中学校考期中)先化简,再求值:x2−1(x−1)2÷x2+xx−1+2x,其中x为你喜欢的一个使原式有意义的整数.【答案】3x,1【详解】分析:根据据分式的混合运算的法则和步骤,先算乘除,再算加减,然后约分化简,最后代入求值即可,注意选择使分母不为零的数代入.详解:x2−1(x−1)2÷x2+xx−1+2x=(x+1)(x−1)(x−1)2÷x(x+1)x−1+2x=(x+1)(x−1)(x−1)2·x−1x(x+1)+2x=1 x +2x=3x当x=3时,原式=1.点睛:本考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.34.(2023上·四川泸州·七年级统考期中)先化简,再求值:(3a+1−a+1)÷a2−4a+4a+1,其中a=4.【答案】−a+2a−2,-3.【详解】试题分析:先根据分式的混合运算的法则,先算括号里面的(通分后计算),再把除法化为乘法约分化简,最后代入求值即可.试题解析:(3a+1−a+1)÷a2−4a+4a+1=3−a2+1a+1×a+1(a−2)2,=−(a+2)(a−2)a+1×a+1(a−2)2=−a+2a−2,当a=4时,原式=-3.35.(2023上·北京昌平·七年级校考期中)先化简,再求值:xx2−1⋅(x−1x−2),其中x(x+1)=2(x+1).【答案】−1x−1,-1【详解】试题分析:先根据分式的混合运算的法则,先把分式的化简,然后再根据方程求出符合条件的x代入求值,注意分式有意义的条件,即分母不能为零.试题解析:原式==.由解得或.因为x不能等于-1,所以当=2时,原式=.36.(2023下·湖南郴州·七年级校考期中)先化简,再求值:(x2x−1+91−x)÷x+3x−1,x在1,2,-3中选取适当的值代入求值.【答案】x-3,当x=2时,原式=-1【详解】解:(x2x−1+91−x)÷x+3x−1=(x+3)(x−3)x−1⋅x−1 x+3=x−3要是原式有意义,则x≠1,−3,则x=2原式=-137.(2023上·浙江杭州·七年级统考期中)先化简,再求值:(4x+6x2−1−2x−1)÷x+2x2−2x+1,其中x是不等式组{x+4>01−2x>3的整数解.【答案】2x−2x+1,4.【分析】原式中先计算分子,约分得到最简结果,求出不等式组的解集,找出解集中的整数解确定出x的值,代入计算即可求出值.【详解】原式= 4x+6−2(x+1)(x+1)(x−1)×(x−1)2x+2= 2(x+2)(x+1)(x−1)×(x−1)2x+2= 2(x−1)x+1=2x−2x+1解不等式组{x+4>01−2x>3得:-4<x<-1所以不等式组的整数解为-3,-2,即x=-3,-2.∵x≠-2∴x=-3,∴原式= 2(−3−1)−3+1=4.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.38.(2023上·重庆·七年级西南大学附中校考期中)先化简,再求值:(2a−2−6a2−2a)÷a2−6a+9a−2,其中a满足2a2−6a+3=0.【答案】2a2−3a ,−43【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【详解】(2a−2−6a2−2a)÷a2−6a+9a−2=[2aa(a−2)−6a(a−2)]÷(a−3)2a−2=2(a−3)a(a−2)×a−2(a−3)2=2a(a−3)=2a2−3a∵2a2−6a+3=0∴2a2−6a=−3∴a2−3a=−32∴原式=2a2−3a =2−32=−43.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.39.(2023上·山东聊城·七年级校考期末)(1)计算:(x2−4x+4x2−4−xx+2)÷x−1x+2(2)先化简a2−2aa2−1÷(2a−1a−1−a−1),然后从−2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【答案】(1)21−x ;(2)−1a+1,1【分析】(1)先计算括号内的分式减法,再计算分式的除法即可得;(2)先计算括号内的分式减法,再计算分式的除法,然后根据分式有意义的条件选取合适的a的值,代入计算即可得.【详解】解:(1)原式=[(x−2)2(x+2)(x−2)−xx+2]⋅x+2x−1=(x−2x+2−xx+2)⋅x+2x−1=−2x+2⋅x+2x−1=21−x;(2)原式=a(a−2)(a+1)(a−1)÷[2a−1a−1−(a+1)(a−1)a−1]=a(a−2)(a+1)(a−1)÷(2a−1a−1−a2−1a−1)=a(a−2)(a+1)(a−1)÷2a−1−a2+1a−1=a(a−2)(a+1)(a−1)÷2a−a2a−1=a(a−2)(a+1)(a−1)⋅a−12a−a2=a(a−2)(a+1)(a−1)⋅a−1a(2−a)=−1a+1,∵a+1≠0,a−1≠0,a≠0,2−a≠0,∴a≠−1,a≠1,a≠0,a≠2,∵a是−2≤a≤2的范围内的一个整数,∴a=−2,则原式=−1−2+1=1.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键. 40.(2023上·山东滨州·七年级统考期末)(1)计算:3(x−1)(x+2)−xx−1+1;(2)先化简,再求值:a−1a 2−4a+4÷(1+1a−2),请从1,2,3中选一个合适的数作为a 的值,代入求值. 【答案】(1)−1x+2;(2)1a−2,1.【分析】(1)根据分式的四则运算求解即可;(2)根据分式的四则运算进行化简,然后代数求解即可. 【详解】解:(1)3(x−1)(x+2)−xx−1+1 =3(x −1)(x +2)−x (x +2)(x −1)(x +2)+(x −1)(x +2)(x −1)(x +2)=3−x 2−2x +x 2+x −2(x −1)(x +2)=1−x(x −1)(x +2)=−1x +2(2)a−1a 2−4a+4÷(1+1a−2) =a −1(a −2)2÷(a −1a −2) =a −1(a −2)2×(a −2a −1) =1a−2,由题意可得:a −2≠0,a −1≠0 ∴a ≠1,a ≠2将a =3代入得,原式=13−2=1.【点睛】此题考查了分式的四则运算,化简求值,解题的关键是熟练掌握分式的四则运算以及分式的有关知识.。
分式加减法之找最简公分母专项练习30题(有答案)ok

分式加减法之找最简公分母专项练习30题(有答案)ok1.找最简公分母专项练30题(有答案)1.分式的最简公分母是?答案:15abx2.分式的最简公分母是?答案:15abx33.分式的最简公分母是?答案:(a2-2ab+b2)(a2-b2)(a2+2ab+b2)4.分式和的最简公分母是?答案:5.下列各题中,所求最简公分母正确的是?答案:A。
与的最简公分母为6x26.与的最简公分母是?答案:3ab2c7.分式的最简公分母是?答案:4(m-n)(n-m)x28.下列各题中,所求的最简公分母错误的是?答案:B。
与的最简公分母是3a2b3c9.分式的最简公分母是?答案:m2-n210.分式的最简公分母是?答案:(x2-y2)(x-y)(x+y)11.分式的最简公分母是?答案:(a+1)2(a-1)212.分式的最简公分母是?答案:(x-y)2(y2-x2)(x+y)13.分式。
的最简公分母是?答案:(x2-1)(x+1)2(x-1)14.分式的最简公分母是?答案:(x-1)2(x+1)215.分式的最简公分母是?答案:(a+b)(a-b)(a2+b2)16.分式。
的最简公分母是?答案:(a+b+c)(a+b-c)(a-b+c)(-a+b+c)1.最简公分母是(a+b)2(a-b)2.写出最简公分母为6a(a+1)的两个分式:3/(a+1)和18a/(a+1)。
2.分式的最简公分母为30abx3.3.分母是a+b,分母分解后是(a+b)(a-b),分母可变形为-(a-b),所以最简公分母是|a-b|(a+b)。
分式的最简公分母分别为6x2y和a2-b2.4.分式的最简公分母为4x2yz。
5.A选项的最简公分母是6x2,B选项的最简公分母是3a2b3c,C选项的最简公分母是ab(x-y),D选项的最简公分母是m2-n2.6.最简公分母是x(x-y)(x+y)。
7.将$n-m$变形为$-(m-n)$,可得这三个分式的最简公分母是$4(m-n)x^2$,因此选D。
53《分式的加减法》习题含解析北师大八年级下初二数学试题试卷.doc

《分式的加减法》习题一. 填空题1 •计算:2——-- _________ ■x + 22. __________________________ 计算:—+ —=a+b b+a 3. 分式出~,亠】的最简公分母是 3bc 5c 2314•计算:二-+ —7 = _________ •2xy 4x 2 l-3x5.计算 ------------- -- 的结果是x — 1 2 — 2x523---------------- 1 ------- 6cib 3ac 4abc二. 选择题:2 .分式x-y+ 2^—的值为 x+ y A 兀_『+2于x+ yD •以上都不对3. 如果分式丄+ - = —!— a b a+ bA. 1B. C. 2 D. -26•计算:7•若in^72小一于 o 2 广-y8.当分式占----- 的值等于零时,则兀=1.下若X =—Xn I八八兀4 +兀__ 6则分式x 2 +3的值为(A. 0B.C. -1D. -2B.x+yc.4. ------------------------------- 化简(m ) -5- (n -------------------------------- )的结果是()n m三、解答题1 •计算A ・1m B ・— nn C-— mD ・一 11 3c.11 A.B ■—2x2x6x6 •计算3° a + b _ + ------------7b -得( )) a-4b 4b 一 aa-4bB. 5•化简P 界等于2a + 6b a-4b D.5 6x A .a-4bC. -2D. 29 —y (3-x)2-------- x-\ x-l(3)x+2 x-l x 2 -2x x 2 -4x + 4(4)y-l-J- y + 1 —2•已知2y+i二丄+丄求A、B的值.(y-l)(y+ 2) y-\ y + 23.先化简,再求值:乞-总+ £,其心|.4.一项工程,甲工程队单独完成需要m天,乙工程队单独完成比甲队单独完成多需要n天时间,那么甲、乙工程队合做需要多少天能够完成此项工程?5 2 3 10c 8b 9 10c-8b + 9---------------- 1 -------- - ---------------------- 1 -------- = -------------------6ab 3ac4abc 12abc 12ac 12abc 12abc【分析】根据分式加减的运算法则化简即可.一、填空题答案:2x x + 2解析:参考答案【解答】2一一 二"x + 2) 一_= x+2 x+2x+22x + 4__ _ x + 2 x + 22xx + 2【分析】根据分式加减的运算法则化简即可.2. 答案:1;解析:【解答】厶+上二厶+上_ =旦=1 a + b b + a a + b a + b a + b 【分析】根据分式加减的运算法则化简即可.3・答案:15bc 2;/4 Q g解析:【解答】分式臥与忘的最简公分母是叫?【分析】根据最简公分母的定义分析即可.4.答案:6x + y 4x 2yy 6a + b解析:【解答】詁存花+心S【分析】根据分式加减的运算法则化简即可.35. 答案:—;2解析:【解答】—-一匕竺二 ——=_3(x-l) = _3X —1 2 — 2x x — 1 2(x — 1)2(x — 1) 2【分析】根据分式加减的运算法则化简即可.6.答案:10c —8b + 912abc解析: 【解答】7.答案:x 2;解析:【解答】』^ =耸•[ +xr - y- x" _ y_ x+ y 【分析】把I'」':+匚1化简即可._ y x + y28.答案:-31乂4 + 2 _ §【分析】根据兀=—求出x 2=l,把分式 ----------- - ----- 化简得X 2-2,把xJl 代人即可.x 厂+32.答案:C ;解析:【解答】原式二兰二2+221 =匕_厂+221 =苕+厂,故选C.1 x+ y x+ y x+ y x+y【分析】把x ・y+2Zl 化简即可知答案. x+ y3. 答案:B :解析:【解答】V — 4- — =°» 二—-—,.*.(a+b)2=l BP a 2+b 2+2ab=ab,原式a baba + ba b a 2 + b 2-ab(ba abab 【分析】根据分式-+-=-^—得,+b —Fb,化简原式代人即可.a b a + b4.答案:B.心" …2、 ( 1、 z 1 mn -1 mn-\ mn -1 m m解析: 【解答】(m ——)-(n ---------- ) = ----------- 一 ----- = --------- x ----------- =—, 故选 B.n m n m n mn-l nm 2xy - y 2 x - y 2xy - y 2 (x- y)2 x 2 . 2解析:【解答】2(y —1) y + 1 2 一 2 2 2 一 ^4^,・・・3y ・2=0, y — 1 y + 1 y — 1 y* — 1 y" y — 1 y — 12y= —3【分析】把R2 1- ----- 化简,然后根据给出的条件求岀x 的值即可. y+1 y-l二. 选择题I.答案:C ;解析:【解答1 Vx = - gp x 2=l,X故选C.【分析】根据分式的混合运算法则把(m- -) 一 (n -丄)化简即可. n m5. 答案:C ;解析:【解答】丄+丄+丄」+3+2』,故选C.x 2x 3x 6x 6x 6x 6x【分析】根据分式加减的运算法则把丄+丄+丄化简即可. x 2x 3x6. 答案:D ;3a a + b 7b 3a a + b 7b 3a-a-b-lb 2a-Sb -------------- + --------------- = = ----------- a-4b 4b-a a-4b a-4b a-4y a-4b a _4b a-4b 故选D.【分析】根据分式加减的运算法则把』一+皂巴-一—化简即可. a-4b 4b _ a a- 4b三、解答题“亠 、兀+ 31 x-41 1.答案:(1);(2) ; (3)c * (4)x-3x-lx(x-2)2y+2解析:【解答】(1)x 2 - y9-yx 2-9(x+3)(x-3)x+3 (—3)2(3-x)2(x-3)2-(x-3)2x-3/、(兀 +1)(兀—1)0—1 1(2) -------- x - \ = ------------------------------ = ------------------ = ------- ;x-\x-\ x-\ x-\ x-\ x-\ (3) x + 2—I _ x + 2 x-l 二 x?-4 x? -x = x-4 x 1 - lx x 2 -4x + 4 x(x-2) (x -2)2 x(x -2)2 x(x -2)2 x(x -2)2(4)= 2_. y-1 二__1_y -1 (y+ 2)(y- 2)y + 2【分析】根据分式加减的运算法则化简即可.2.答案:A=l, B= 1 ;解析:【解答】亠・=丄+ ^=A,+ 2):B(T)= (A :B) : + 2A — B(x-l)(x + 2) x-l x + 2(x-l)(x + 2) (x -l)(x + 2)所以:A+B=2, 2A-B=1,解得 A=1 , B 二 1解析: 【解答】yj Iy —i 丿2 — y . ((y+l)(y-l)2一儿 y_i 人-oy-\ 4求出A. B 的值即可.1 33・答案:—3济军析:【解答】原式=(x'-x-6+3x-9)/x(x-3)=(x'+2x-15)/x(x-3)=(x+5)(x-3)/x(x-3)=(x+5)/x= 1 +5/x= 1 +5/(3/2) = 1 + 10/3=13/3【分析】根据分式加减的运算法则化简,然后把x 的值代人即可.4. 答案:(m 2+mn)/ (2m+n)(天)解析:【解答】甲单独需m 天完成,所以甲每天做1/m,乙单独完成比甲单独完成多需n 天,所以 乙每天做 1/ (m+n),所以二人每天共做:1/m+l/ (m+n) = (2m+n) /m* (m+n) 所以乙合作 1/ ( (2m+n) /m (m+n) ) =(m 2+mn)/ (2m+n)(天)完成 【分析】根据题意列出相应的分式,然后化简即可.【分析】把 化简得(A + B) x + 2 A — B (x —l)(x + 2)2兀+1(兀一1)(兀 + 2)。
2022年北师大版八下《异分母分式的加减》配套练习(附答案)

5.3 分式的加减法第2课时 异分母分式的加减一、判断正误并改正: (每题4分,共16分) 1. ab a b a a b a a b a --+=--+=0〔 〕2.11)1(1)1(1)1()1(1)1(22222-=--=---=-+-x x x x x x x x x 〔 〕3.)(2121212222y x y x +=+〔 〕4.222b a c b a c b a c +=-++〔 〕二、认真选一选:(每题4分,共8分)1. 如果x >y >0,那么xy x y -++11的值是〔 〕 A.零B.正数C.负数2. 甲、乙两人分别从相距8千米的两地同时出发,假设同向而行,那么t 1小时后,快者追上慢者;假设相向而行,那么t 2小时后,两人相遇,那么快者速度是慢者速度的〔 〕 A.211t t t + B.121t t t + C.2121t t t t +- D.2121t t t t -+三、填一填:1. 异分母分式相加减,先________变为________分式,然后再加减.2. 分式xy 2,y x +3,y x -4的最简公分母是________.3. 计算:222321xyz z xy yz x +-=_____________.4. 计算:)11(1xx x x -+-=_____________. 5. 22y x M -=2222y x y xy --+yx y x +-,那么M=____________. 6. 假设〔3-a 〕2与|b -1|互为相反数,那么ba -2的值为____________. 7. 如果x <y <0,那么xx ||+xy xy ||化简结果为____________. 8. 假设0≠-=y x xy ,那么分式=-x y 11____________. 9. 计算22+-x x -22-+x x =____________.第1课时 三角形的全等和等腰三角形的性质一.选择题〔共8小题〕1.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,那么添加的条件不能为〔 〕A. BD=CE B. AD=AE C. DA=DE D. BE=CD2.等腰三角形的一个角是80°,那么它顶角的度数是〔 〕A. 80° B. 80°或20° C . 80°或50° D. 20°3.实数x,y满足,那么以x,y的值为两边长的等腰三角形的周长是〔 〕A. 20或16 B. 20 C. 16 D. 以上答案均不对4.如图,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,那么∠BDC的度数是〔 〕A. 60° B. 70° C. 75° D. 80°5.等腰三角形的两边长分别是3和5,那么该三角形的周长是〔 〕A. 8 B. 9 C. 10或12 D. 11或136.如图,给出以下四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有〔 〕A .1组B .2组C .3组D .4组7.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个局部, 那么这个等腰三角形的底边长为〔 〕A. 7 B. 11 C. 7或11 D. 7或108.等腰三角形一腰上的高与另一腰的夹角为30°,那么顶角的度数为〔 〕A. 60° B. 120° C. 60°或150° D. 60°或120°二.填空题〔共10小题〕9.等腰三角形的一个内角为80°,那么另两个角的度数是 _________ . 10.如图,AB∥CD,AB=AC,∠ABC=68°,那么∠ACD= _________ .第10题 第11题 第12题 第13题11.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,那么∠B= _________ °.12.如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,那么∠A=________°.13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,那么BD=_________ .14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,那么∠BAC=_________ °.第14题 第15题 第16题 第17题 第18题15.如图,AB与CD交于点O,OA=OC,OD=OB ,∠A=50°,∠B=30°,那么∠D的度数为_____.16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,那么∠BDC的度数为_________.17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,那么∠C=_________ .18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP ,CP=CF,那么∠EPF= _________ 度.三.解答题〔共5小题〕19.:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.20.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:〔1〕△ABD≌△ACD;〔2〕BE=CE.21.如下图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB 的位置关系,并给出证明.22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出以下四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.〔1〕上述四个条件中,由哪两个条件可以判定AB=AC?〔用序号写出所有的情形〕〔2〕选择〔1〕小题中的一种情形,说明AB=AC.23.〔1〕如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、A C于点D、E.判断DE=DB+EC是否成立?为什么?〔2〕如图,假设点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜测线段DE、DB、EC之间有何数量关系?证明你的猜测.参考答案一、CBBCDCCD二、9、50°,50°或80°,20°;10、44;11、65;12、40;13、3;14、69;15、30°;16、72;17、70;18、50三、19、证明:∵AB=AC,∴∠B=∠C.∵OD⊥AB,OE⊥AC,∴∠ODB=∠OEC=90°.∵O是底边BC上的中点,∴OB=OC,在△OBD与△OCE中,∴△OBD≌△OCE〔AAS〕.∴BD=CE.∵AB=AC,∴AB﹣BD=AC﹣CE.即AD=AE.20、证明:〔1〕∵D是BC的中点,∴BD=CD,在△A BD和△ACD中,,∴△ABD≌△ACD〔SSS〕;…〔4分〕〔2〕由〔1〕知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE 〔SAS〕,∴BE=CE〔全等三角形的对应边相等〕.〔其他正确证法同样给分〕…〔4分〕21、解:OE⊥AB.证明:在△B A C和△ABD中,,∴△BAC≌△ABD〔SAS〕.∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.答:OE⊥AB.22、〔1〕答:有①③、①④、②③、②④共4种情形.〔2〕解:选择①④,证明如下:∵OB=OC,∴∠OBC=∠OCB,又∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AC=AB.②④理由是:在△BEO和△CDO中∵,∴△BEO≌△CDO,∴∠EBO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC,23、解:〔1〕成立;∵△ABC中BF、CF平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠4.∵DE∥BC,∴∠2=∠3,∠4=∠6.∴∠1=∠3,∠6=∠5.根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.∴DE=DF+EF=BD+CE.故成立.〔2〕∵BF分∠ABC,∴∠DBF=∠FBC.∵DF∥BC,∴∠DFB=∠FBC.∴∠ABF=∠DFB,∴BD=DF.∵CF平分∠AC G,∴∠ACF=∠FCG.∵DF∥BC,∴∠DFC=∠FCG.∴∠ACF=∠DFC,∴CE=EF.∵EF+DE=DF,即DE+EC=BD.。
(05)分式加减法专项练习60题(有答案)ok
分式加减法专项练习60题(有答案)6yue281 12a41|a 2-l[13 nx-:3 x ( X-3)5.6.2 a ..] a+1.i '.8.1 ID - 5 in2 _ in 2ID 2 _ 214.9.10. ab b:I.7'-'-.11.2m _ 1 m 2 -4 时2x 2 2x .K 2+X -2 /-4X £+4X +412.a - 1a 2+a- 2a+l¥-115.13.16 .(1)x+x | - 9X2+6I+917 .n m ^2_2L珂0jm_ 2n n, - 4im+4n*18.1+a2+ab+ b 2?-b319 .b2ab+ b2 - 2ab+ b2'a2 - b22a * b ~ e , 2b ~ c - a _ 2e - a - b~2I 5' oa - ab - ac+bc b - ab - bc+ac c - ac - bc+ab23.ir^+2ni+l V 7?(i-l)(K +2)-1 ,r 12.L2IE 2 - 9 TS;_ IT 26.25.27.2y+z —■+28 卅9b _ a+3b.:.- --29.(式中a , b , c 两两不相等)231. (1) ^― ■出;x+y2曰'+3*2 _ 己2 _ 廿 _ 5 _ 3 a? _ 4邑- § 2护 - 3时5 a+1af2 a - 2 + a - 3:, 1 … K (xfl) T (计1)(計刃 (x+2005) (x+2006)(2) b 2a+c b-ca 一 b+c|b ' a _ c b -耳-百 32.33.化简分式:34. 72x y+xy35 .计算:2x+2y36. 计算: 37•计算:3K - 4y40. 38. 39.计算化简:一X2+3X +2 X 2+K -2 1- T 21124 1-X|i+d1+/计算:41 . 1 2 12X 2+31-1 2 K 2+3X +1 2X 2+3I ^3计算45•计算:f「二47.化简:2a_ b-c _ 2b _c _a , 2c _a ~ b (a-b) ta_c) * (b_c) Cb - a)亠(G_(G_b)42•计算: 7s +2a+l a+148. ::-■-a- 1 49.a2-l51 •计算:2JS' y _z 2y _ _2 2z _K_y~~5 "I o "I- Ky- xz+yz y^- xy - yz+xz z^-KZ- yz+sy54.化简(2)化简:1 + + + +■ ++=1X^ 2X3 3X4 4X5 5X6|6X7 7X8 _—□__________ 1______ .L[(n为正整数);+・・+1(x+2QQ8) C K+2009)50.计算:56.先观察下列等式,然后用你发现的规律解答下列问题:由 __ _!—丄_J_一_!_! _J__1X2 2 1 2 2X3 6 2 3 3Xq 12 3 4 (1)计算(K+2) (X+3)(x+1)(x+1) (x+2)解答下面的问题:(1 )若n 为正整数,请你猜想一.1.= _|n Cn+1)(2) 证明你猜想的结论;(3) ------------------------------------------------------------- 求和: 一=—+—=—+—=—+ •- +=1X2 2X3 3X4 2011X2012解:原式= ----- ------------ ' (A )a+3(a+3)(a - 3)= a-3_6(a+3)_3)((a - 3)58•请你阅读下列计算过程,再回答所提岀的问题:题目计算:(B)=a — 3- 6 (C ) =a - 9 ( D )(1 )上述计算过程中,从哪一步开始岀现错误: _ _ •(2)从B 到C 是否正确,若不正确,错误的原因是 __________________ (3 )请你把正确解答过程写下来.59 •观察下面的变形规律:=11X21::;L1 1 1 |1 12|3|;3X4 3 4;参考答案:1 原式=• .' . -1 - I =1 + 1=2 .a _ ba _b a _ ba 2 - abb a (a b) n = • a + b a+b|Pt/a+b(a+b) (a _b)a+b a +h| a+ba+b|m _ 2 2m (mH)4. 5. 6. 2x1x 11(xH) (K--1) x-1 (計 1) (x-1) x+1-+a+1 (aH )2冷-1)a- 1+2 _ (aH)〔耳 T) 1 1 1-1 X3x _ 3 1 1x (x _3) x (x-3)"x Cs _ 3) x1 . 2_l+2_3 a da a T a14.十「、2自(已+1)222 .原式=a — a+ =a - a+a=a .nfl3.原式=原式= 原式=7. 10.(ID - 1 ) (ID - 2)2m (ID - 1) (nrl-1)a _ 1_ 3.^+0| a-1 |a (a+1) | 1 |a 1 _ a □ -l =a-la 2 - 2a+l a 2 - T'(a -D 旷(a -1) (a+1)〜1 一-11 _ 4 _ - a+2 _41□ _ 2 (at2) Ca _ 2) (af2)冷-2)(a+2) (a _ 2)(寸2〕_ 2)16.17.18. 19. 20.21 .22.23.24.25. 26.27.28. 29.D 2,1血G+l ) 2(x+1)(x-1)(xH) (K-1)(xH) C K -1)K-l 原式 2xy y (旳)= ¥ a - y) y (K _ y) (K +Y ) (K _ y) Cx+y)(富一 y ) 〔盂+y )(nrFl ) 22 itd-1 2 | irr^L - 2 ra _1 A (1□- 1) (nrbl) m - 1 m _ 1 m _ 1 m _ 1 m _ 1x (x+2)5 _(X- n (X42) _x 2+2x-3 - X 2-X +2 (K- 1) (x+2)(K-1;(x+2)〔耳「1)(計2)_ (i-l )(计2)原式原式原式 ;x 的取值范围是x a 2且x 的实数.K - 12m -n nr^n m n _ ID n ~ IT ] 原式-- ・ 1 _ 12 -2 (m+3)皿2 _ 9 _ in 「nr+3 (ml-3) (ID - 3i 丁 (nrl-3) Cm - 3)12-2 (昭引 +2 57)L2-2u- -&+2m - 61 J -■ i :(nrf 3) ■i 02 Cm - 3) +(nH-3)~_ 3)2y+xy2x2y+z - y - 2iy x",(xfy) (K _y)1 x+ya 2= 1(ad-2) Ca _2)nt - n (m - 2n ) in - 2n (mi-n) (m 一 n)a 2+ab+ b 2m _ 2n _rrH ■口 - ( m _ 2n) jirl-n _ irrl^2n _irr^nrn^n m+n— b 24_ 1 _ b_1 -b(a -b) 2| b ( a+b)'□-b(旦-b) ~a+l+a 1 2a 0 且一 1 8+1 /-I(a - 1) (a+1) (a+1) fa _ 1)a+9b a +3t 廿9b =~ (a-K3b) ■仙 23ab3ab - 3ab 3ab a原式=1 -=0.(a~b) ( a^+ab+ b 2)原式=原式34.…氏+F )'原式x - y x+y-莖+y 2y 2xy xy xy x36. / - 2xy+ y 2 - 2Z 3 - 2y 2z+y2 (x+y) (K -y) =b 【葢-y)J s+2y y -1yi+2y - y+1 - yx+1 | 1 |_l-x 2 1-S 2l-,21 1*1 - :, 1 -.37. 原式2-y 238. 原式三買丄玄-丄?x 2 (x _ 1)(2)「| J +••+^亠亠 + 亠——+ ••+ -s (xfl) (K +1) (X +2) (X +2005) (r+2006)同莎直+1 越 x+200EL =. 200& 丈我006=x (x+200G)” b2a^c b - c b 2a+c - b-+c - b 2a - M2c 2a - 2b+2<na " t+cb _ a _ cb _ a _ ca" b+cb _ a _ Gb _ a _G b _ a - G b 一且一 E2a 2+3a+2 __ 3a 2_4a~^ 2 a 2 _ Sa+Sarbla+2 a _ 2 + a - 3=(2a+1)-( a - 3)--( 3a+2) +—'a+1a+2a-=[(2a+1)-( a - 3)-( 3a+2) + ( 2a - 2) ]+ (-—r ■丁arl a+Z a _ J 耳一/ 丄-一 :-• = . •. -a+1 a+2 □ _ 2 a _ 3 (aH 〕(a+2)(a _ 2) (a _ 3)-盼4(a-bl)( a+2) (a - 2)(a _ 3)x+2006-40x+40 (x-2) (K -4)31. (1)x+ysy (x - y)35.原式22 - K - 3yJy+ x 2C K - 1)(y+1)(y+3) -2 (y 1? (y+3) + (y■-1D (y+1) rs(y-1) Cy+1)Cy+3) =(厂⑴(y+D (y+3)8(2x ?+3i- 1)(2 x 2+3X +1 )(2 x 2+3x+3)'2c - a - k>4 (1+/) 4 (1+ J)—丄8 (1-』)(Hx 4) (1-/) (1+/)1-x 8 2 41 .设2x +3x=y ,则原式=X J y 2 2 _ * y _xK ( K ~ y) y(y _z) K ( K ~ y) y (K_ y) xy (K _ y) xy (K _y)_ 2 . y K -(旳)Cx -y)s+y xy -y)xy (h -y)XV44.原式 2y 严2 y2X1 y 2-x 2(y+莖)Cy x) /-/y-xx (K - y)K (x - y) x U - y) x (s - y) 45.2KVx _ xE M 什貨(x - y) +x (x+y) 992zy+ z - XV+ 92sy+2 x 凤2 -x+y ^-y _ ]宀/ I'_2 _ 2K y(x _y) (x+y)46. 2工(旳)n (旳)「2工m 一y39.原式=JS ( 1 - 1 )X (x+1) 2 (x+2)(K +2) (X +1 } (x _ 1)( K +2) C X H) (s-1) | | (K +2) C K H)(; cl)K ?K + K2+X 2x - 4=2x 2 2x 4J 2 ( 英-2〕(x+1)2K - 4 (計刃(?-n 丨丘+对a+D G — i ) (xf2) (x+1) (x-1)X2+K - 240.原式=14■覽(1 - x)~(1 十辺2 (1+ x 2) 2 (1- J)丄+ 4 =44 I(1 -4 (H x £)(1-?) (1+?)1十 J 1- J 1+J+ -+ ■-1+x 2 1+J42 .原式=■-+ 乩一x - x+y 1K +X (s+y)(盖—y)(s+y) (x-y) (x+y) (K - y)K _ y47 .原式=.一: - 1〔 一 ,,++(x+2) &十 1)(1 十小(1 -X ) (2 (x-1)2+4(1-X )(1+G(1-X )(1卄)43.原式-a+2=a+1 - a+2=3.48.49.50.(a-k>) + (且-c)—(h* - c? + (b - s) +(c-a) +〔匚-b)(a- b) (a~ c)(b-c) (a-b) 〔£-辺)(c - b)+++]—,=0a+ (3a+l) ・(2a+3) a+3a4-l -•岛・3 2 (a- 1? .2 I宀1a-1a+1'=1 3x+5=h 1 ③+5)-2:計孑(X-HS) ( K _ 1 )(K+3)(K-D(K+3)G-1)原式原式原式=2a - a _1+a+仁2a.4 x- 81 3 x+612= 7 x- 14(x+2 ) ( x-2 )(x+2 ) ( x-2 )(x+2 ) ( x -2 )](也)(K-2 )51.原式乂且(# 3)52.原式=1 -2a+12a+b 2b^2a- (2a+b) 2b+2a 2a b=1..--2ab2ab Znb 2ab=1 -(曲)Ca_ 1)a+3a+153. 原式-I- , 1-L2ab 2ab1 1r 1 亠1-L 1 4.1 1x _ z z _ y y _s 1y _ m 12 _y i Z _I X _z55.原式X2-1+2(好1) (x+L ) 2= 4+1 )戈=_(田)2=1M -—+ •-+3118 =1 -+ - - + 1L56. (1)原式=1 -12=』;11= 2009灶2009K (計20Q9)=157 .原式=■K (x+2) 2 XK-2'_X- 2K+2008 K+200^y- 一a-3 ’£寸畀(arf3) G - 3)(a+3)(且- 3)丁(af3) Ca_ 3)a - 3+6 十1(时3) (a-3) (a+3) ( □ _3) a.-3(x+2) (x _2)58. (1) A (2)不正确,不能去分母(3)原式=1 ]11n (汩1)=n n+1;59. (1)-=.n+1 n .n+1 - n 1n+1 n (n+1)n (n+1) n (nil) b 5+i)(2) 2岛说九X4=14墙4 i弓-—+ ••+2011X20121feOll2012 =20122011 2012—=1.=2 +」+4+ ••+ 「1 ] 1 - X 1-x 2l+i 21出1+4|1-』60•原式叮・+.「.。
北师大版八年级数学下册分式的加减法练习试题及答案
3.3 分式的加减法(1)一、目标导航1.同分母的分式的加减法的运算法则及其应用;2.简单的异分母的分式相加减的运算.二、基础过关1.计算:(1)ab ab c ab c 743+-= ;(2)ab b b a a -+-= ; (3)=+-+3932a a a __________;(4)abcac ab 433265+-= . 2.下列计算正确的是( )A .m m m 312=-+B .1=---ab b b a a C .212122++=++-+y y y y y D .b a a b b b a a -=---1)()(22 3.分式25,34ca bc a 的最简公分母是_________. 4.计算:242+-x = . 5.计算213122x x x ---- 的结果是____________. 6.一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时.7.计算:(1)ab a b 1+- (2) ab b a ab b a 22)2()2(+--(3)222)3(9)3(x y x y x ----- (4)22225421a a a a a a --+--8.先化简,再求值:))(())((2222a c b a b c c a b a b a ---+---,其中3=a ,2-=b ,1-=c .三、能力提升9.若222222M xy y x y x y x y x y--=+--+ ,则M=___________. 10.化简131224a a a -⎛⎫-÷ ⎪--⎝⎭ 的结果是___________. 11.化简11x y y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .1 B .x y C .y x D .-1 12.计算:(1)969392222++-+++x x x x x x x (2)23111x x x x -⎛⎫÷+- ⎪--⎝⎭13. 已知03461022=+--+b a b a ,求ab a b ab a ab b a b a b a -++⨯-÷⎪⎭⎫ ⎝⎛+-2222222的值.四、聚沙成塔已知x +y 1=z +x 1=1,求y +z 1的值.3.3分式的加减法(1)1.⑴abc -7,⑵1,⑶3-a ,⑷abc b c 129810+-;2.D ;3.15bc 2;4.22+x x ;5.2235--x x ;6.y x xy +;7.⑴a1-,⑵8-,⑶33-+x x ,⑷a a 2-;8.52;9.2x ;10.-2;11.B ;12.⑴2,⑵21+-x ;13.83;四.1.。
分式加减法辅导训练
初二分式的加减法辅导训练( A 卷)典型例题:1.已知y x 11-=3,则分式y xy x y xy x ---+2232= 。
2.已知两个分式:244A x =-,1122B x x=++-,其中2x ≠±,则A 与B 的关系是( )A.相等B.互为倒数C.互为相反数D.A 大于B练习题:一、选择题1.下列各式计算正确的是( ) A.b a b a +=+111 B.ab m b m a m 2=+ C. a a b a b 11=+- D.011=-+-ab b a 2.化简111322-+--+a a a a +1等于( ) A.11+-a B.1+a a C.11+-a a D.11-+a a 3.若a -b =2ab ,则ba 11-的值为( ) A. 21 B.-21 C.2 D.-2 4.若x 2+x -2=0,则x 2+x -xx +21的值为( ) A.23 B.21 C.2 D.-23 二、填空题5.计算:3236+++x x x =________. 6.已知x ≠0,x x x 31211++=________. 7.化简:x +xx -12=________. 8.如果m +n =2,mn =-4,那么nm m n +的值为________. 9.分式91,62,12--++x x x x x x 的最简公分母是______ 三、解答题10.计算:(1)a +b +b a b -22 (2)xy y x y x y x y y x ----+-+2(3)232323194322---+--+x x x x x (4)(x +1-13-x )÷222-+x x11.化简求值:1、(2+1111+--a a )÷(a -21a a -)其中a =2. 2、232323194322---+--+x x x x x ,其中x=—1(B 卷)一、填空。
八年级数学上册分式的加减同步练习(1篇)
八年级数学上册分式的加减同步练习(1篇)八年级数学上册分式的加减同步练习 11.填空:(1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;(2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;(3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克.2.列方程解应用题.(1)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时.已知他第二次加工效率是第一次的2.5倍,求他第二次加工时每小时加工多少零件?(2)某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?(3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的'时间相同,那么此江水每小时的流速是多少千米?(4)A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知两车的速度之比是5:2,求两辆汽车各自的速度.3、甲,乙两地相距360km,新修的高速公路开通后,在甲,乙两地间行驶的长途客运车平均车速提高了50%,而从甲地到乙地的时间缩短了2h,试确定原来的平均车速。
4、八年级(1)班学生周末坐车到风景区游览,风景区距学校100公里。
一部分学生坐慢车先行,出发1小时后,另一部分学生坐快车前往,结果快车比慢车还早到1小时。
已知快车的速度是慢车速度的1.5倍,求慢车的速度。
5.化简求值:[(__2y)2+(__2y)(2y+x)-2x(2__y)]÷2x,其中x=1,y=2.6、节日期间,几名大学生包租了一辆车准备从市区到郊外游览,租金为300元,出发时,又增加了两名同学,__达到X名,开始包车的几名学生平均每人可比原来少分摊多少钱?答案:1.(1)mn m+n; (2)m a-b-ma; (3)ma a+b.2.(1)第二次加工时,每小时加工125个零件.(2)步行40千米所用的时间为40 4=10(时).答步行40千米用了10小时.(3)江水的流速为4千米/时.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3 分式的加减法(A 卷)
一、选择题
1.下列计算错误的是( )
A .34a a b a b a b a b
+----=4; B .222222223x x y y x y y x y x x y --+=---+ C .
21222933m m m +=--+; D .2222523108963412bc ac ab a b ab abc a b c
-+-+= 2.计算(1-11a -)(21a
-1)的结果正确的是( ) A .1a a + B .-1a a + C .1a a - D .-1a a - 3.一根蜡烛经凸透镜成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:
111u v f
+=.若u=12cm ,f=3cm ,则v 的值为( ) A .8cm B .6cm C .4cm D .2cm
4.分式2212,,a b a b a b b a
+--的最简公分母为( ) A .(a 2-b 2)(a+b )(b -a ) B .(a 2-b 2)(a+b )
C .(a 2-b 2)(b -a )
D .a 2-b 2
5.观察下列等式:
112
⨯=1-12, 123⨯=12-13
, 134⨯=13-14, …
1(1)n n +=1n -11
n + 将以上等式相加得到
1
12⨯+1
23⨯+1
34⨯+…+1
(1)n n +=1-1
1n +.
用上述方法计算:1
13⨯+1
35⨯+1
57⨯+…+1
99101⨯其结果为( )
A .50101
B .49101
C .100101
D .99
101
二、填空题
6.化简4()222x x x
x x x -÷-+-的结果是_______.
7.分式22345,,4(2)2y
x x x --+的最简公分母是_______.
8.若a -b=2ab ,则1a -1
b =______.
9.化简2
2
a b a b a b ---=_______.
三、解答题
10.计算:
(1)22256343333a b b a a b a bc ba c cba +-++-; (2)321
111a a a a a ---+--.
11.化简后再求值:
2213(3)(1)1121x x x x x x x +++-÷+--+,其中-1.
参考答案
一、1.C
2.B 点拨:(1-222211111(1)(1)1)(1)111a a a a a a a a a a a a a
----+-+-===----g g . 3.C 点拨:由
111u v f +=得11u f f u fu --=,所以v=312123fu u f ⨯=--=4(cm ). 4.D
5.A 点拨:因为113⨯=12
(1-13),135⨯=12(13-15),…,199101⨯ =12(199-1101),所以113⨯+135⨯+157
⨯+…+199101⨯ =12(1-13+13-15+15-17+…+199-1101)=12(1-1101
)=12×10050101101=. 二、6.-
12x + 点拨:442()222(2)(2)4x x x x x x x x x x x --÷=-+-+-g =-12x +. 7.(x -2)2(x+2) 点拨:各分式的分母分别是x 2-4=(x+2)(x -2),(x -2)2和x+2,• 故最简公分母是(x -2)2(x+2).
8.-2 点拨:1a -1b =b a a b ab ab --=-,因为a -b=2ab ,所以1a -1b =-2ab ab
=-2. 9.a+b 点拨:22a b a b a b ---=22()()a b a b a b a b a b
-+-=--=a+b 三、10.解:(1)22256343333a b b a a b a bc ba c cba
+-++- =222(56)(34)(3)6233a b b a a b b a bc a bc a c
++--+== (2)321111a a a a a ---+--=32(1)(1)1111111
a a a a a a a a a a a ------+----- =33223322()()(1)1112111
a a a a a a a a a a a a a a a ------+-+-+-++==---.
点拨:(1)虽然分母形式看起来不相同,但是利用乘法的交换律以后,其实这几个分式的分母都是3a 2bc ;(2)中有的是整式,有的是分式,•所以必须先找出最简公分母(a -1)进行通分,利用分式的基本性质进行通分时,分子,分母整体乘以这个整式,•为了避免出现错误应加括号.
11.解:2213(3)(1)1121x x x x x x x +++-÷+--+=213(1)1(1)(1)(3)(1)
x x x x x x x +--++-++g =2222211111121(1)(1)(1)(1)(1)
x x x x x x x x x x x -+-+-+-=-==++++++.
当-1时,原式
22===1. 点拨:这是一道分式混合运算题,所以应先算乘除,后算加减,最后再代入求值,•
2=a (a ≥0).。