流体流动阻力的测定
流体流动阻力的测定

流体流动阻力的测定一、实验目的(1)熟悉测定流体流经直管的阻力损失的实验组织法及测定摩擦系数的工程意义。
(2)观察摩擦系数λ与雷诺数Re 之间的关系,学习双对数坐标纸的用法 (3)掌握流体流经管件时的局部阻力,并求出该管件的局部阻力。
二、实验原理流体在管内流动时,由于流体具有黏性,在流动时必须克服内摩擦力,因此,流体必须做功。
当流体呈湍流流动时,流体内部充满了大小漩涡,流体质点运动速度和方向都发生改变,质点间不断相互碰撞,引起流体质点动量交换,使其产生了湍动阻力,结果也会消耗流体能量,所以流体的黏性和流体的漩涡产生了流体流动的阻力。
流体在管内流动的阻力的计算公式表示为22u d l h fλ=或2212u d l p p p ρλ=-=∆式中:h 为流体通过直管的阻力(J/kg );△p 为流体通过直管的压力降(N/m 2);p 1,p 2为直管上下游界面流动的压力(N/m 2);l 为管道长(m );d 为管道直径(内径)(m );ρ为流体密度(kg/m 3);u 为流体平均流速(m/s );λ为摩擦系数,无因次。
摩擦系数λ是一个受多种因素影响的变量,其规律与流体流动类型密切相关。
当流体在管内作层流流动时,根据力学基本原理,流体流动的推动力(由于压力产生)等于流体内部摩擦力(由于黏度产生),从理论上可以推得λ的计算式为Re64=λ 当流体在管内作湍流流动时,由于流动情况比层流复杂得多,湍流时的λ还不能完全由理论分析建立摩擦系数关系式。
湍流的摩擦系数计算式是在研究分析阻力产生的各种因素的基础上,借助因次分析方法,将诸多因素的影响归并为准数关系,最后得出如下结论⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=d d du k tεϕεμρλRe,2 由此可见,λ为Re 数和管壁相对粗糙度ε/d 的函数,其函数的具体关系通过实验确定。
局部阻力通常有两种表达方式,即当量长度法和阻力系数法。
当量长度法:流体流过某管件时因局部阻力造成的能量损失相当于流体流过与其相同管径的若干米长度的直管阻力损失,用符号l e 来表示,则22u d l l h e f+=∑λ阻力系数法:流体通过某一管件的阻力损失用流体在管路中的动能系数来表示22u h pf ζρ==∆三、实验装置本实验装置如下图,由直管、管件、控制阀、涡轮流量计、供水泵和水箱构成。
流体流动阻力的测定

测数据的准确性,每组数据之间稳定时间不得低于5min。 记录数据列表。 5、实验终了,首先关闭阀7,停泵、关闭发生器、仪表、 电源。 五、实验报告编写 (一)实验目的
(二)实验原理
(三)实验装置 (四)实验数据记录表 (五)实验数据处理 (六)思考题
实验数据处理
由所测得的Vs,t1、t2,确定流体密度,计算Q
数据处理结果表 序号 1 2 3 4 5 6 7 8 9
流量
m3/h
光滑管
粗糙管
Re
闸阀阻 力系数
Re
log()
粗糙管
光滑管
log(Re)
全开闸阀阻力系数实验数据处理: 根据流量、管径确定流速,根据该流量下所对应的闸 阀阻力(mH2O)代入下式,确定阻力系数。
2 gH f u2
计算三个流量下的阻力系数,并将其平均得全开闸阀平 均阻力系数。
Q Ki S i t m
确定流体被加热给热热阻占总热阻的比例
所占热阻比例 1 i 100% 1 Ki
确定蒸汽冷凝的给热系数o 1 1 1 o S o K i Si i Si
So d o L
do—换热管外径。 计算每一个流量下的给热系数和总传热系数,将处理 结果列入计算结果表中(表的格式见书)。 注意:在实验报告中仅写出一组实验数据的计算过程, 其他只要在计算结果表中表达出来即可。
再由已知的t1、t2、 Q,Si,并根据测得的加热蒸汽温度 T,确定传热平均温度差 tm,代入传热速率方程即可 确定Ki,与所测到的给热系数i进行比较,分析管内流 体给热热阻占总热阻的比例。若将管壁热阻忽略,也可 求出水蒸气冷凝的给热系数o 。
Q Ki S i t m
流体流动阻力的测定实验

流体流动阻力的测定实验一、实验内容1.测定流体在特定的材质和ξ/d 的直管中流动时的阻力摩擦系数λ, 并确定λ和Re 之间的关系。
2.测定流体通过阀门时的局部阻力系数。
二、实验目的1. 解测定流体流动阻力摩擦系数的工程定义, 掌握测定流体阻力的实验组织方法。
2.测定流体流经直管的摩擦阻力和流经管件或阀门的局部阻力, 确定直管阻力摩擦系数与雷诺数之间的关系。
3. 熟悉压差计和流量计的使用方法。
4. 认识组成管路系统的各部件、阀门并了解其作用。
三、实验原理流体通过由直管和阀门组成的管路系统时, 由于粘性剪应力和涡流应力的存在, 要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力 流体流动过程是一个多参数过程, 。
由因次分析法, 从诸多影响流体流动的因素中组合流体流经管件时的阻力损失可用下式表示:⎥⎦⎤⎢⎣⎡ξμρ=ρ∆d ,du ,d l F u P 2 λ=Ψ(Re, ε/d ) 雷诺准数μρdue =R ;22u d l Ph f ⋅⋅=∆=λρ只要找出λ、ξ就可计算出流体在管道内流动时的能量损失。
g P Hg )R(ρρ-=∆易知, 直管摩擦系数λ仅与Re 和 有关。
因此, 只要在实验室规模的装置上, 用水做实验物系, 进行试验, 确定λ与Re 和 的关系, 然后计算画图即可。
2.局部阻力局部阻力可以用当量长度法或局部阻力系数法来表示, 本实验用局部阻力系数法来表示, 即流体通过某一管件或阀门的阻力损失用流体在管路中的动能系数来表示, 用公式表示:一般情况下, 由于管件和阀门的材料及加工精度不完全相同, 每一制造厂及每一批产品的阻力系数是不尽相同的。
四、实验设计由和知, 当实验装置确定后, 只要改变管路中流体流速u及流量V, 测定相应的直管阻力压差ΔP1和局部阻力压差ΔP2, 就能通过计算得到一系列的λ和ξ的值以及相应的Re的值,【原始数据】在实验中, 我们要测的原始数据有流量V, 用来计算直管阻力压差ΔP1和局部阻力压差ΔP2的U型压差计的左右两边水银柱高度, 流体的温度t(据此确定ρ和μ), 还有管路的直径d和直管长度l。
流体流动阻力的测定

流体流动阻力的测定一、引言流体力学是物理学的一个分支,主要研究流体的运动规律和性质。
在工程领域中,流体力学是非常重要的一门学科,涉及到许多领域,如航空、船舶、汽车、建筑等。
在这些领域中,流体的运动特性对于设备的设计和性能有着重要影响。
而测定流体流动阻力是了解这些运动特性的基础。
二、实验原理1. 流体阻力公式当一个物体在流体中运动时,会受到来自流体的阻力。
根据牛顿第二定律,物体所受合外力等于其质量乘以加速度。
因此,在水平方向上运动的物体所受合外力为:F = ma其中F为合外力,m为物体质量,a为加速度。
当物体在水平方向上运动时,在没有其他外力作用下,其所受合外力即为来自水对其作用的阻力Ff。
因此:Ff = ma将牛顿第二定律代入上式可得:Ff = 1/2 * ρ * v^2 * S * Cd其中ρ为流体密度,v为物体相对于流体的速度(即物体速度减去流体速度),S为物体所受阻力的面积,Cd为阻力系数。
2. 流体阻力的测定在实验中,我们可以通过测量物体在流体中运动时所受到的阻力来计算出阻力系数Cd。
一般来说,测量流体阻力有两种方法:直接法和间接法。
直接法是指将物体放置在流体中,然后通过测量所需施加的力来计算出流体阻力。
这种方法通常需要使用特殊设备,如浮子式流量计、翼型试验台等。
间接法是指通过测量物体在流体中运动时所需施加的外部力来计算出流体阻力。
这种方法通常需要使用天平或重量计等设备来测量物体的重量,并结合运动学公式来计算物体所受的加速度和速度等参数。
三、实验步骤1. 实验器材准备准备好天平或重量计、滑轮、绳子、小球等实验器材,并将它们固定在实验台上。
2. 实验样本制备制作一个小球样本,并将其质量称重记录下来。
3. 流动介质准备将水注入实验槽中,并将水温调节到室温。
4. 实验数据测量将小球样本用绳子系在滑轮上,并将滑轮固定在实验台上。
然后,拉动小球样本,使其开始运动,并记录下所需施加的力和小球样本的运动时间。
实验一 流体流动阻力的测定

实验一 流体流动阻力的测定一、实验目的1、了解流体在管道内摩擦阻力的测定方法;2、确定摩擦系数λ与雷诺数Re 的关系。
二、基本原理由于流体具有粘性,在管内流动时必须克服内摩擦力。
当流体呈湍流流动时,质点间不断相互碰撞,引起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。
流体的粘性和流体的涡流产生了流体流动的阻力。
在被侧直管段的两取压口之间列出柏努力方程式,可得:ΔP f =ΔPL —两侧压点间直管长度(m)d —直管内径(m)λ—摩擦阻力系数u —流体流速(m/s )ΔP f —直管阻力引起的压降(N/m 2)µ—流体粘度(Pa.s )ρ—流体密度(kg/m 3)本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系列流量下的ΔP f 值,将已知尺寸和所测数据代入各式,分别求出λ和Re ,在双对数坐标纸上绘出λ~Re 曲线 。
三、实验装置与仪器1、实验装置水泵将储水糟中的水抽出,送入实验系统,首先经玻璃转子流量计测量流量,然后送入被测直管段测量流体流动的阻力,经回流管流回储水槽,水循环使用。
被测直管段流体流动阻力△P 可根据其数值大小分别采用变压器或空气—水倒置U 型管来测量。
实验系统流程图见图一压差传感器与直流数字电压表连接方法见图二2、设备的主要技术参数(1)被测直管段:管径d —0.0080(m) 管长L —1.6(m) 材料:紫铜管(2)玻璃转子流量计:型号LZB —25 测量范围100—1000(L/h) 精度:1.5 型号LZB —10 测量范围10—100(L/h) 精度:2.5(3)单项离心清水泵:型号WB70/055 流量20—2000(L/h)扬程:13.5~19(m) 电功功率:550(W) 电机功率:550(W) 电流:1.35(A) 电压:380(V)22u d L P h ff ⨯=∆=λρ22u P L d f ∆⨯=ρλμρdu =Re四、实验步骤:1、向储水槽内注蒸馏水,直到水满为止。
流体流动阻力测定

一、实验目的1、 掌握流体经直管和管阀件时阻力损失的测定方法。
通过实验了解流体流动中能量损失的变化规律。
2、 测定直管摩擦系数λ于雷诺准数Re 的关系。
3、 测定流体流经闸阀等管件时的局部阻力系数ξ。
4、 学会压差计和流量计的适用方法。
5、 观察组成管路的各种管件、阀件,并了解其作用。
二、基本原理流体在管内流动时,由于粘性剪应力和涡流的存在,不可避免得要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。
1、 沿程阻力流体在水平均匀管道中稳定流动时,阻力损失表现为压力降低。
即影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通过实验研究其规律。
为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。
根据因次分析,影响阻力损失的因素有, (a)流体性质:密度ρ、粘度μ;(b)管路的几何尺寸:管径d 、管长l 、管壁粗糙度ε; (c)流动条件:流速μ。
可表示为: 则 式中,-d 管径,m ;-∆f P 直管阻力引起的压强降,Pa ;-l 管长,m ;-u 流速,m/s ;-ρ流体的密度,kg/m 3;-μ流体的粘度,N·s/m 2。
λ—称为摩擦系数。
层流时,λ=64/Re ;湍流时λ是雷诺准数Re 和相对粗糙度的ρρpp p h f ∆=-=21),,,,,(ερμu l d f p =∆22u d l ph f λρ=∆=函数,须由实验确定 2、局部阻力局部阻力通常有两种表示方法,即当量长度法和阻力系数法。
(a)当量长度法流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径长度的直管阻力损失,这个直管长度称为当量长度,用符号Σ le 表示。
则流体在管路中流动时的总阻力损失 为(b)阻力系数法流体通过某一管件或阀门时的阻力损失用流体在管路中的动能系数来表示,这种计算局部阻力的方法,称为阻力系数法。
流体流动阻力的测定

流体流动阻⼒的测定⼀、实验⽬的1、掌握层流流体经直路和管件时阻⼒损失的测定⽅法。
通过实验了解流体流动中能量损失的变化规律。
2、测定直管摩擦系数λ与雷诺准数Re 的关系。
3、测定流体流经闸阀等管件时的局部阻⼒系数ξ。
4、学会压差计和流量计的使⽤⽅法。
5、观察组成管路的各种管件、阀件,并了解其作⽤。
⼆、实验原理1、直管摩擦系数λ与雷诺数Re 的测定:流体在管道内流动时,由于流体的粘性作⽤和涡流的影响会产⽣阻⼒。
流体在直管内流动阻⼒的⼤⼩与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系:h f =ρfP ?=22u d l λ(1-1)λ=22u P l d fρ (1-2) Re =µρu d (1-3)式中:-d 管径,m ;-?f P 直管阻⼒引起的压强降,Pa ;-l 管长,m ;-u 流速,m/s ;-ρ流体的密度,kg/m 3; -µ流体的粘度,N ·s/m 2。
直管摩擦系数λ与雷诺数Re 之间有⼀定的关系,这个关系⼀般⽤曲线来表⽰。
在实验装置中,直管段管长l 和管径d 都已固定。
若⽔温⼀定,则⽔的密度ρ和粘度µ也是定值。
所以本实验实质上是测定直管段流体阻⼒引起的压强降△P f 与流速u (流量V)之间的关系。
根据实验数据和式(1-2)可计算出不同流速下的直管摩擦系数λ,⽤式(1-3)计算对应的Re ,从⽽整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。
2、局部阻⼒系数ζ的测定22'u P h ff ζρ=?=' (1-4)2'2uP f ?????? ?=ρζ (1-5) 式中:-ζ局部阻⼒系数,⽆因次;-?'f P 局部阻⼒引起的压强降,Pa ;-'f h 局部阻⼒引起的能量损失,J/kg 。
图1-1 局部阻⼒测量取压⼝布置图局部阻⼒引起的压强降'f P ? 可⽤下⾯的⽅法测量:在⼀条各处直径相等的直管段上,安装待测局部阻⼒的阀门,在其上、下游开两对测压⼝a-a'和b-b',见图1-1,使ab =bc ;a'b'=b'c'则:△P f ,a b =△P f ,bc ;△P f ,a 'b '= △P f ,b 'c '在a-a'之间列⽅程式: P a -P a '=2△P f ,a b +2△P f ,a 'b '+△P 'f (1-6) 在b-b'之间列⽅程式: P b -P b '=△P f,bc +△P f ,b 'c '+△P 'f=△P f ,a b +△P f ,a 'b '+△P 'f (1-7) 联⽴式(1-6)和(1-7),则:'f P ?=2(P b -P b ')-(P a -P a ')为了实验⽅便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。
化工原理试验报告-流体流动阻力的测定

实验一流体流动阻力的测定一、实验目的1、掌握测定流体流经直管、管件(阀门)时阻力损失的一般实验方法。
2、测定直管摩擦系数大与雷诺准数Re的关系,验证在一般湍流区内为与Re的关系曲线。
3、测定流体流经管件(阀门)时的局部阻力系数季4、识辨组成管路的各种管件、阀门,并了解其作用。
二、实验装置实验装置如下图所示:11+J1、水箱2、离心泵3、压差传感器4、温度计5、涡轮流量计6、流量计7、转子流量计8、转子流量计9、压差传感器10、压差传感器11、压差传感器12、粗糙管实验段13、光滑管实验段14、层流管实验段15、压差传感器16、压差传感器17、阐阀18、截止阀图1实验装置流程图装置参数:三、实验原理1、直管阻力摩擦系数大的测定流体在水平等径直管中稳定流动时,阻力损失为:. 2 d Ap九二- -fP lu 2du pRe = 一N采用涡轮流量计测流量VV u =900冗d 2用压差传感器测量流体流经直管的压力降A P f o根据实验装置结构参数1、d,流体温度T (查流体物性p、四),及实验时测定的流量V、压力降APf,求取Re和大,再将Re和大标绘在双对数坐标图上。
2、局部阻力系数Z的测定流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,这种方法称为阻力倍数法。
即:故0= 2A L ⑹P U 2根据连接管件或阀门两端管径中小管的直径d,流体温度T (查流体物性p、四),及实验时测定的流量V、压力降APf,,通过式⑸或⑹,求取管件(阀门)的局部阻力系数Z。
四、实验步骤1、开启仪表柜上的总电源、仪表电源开关。
2、首先对水泵进行灌水,然后关闭出口阀,启动水泵,待电机转动平稳后,把出口阀缓缓开到最大。
3、实验从做大流量开始做起,最小流量应控制在1.5m3/h。
由于实验数据处理时使用的是双对数坐标,所以实验时每次流量变化取一递减的等比数列这样得到的数据点就会均匀分布,时实验结果更具准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验名称:流体流动阻力的测定
一、实验目的及任务:
1.掌握测定流体流动阻力实验的一般方法。
2.测定直管的摩擦阻力系数及突然扩大管的局部阻力系数。
3.验证湍流区内摩擦阻力系数为雷诺数和相对粗糙度的函数。
4.将所得光滑管的方程与Blasius方程相比较。
二、实验原理:
流体输送的管路由直管和阀门、弯头、流量计等部件组成。
由于粘性和涡流作用,流体在输送过程中会有机械能损失。
这些能量损失包括流体流经直管时的直管阻力和流经管道部件时的局部阻力,统称为流体流动阻力。
1.根据机械能衡算方程,测量不可压缩流体直管或局部的阻力
如果管道无变径,没有外加能量,无论水平或倾斜放置,上式可简化为:
Δp为截面1到2之间直管段的虚拟压强差,即单位体积流体的总势能差,通过压差传感器直接测量得到。
2.流体流动阻力与流体性质、流道的几何尺寸以及流动状态有关,可表示为:
由量纲分析可以得到四个无量纲数群:
欧拉数,雷诺数,相对粗糙度和长径比
从而有
取,可得摩擦系数与阻力损失之间的关系:
从而得到实验中摩擦系数的计算式
当流体在管径为d的圆形管中流动时,选取两个截面,用压差传感器测出两个截面的静压差,即可求出流体的流动阻力。
根据伯努利方程摩擦系数与静压差的关系,可以求出摩擦系数。
改变流速可测得不同Re下的λ,可以求出某一相对粗糙度下的λ-Re关系。
在湍流区内摩擦系数,对于光滑管(水力学光滑),大量实验证明,Re在氛围内,λ与Re的关系遵循Blasius关系式,即
对于粗糙管,λ与Re的关系以图来表示。
3.对局部阻力,可用局部阻力系数法表示:
4.
对于扩大和缩小的直管,式中的流速按照细管的流速来计算。
对一段突然扩大的圆直管,局部阻力远大于其直管阻力。
由忽略直管阻力时的伯努利方程
可以得到局部阻力系数的计算式:
式中,、分别为细管和粗管中的平均流速,为2,1截面的压差。
突然扩大管的理论计算式为:,、分别为细管和粗管的流通截面积。
三、实验流程:
本实验装置如图1所示,管道水平安装,水循环使用,其中管5为不锈钢管,测压点之间距,内径;管6为镀锌钢管,测压点间距离,内径22..5mm;管7为突然扩大管,由扩大至。
各测量元件由测压口与压差传感器相连,通过管口的球阀切换被测管路,系统流量由涡
轮流量计3调节,离心泵的功率由变频器通过改变输入频率控制转速来实现控制。
四、实验操作要点:
1.开泵:在关闭所有阀门的情况下,打开电源,启动变频器至50Hz,固定转速,观察泵出口压力稳定后,即可进行排气。
2.排气:在对某一管路进行实验之前,排尽设备主管和该管路及对应测压管路内的空气,每切换管路都要排一次气。
关闭其他控制阀,打开对应管路的控制阀、测压阀和排气阀,在50Hz下,调节流量至1-2,待2min以上,压差传感器示数稳定后,关闭排气阀和流量调节阀,在流量为0下观察压差传感器示数是否为0,若有较大偏差则气未排尽,若偏差较小且稳定则记录初始偏差值。
3.实验数据测取:确定排气完毕且其余管路切换阀和测压阀关闭后,调节变频器至25Hz 左右。
对于直管阻力,按照流量由大到小的顺序,测取10组数据,控制压差在~之间。
对于突然扩大管的阻力,可测取3组数据。
测取数据时,每个数据点取值应等待2min以上且压差和流量稳定为某值或在很小范围内波动。
波动时可取其中点。
五、原始数据及处理:
1.原始数据记录
水的物理性质:
测定光滑管时,25℃下,ρ=m3,μ=s
测定粗糙管及突然扩大管时,℃下,ρ=m3,μ=s
(1)光滑管和粗糙管实验数据
光滑管数据:不锈钢管,l=,d=,ε≈,零点误差p0=。
粗糙管数据:镀锌钢管,l=,d=,ε≈,零点误差p0=。
表1 光滑管和粗糙管原始数据记录表
光滑管粗糙管
序号
流量/(m3*h-1)压差/(kPa)流量/(m3*h-1)压差/(kPa) 1
2
3
4
5
6
7
8
9
10
(2)突然扩大局部阻力系数测定数据
突扩管: d1=,d2=,初始误差p0=。
表2 突然扩大局部阻力系数数据记录表
序号流量/(m3*h-1)压差/(kPa)
1
2
3
2.数据处理
表3 光滑管数据处理表
实际压差
序号流量/(m3*h-1)流速/(m*s-1)
Reλλb
/(kPa)
169034
262486
357996
450513
545836
638913
731991
825443
919270
1012909
其中,λb项为根据Blasius公式计算的理论摩擦系数值。
直管阻力系数的计算示例:
由表3中第1组数据为例,
表4 粗糙管数据处理表
实际压差
Reλ序号流量/(m3*h-1)流速/(m*s-1)
/(kPa)
166896
260913
355474
449854
544234
636620
731363
824837
918310
1012509
图2 光滑管和粗糙管的λ-Re关系曲线
曲线分析:
(a)光滑管和粗糙管的摩擦系数均随Re的增大而减小,且随着Re的增大,摩擦系数减
小的趋势趋缓。
(b)在同一Re下,相对粗糙度更高的粗糙管比光滑管的摩擦系数更大,说明ε/d越大,
摩擦系数越大。
(c)在同一Re下,光滑管的摩擦系数大于水力学光滑摩擦系数的理论值,说明实验用的
光滑管和理论光滑有一定差距。
表5 突然扩大管数据处理表
序号流量/(m3*h-1)压差细管流速/(m*s-1)粗管流速/(m*s-1)ζ
/(kPa)
1
2
3
局部阻力的计算示例:
以表5中第1组数据为例,
理论值
相对偏差
测量值与理论值基本符合,但存在一定误差。
五、结果讨论分析
1.本次曲线拟合的相对大小比较准确,但是其中表现的趋势不明显,并未得到随着雷诺数增大,摩擦系数趋近于某一值的结论。
可能是测定的摩擦系数和雷诺数范围较小,如果增大测定的雷诺数上限,即在更高的流速下做实验,可以看到更好的趋势。
2.测定的局部阻力系数和理论值接近,说明实验结果较好。
实验值低于理论值,可能是实验设备本身存在损耗,细管在高流量下腐蚀变粗的结果。
可以看到随着流量增大有上升趋势,而的三次结果的差值应该是被忽略的直管阻力的影响,因而随着流量增大,表观的局部
阻力系数应该增大而不是减小,可能是实验记录和计算舍入的影响。
六、思考题
1.在不同设备(包括相对粗糙度相同而管径不同)、不同温度下测定的λ-Re数据能否关联在一条曲线上
答:仅在相对粗糙度不同时可以。
由知,摩擦系数是雷诺数和相对粗糙度的函数,当相对粗糙度不变时,可以关联出一条摩擦系数和雷诺数的曲线,而相对粗糙度与温度无关。
因此,当且仅当相对保持粗糙度不变时,不同设备,不同温度的λ-Re数据能关联在一条曲线上。
2.以水为工作流体所测得的λ-Re关系能否适用于其他种类的牛顿性流体为什么
答:可以。
由知,摩擦系数是雷诺数和相对粗糙度的函数,当保持相对粗糙度不变时,流体性质对λ-Re关系不产生影响,可以适用于所有流体。
3.测出的直管摩擦阻力与设备的放置状态有关系吗为什么(管径、管长一样,且R1=R2=R3,见图3)
答:没有关系。
因为计算中的压差值实际上是总势能差,可以通过压差传感器直接测得。
本实验中因为管道水平放置,所以总势能差等于静压能差。
由U型压差计的伯努利方程:
又,得:
即与摆放方式无关。