流体力学 第二章 流体静力学

合集下载

工程流体力学课件第二章 流体静力学1

工程流体力学课件第二章 流体静力学1

fx
1
p x
0
乘以dx
1 p
f y y 0
乘以dy
1 p
fz z 0
乘以dz
1 p
f xdx
dx x
0
1 p
f ydy y dy 0
1 p
fzdz z dz 0
❖三式相加,整理
( f xdx
f ydy
fzdz)
p dx x
p dy y
p dz z
39
(
f xdx
❖ 适用范围: 静止状态
0
0
实际流体、理想流体都是适用的。
2021/3/12
2
3
在什么情况下有惯性力? 惯性坐标系:将坐标系建立在静止或匀速直线运动的
物体上 非惯性坐标系:将坐标系建立在有加速度运动的物体上 结论:
在惯性坐标系内运动的物体不考虑惯性力 在非惯性坐标系内加速运动的物体考虑惯性力
1 6
dxdydzf x
0
15
静压强两个特征(证明续)
❖ 化简得
px
pn
1 3
f xdx
0
❖ 由于等式左侧第三项为无穷小,可以略去,故得
❖ 同理可得
px pn py pn pz pn
❖ 所以
px py pz pn
❖ 结论 n的方向可以任意选择,从而证明了在静止流体 中任一点上来自各个方向的流体静压强都相等。
❖ 将质量力和表面力代入上式,则
p
1 2
p dx dydz
x
p
1 2
p dx dydz x
f x dxdydz
0
❖ 整理上式,并把各项都除以ρdxdydz,则得

工程流体力学第二章静力学

工程流体力学第二章静力学

• 倾斜管微压计
pa
p
L
1
A Θ
h2
2
h1
0
0 ρ
s
• 双杯式微压计(测量压差)
p2 Δh p1
D
Δh
D
油 ρ1 h h0
N
N
ρ
2

d
微压计的放大效果为11mm→100mm,放大效果显著。
§2-5 液体的相对平衡
★ 研究特点:建立动坐标系
一、液体随容器作等加速直线运动 建立如图所示动坐标系,则 f x a f y 0 f z -g 1.压强分布 p pa ( ax gz ) 2.等压面方程 p pa ax gz c (斜平面)
p --- 压强势能,简称压能 g p z --- 总势能 g
y
A Z
x
z
p C g
流体静力学基本方程的能量意义是:在重力作用 下平衡流体中各点的单位重量流体所具有的总势 能(包括位能和压能)是相等的,即势能守恒。
几何意义 z --- 流体距基准面的位置高度,称为位置水头
p --- 流体在压强p 作用下沿测压管上升的高度, g 称为压强水头 p z --- 静压水头(或静力水头) g
流体力学电子教案
第2章 流体静力学
★特点:τ=0 ★重点掌握:
p(压强)
概念及特性 p p0 gh 的意义 p p0 gh 的应用
P(压力)的计算
平衡有两种:
一种是流体对地球无相对运动,即重力场中 的流体的绝对平衡;如盛装在固定不动容器 中的液体。 一种是流体对某物体(或参考坐标系)无相 对运动,亦称流体对该物体的相对平衡。例 如盛装在作等加速直线运动和作等角速度旋 转运动的容器内的液体。

工程流体力学第二章 流体静力学

工程流体力学第二章 流体静力学

只有重力作用下的等压面应满足的条件:
1.静止; 2.连通; 3.连通的介质为同一均质流体; 4.质量力仅有重力; 5.同一水平面。
提问:如图所示,哪个断面为等压面? 您的答案是: C-C 断面 B-B 断面
第三节 重力作用下的流体平衡
在自然界和实际工程中,经常 遇到并要研究的流体是不可压缩的 重力液体,也就是作用在液体上的 质量力只有重力的液体。
f ds f x dx f y dy f z dz 0
f
图2-4 两个矢量的数量积
两个矢量的数量积等于零,必 须f和ds互相垂直,其夹角φ等于900。 也就是说,通过静止流体中的任一点 的等压面都垂直于该点处的质量力。 例如,当质量力只有重力时,等压面 处处与重力方向正交,是一个与地球 同心的近似球面。但是,通常我们所 研究的仅是这个球面上非常小的一部 分,所以可以看成是水平面 。
一、重力作用下的静力学基本方程 在一盛有静止液体的容器上取 直角坐标系(只画出OYZ平面,Z轴 垂直向上),如图2-5所示。
P0 P2 P1 Z1 Z2
图2-5 推导静力学基本方程式用图
这时,作用在液体上的质量力 只有重力 G=mg ,其单位质量力在各 坐 标 轴 上 的 分 力 为 fx=0 , fy=0 , fz=-g, 代入式(2-4),得 dp gdz dp 写成 dz g 0 (2-8)

1 p x p n f x dx 0 3
由于等式左侧第三项为无穷小, 可以略去,故得:
(2-1)
因为n的方向完全可以任意选择, 从而证明了在静止流体中任一点上来 自各个方向的流体静压强都相等。但 是,静止流体中深度不同的点处流体 的静压强是不一样的,而流体又是连 续介质,所以流体静压强仅是空间点 坐标的连续函数,即

《流体力学》第二章流体静力学

《流体力学》第二章流体静力学
z4
p z C g
pa 4 3 真空 1
p2 g
p=0
z1
z3
2
z=0
p 为压强水头 g
z 为位置水头
2.3 重力场中的平衡流体 重要结论
p p0 gh
(1) 在重力作用下的静止液体中,静压强随深度按线性 规律变化,即随深度的增加,静压强值成正比增大。 (2)在静止液体中,任意一点的静压强由两部分组成: 一部分是自由液面上的压强P0;另一部分是该点到自由 液面的单位面积上的液柱重量ρgh。 (3)在静止液体中,位于同一深度(h=常数)的各点的静 压强相等,即任一水平面都是等压面。
2.2 流体平衡微分方程 一、欧拉平衡方程
p dx 1 p dx 1 p dx p 2 3 x 2 2 x 2 6 x 2
2 3
2
3
p dx 1 p dx 1 p dx p 2 3 x 2 2 x 2 6 x 2
dA dA n
dF pdAn
F pdAn
A
流体静压力:作用在某一面积上的总压力; (矢量) 流体静压强:作用在某一面积上的平均压强或某一点的 (标量) 没有方向性 压强。
2.1 平衡流体上的作用力 证明:
z A
pn px
微元四面体受力分析
py
dx C x
dz O dy B y
y
p x p y p z pn
C x
pz
f

z
表 面 力 质 量 力
1 d yd z 2 1 Py p y d zd x 2 1 P p d yd x z z 2 P n pn d A P x px

中南大学《流体力学》课件第二章静力学.

中南大学《流体力学》课件第二章静力学.

证明
质量力 表面力
1 f x dxdydz 6
1 p 0 0 p A cos( n , x ) x dydz n n 2
导出关系式 得出结论
F 0
x
px pn
第一节 平衡流体中的应力特征
第二节 流体平衡微分方程
压强在流体运动、流体与固体相互作用中扮演重要角色,如 机翼升力、高尔夫球及汽车的尾流阻力,龙卷风产生强大的 负压强作用,液压泵和压缩机推动流体做功等都与压强有关。 然而,压强在静止流体、相对静止流体及粘性运动流体中的 分布规律将明显不同。
如图所示的密闭容器中,液面压强 问题1: p0=9.8kPa,A点压强为49kPa, 则B点压强为多少 ,在液面下的深度为多少? 答案 39.2kPa;
3m
问题2: 露天水池水深5m处的相对压强为:
答案
49kPa
图示容器内 A、B 两点同在一水 问题3:平面上,其压强分别为 pA 及 pB。 因 h1 h 2,所以 pA pB。 答案
• 点压强的定义及特性 • 微元体法推导出流体平衡微分方程 即流体平衡的规律 • 重力作用下流体的平衡
p p ( U U ) 0 0
pp gh 0
等压– 绝对压强p‘ 绝对压强不可为负 – 相对压强(表压强)p 相对压强可正可负 – 真空压强(真空值)pv 真空压强恒为正值
自由面上 p 0 所以 AB 上各点的压强均为 0
[例]试标出如图所示盛液容器内A、B、C三点的位置水头、 测压管高度、测压管水头。以图示0-0为基准面。
pC g pB g
A
pA g
Z
Z
c
ZB
C 因为 ,所以,以A点的测压管水头为依据, g 可以确定B点的位置水头为2m和测压管高度为6m ;C点的 位置水头6m,测压管高度为2m.

流体力学第2章水静力学--用

流体力学第2章水静力学--用
同理 py=pn, pz=pn
由此得证,静止流体中任一点压强与作用的方位无关。 由此可知,流体静压强只是空间坐标的函数,即
p f x,y,z
且dppdxpdypdz x y z
§2-2 流体平衡微分方程
一、静止流体平衡微分方程及其积分
取泰勒级数展
在静止流体中取六面体微团dx,dy,dz,并取开坐式标的如前图两所项示。
Evaluation only. eated(w静各it止h向CA流等osp体值pyo中r性isg任e)h.一tS2l点i0d1e的9s静-f2o压0r1强.N9与EAT作sp3用o.s5的eC方Pli位teyn无Lt 关tPdr.ofile 5.2.0
1.方向特性 :证明
由液体的性质可知,静止的 液体不能承受剪切力,也不
x
dx
由静平衡关系 Fx 0有:
p1pd x dyd p z1pd x dyd X d z xd 0 ydz
2x 2x
可得:
X 1 p 0
x
eat同ed理w,i对thyCA,ozsp方py向orisg可eh得.tS:2lEYZi0dv1ea119slu-f2ppyzao0tri1o00.N9nEAoTsn流也pl3y体称o..s5静 欧eC平拉Pl衡平itey微衡nL分微t tP方分dr.程方of式程ile,。5.2.0
的数值C反op映y了rig压h强t 2的01大9小-2。019( hAspp)ose Pty Ltd.

三者关系: 1 P工程=1.0Kgf/cm2=10mH2O=98KPa 1 P标准 = 101.3KPa =760mmHg=10.336mH2O
第2章 水静力学
二 静水压强基本特性
流体静压强总是指向作用面的内法线方向 (垂直指向性)

流体力学-张也影-李忠芳 第2章-流体静力学

流体力学-张也影-李忠芳 第2章-流体静力学

解:设想打开封闭容器
o
液面上升高度为
P0 Pa 137 .37 98.07 4m
g
9.807
4m p0 1m 2m
60° y
hC 4 11sin 60 5.73m
o
P ghC A 225 kN
yC

4 sin 60
11
6.6m
IC

b 12
3
1152
例题:直径为1.25m的圆板倾斜地置于水面之下,其最高、最
低点到水面距离分别为0.6m和1.5m,求水作用在圆板上的总 压力大小和压力中心位置。
解:水作用在圆板上的总压力大小
P

ghc A

9.8
(1.5 0.6) 2
1.25 2
2
12.63kN

yc
pa O
A
pa OA
pa OA
B B
B
a
b
c
虚压力体:压力体和液体在曲面异侧,垂直分力向上
四 浮力原理
Vp Vadbfg Vacbfg
o
总压力的垂直分力为
Fpz gVp gVadbc
z
g af
Fpz1 c
x
a
b
Fpz2 d
例题:如图为一溢流坝上的弧形闸门ed。已知:R=8m,门 宽b=4m,α=30º,试求:作用在该弧形闸门上的静水总压力。
换算: 1kPa=103Pa
1bar=105Pa
三.静压强的测量
1.测压管 一端与测点相连,一端与大气相 连
p gh
2.U形管测压计 一端与测点相连,一端与大气相 例连 求pA(A处是水,密度为ρ,测 压计内是密度为ρ’的水银) 解:作等压面

工程流体力学 第二章 流体静力学201012

工程流体力学 第二章 流体静力学201012
Y = ω 2 r sin α = ω 2 y Z = −g
z ω
1.等压面方程 1.等压面方程
dp = ω 2 xdx + ω 2 ydy − gdz = 0
⇓ 积分
ω 2 x2
2 +
p0
o
m
h z
zs y
ω 2 y2
2
− gz = C
ω 2r 2
2
− gz = C
等压面是一簇绕z轴的旋转抛物面。 等压面是一簇绕z轴的旋转抛物面。 自由液面: 自由液面: x=0 z=0 C=0
z g p0
2

dp = ρ(Xdx +Ydy + Zdz)
dp = −ρgdz
p2
p1
1

dp dz + =0 ρg
z1
z2
积分得: 积分得:
p z+ =C ρg
o
p p z1 + 1 = z2 + 2 ρg ρg
基准面
x
2.物理意义 2.物理意义
z+ p =C ρg
总 势 能
3.几何意义 3.几何意义
o y
αr
y x ω2y ω2r

zs =
ω 2r 2
2g
x
ω2x
二、等角速旋转容器中液体的相对平衡
2. 静压强分布规律
dp = ρ (ω 2 xdx + ω 2 ydy − gdz )
z ω
⇓ 积分
p = ρ(
ω 2x2
2
+
ω 2 y2
2
− gz ) + C
p = ρg (
ω 2r 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pa h A
p pa gh pa pm
pa——当地大气压强
b.计示压强(表压)pm 以当地大气压强为零点压强
pm p pa gh
c.真空度pv
pv
pv pa p
注意:pv表示绝对压强小于当地大气压强而形成 真空的程度,读正值!

例题:如图,敞开容器内注有三种互不相混的液 体, 1 0.82,2 0.83 ,求侧壁处三根测压管内 液面至容器底部的高度h1、h2、h3。
1 p P左 dx dydz p 2 x
质量力:
dFx f x dxdydz
Fx 0
P左 P右 Fx 0
P左 P右 Fx 0
1 p 1 p dxdydz p dxdydz f x dxdydz 0 p 2 x 2 x
y sindAy yC sin AyD
y 2 dA yC AyD
Ix yD yC A yC A
2 y dA
I x y 2 dA ——受压面A对ox轴的面积二次矩(惯性矩)
平行轴定理
2 I x IC yC A
2 I C yC A yD yC A
ρ’
解: p1 p2 ' hg
p p1 p2 ' hg
4.微压计
p1 gh gl sin
l 1 n (放大倍数) h sin
2.5 平衡流体对壁面的作用力
一、平板壁上的流体静压力
a.总压力
dF pdA
ghdA
gy sindA
2

1.25 0.6 1.25 8.75 yc m 2 0.9 6
压力中心位置
R 4
Ic 8.75 8.75 4 y D yc 0.067 1.53m 2 8.75 D yc A 6 6 6 4
例:封闭容器水面的绝对压强P0=137.37kPa,容器左侧开 2×2m的方形孔,覆以盖板AB,当大气压Pa=98.07kPa时, 求作用于此盖板的水静压力及作用点 解:设想打开封闭容器 液面上升高度为
4m
C D 60° y
IC 1.33 yD yC 6.6 6.6 0.05 6.65m yC yC A 6.6 4
二、柱面壁上的流体静压力
Az Ax
1.总压力的大小和方向
(1)水平方向的作用力
Az Ax
dFx dF cos ghdAcos ghdA x
3.压差计 两端分别与测点相连 例 求Δp(若管内是水,密度为ρ,压差计内是密度为ρ’
的水银)
ρ
1 Δh
2
ρ’
解:作等压面
p1 hg p2 ' hg
p p1 p2 ' hg
例 求Δp (管内是密度为ρ的空气,压差计内是密度为
ρ’的水)
1 Δh
2
切向应力——剪切力 lim
表面力具有传递性
3.流体的静压力:表面力沿受压表面内法线方向分量 平衡状态
F 2(Pa) 流体静压强 p lim N/m A 0 A
静压力特征 a.静压强方向沿作用面的内法线方向
反证法
b.任一点静压强的大小与作用面的方位无关
证明:取微小四面体O-ABC 表面力 Px Py 质量力 Fx Fy
x b
a z Fpz2 d
Fpz gVp gVadbc
压力体
曲面和自由液面或者自由液面的延 长面包容的体积
实压力体:压力体和液体在曲面同侧,垂直分力向下
p a
O B a
A
p a O A B b
p a O A B c
虚压力体:压力体和液体在曲面异侧,垂直分力向上
四 浮力原理
Vp Vadbfg Vacbfg
总压力的垂直分力为
o
a g f Fpz1 c
第二章 流体静力学
流体静力学:研究平衡流体的力学规律及其应用
平衡流体互相之间没有相对运动 粘性无从显示
■ 平衡流体上的作用力 ■ 流体的平衡微分方程
■ 重力场中流体的平衡
■ 静压强的计算与测量 ■ 平衡流体对壁面的作用力 ■ 液压机械的工作原理 ■ 液体的相对平衡
2.1 平衡流体上的作用力
作用在微团△V上的力可分为两种:质量力
积分
p gz c
写成水头形式:
p1 p2 z1 z2 c g g
单位 m——单位重量能量 单位 Pa
或写成 p1 gz1 p2 gz2 c
p/ρg——单位重力压强势能——压强水头
z——单位重力位置势能——位置水头
物理意义:平衡流体中物体的总势能是一定的
Az
VF——压力体体 ρgVF——压力体重量
Az Ax
Fz
作用点通过压力体体积的形心
(3)合作用力大小
F Fx2 Fz2
Fz F θ Fx
(4)合作用力方向 与水平面夹角
Fz tan Fx
三.压力体
压力体由以下各面围成: (a)曲面本身; (b)通过曲面周界的铅垂面;
(c)自由液面或者延续面
3 平衡流体在哪个方向没有质量力,则流体静压强沿该方向不发生变化
2.质量力的势函数
将(1)、(2)、(3)式分别乘以dx、dy、dz,并相加
p p p (f x dx f y dy f z dz) dx dy dz dp x y z
(4)
对(1)、(2)、(3)式坐标交错求偏导,整理得
适用范围:
1.重力场、不可压缩的流体
2.同种、连续、静 p0 gz0
p p0 g z0 z p0 gh
——帕斯卡原理 (压强的传递性)
2.4 静压强的计算与测量
一.静压强的计算标准 a.绝对压强 以绝对真空为零点压强
IC yC yC yC A
常见图形的yC和IC
图形名称
yC
h 2
IC
矩形
b 3 h 12
三角形
2 h 3
b 3 h 36
梯形
h a 2b 3 a b
h3 a 2 4ab b 2 36 a b

d 2
4 d 64
半圆
2d 3
解:由连通器原理,列等压面方程
(h3 2 2) 1 g 21 g,得h3 6m
(h2 2) 2 g 21 g 22 g,得h2 4 21 / 2 5.6m
h13 g 21 g 22 g 23 g,得h1 2 (21 22) / 3 4.88m
等压面性质:
• 等压面就是等势面
与大气接触的自由表面当然也是等压面,在受其他质量力
作用下不一定是水平面
• 等压面与质量力垂直
am ds 0 am ds
• 两种不相混合平衡液体的交界面必然是等压面
2.3重力场中的平衡液体
1.不可压缩流体的静压强基本公式
f z g
dp f z dz gdz
p0
o 4m
P0 Pa 137.37 98.07 4m g 9.807
1m
2m
60°
y
hC 4 1 1sin 60 5.73m
o
P ghC A 225kN
4 yC 1 1 6.6m sin 60 b 3 4 I C h 1.33m 4 12 3
Pz
Pn
Fz
F 0
F
x
0 Px Pn cos(n x) Fx 0
1 1 p x dydz pn ABC cos( n x) f x dxdydz 0 2 6
1 dydz 2
1 p x pn f x dx 0 3
dx 0
二.静止压强的计量单位
标准大气压(atm) =1.013×105Pa=760mmHg=10.33mH2O 工程大气压(at) =0.9807×105Pa=735.5mmHg=10mH2O
=1kg/cm2(每平方厘米千克力,简读公斤)
换算: 1kPa=103Pa 1bar=105Pa
三.静压强的测量
9 2 64 4 d 1152
例题:直径为1.25m的圆板倾斜地置于水面之下,其最高、最
低点到水面距离分别为0.6m和1.5m,求水作用在圆板上的总
压力大小和压力中心位置。 解:水作用在圆板上的总压力大小
(1.5 0.6) 1.25 P ghc A 9.8 12.63kN 2 2
1.测压管 一端与测点相连,一端与大气相 连 p gh
2.U形管测压计
一端与测点相连,一端与大气相 连 求pA(A处是水,密度为ρ,测 例
压计内是密度为ρ’的水银)
解:作等压面
p A ga ' gh
p A ' h a g
例 求pA(A处是密度为ρ的空气,测压计内是密度为ρ’的 水) 解: p A ' gh 气柱高度不计
重力
mg fz g m
2.表面力:外界对所研究流体表面的作用力,作用在外 表面,与表面积大小成正比 应力 内法线方向:
F lim A 0 A
Fn p lim A0 A
F A 0 A
ΔFn ΔA
ΔF ΔFτ
法向应力——压强
切线方向:
流体相对运动时因粘 性而产生的内摩擦力
表面力
1.质量力:作用在所研究的流体质量中心,与质量成正比 重力 惯性力
相关文档
最新文档