承载力修正系数规范表
地基土容许承载力宽度深度修正系数

地基土容许承载力宽度、深度修正系数
(对应规 范表
3.3.4)
粘性土
黄土
土的类别
一般粘性土(1250)
系数 老粘性土 IL≥0.5 IL<0.5
新近沉积 残积粘性 新近堆积 一般新黄
粘性土 土
黄土
土
k1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
k2
2.5
1.5
2.5
1.0
1.5
1.0
1.5
土的类别 系数
粉砂(1000) 中密 密实
砂土
细砂(1150)
中砂(1450)
中密 密实 中密 密实
砾砂粗砂(1450) 中密
k1
1.0
1.2
1.5
2.0
2.0
3.0
3.0
k2
2.0
2.5
3.0
4.0
4.0
5.5
5.0土的类别 系数碎石土(2750)碎石、圆砾、角砾
卵石
中密 密实 中密 密实
k1
3.0
4.0
3.0
4.0
k2
5.0
6.0
6.0
10.0
注:1.对于稍密和松散状态的砂、碎石土,K1,K2值可采用表列中密值的50%。
2.强风化和全风化的岩石,可参照所风化成的相应土类取值;其他状态下的岩石不修正
黄土
老黄土
0.0 1.5
砾砂粗砂(1450) 密实 4.0 6.0
中密值的50%。 他状态下的岩石不修正
脚手架地基承载力调整系数

脚手架地基承载力调整系数
脚手架地基承载力调整系数是用来考虑脚手架在不同地基条件下的承载能力影响的修正系数。
脚手架的地基承载能力是指脚手架在安装和使用过程中所施加的荷载对地基的影响程度。
脚手架地基承载力调整系数通常包括以下几个方面的考虑:
1. 地基土的承载能力:不同类型的地基土质的承载能力是不同的,脚手架在不同地基土质上承载能力也不同。
常见的地基土质包括砂土、黏土、粉土等,其承载力调整系数需要根据具体的地质情况进行确定。
2. 地基的稳定性:地基的稳定性可能受到地震、冻融等外力的影响,这些因素会降低地基的承载能力。
因此,地基的稳定性对脚手架的地基承载力调整系数也有一定影响。
3. 地基的厚度和坚实程度:地基的厚度和坚实程度也会影响脚手架地基承载力的调整系数。
如果地基较薄或者不够坚实,则地基的承载能力会较低。
4. 脚手架的安装方式和形式:不同的脚手架安装方式和形式对地基承载力的要求也不同。
例如,悬挑式脚手架需要更强的地基承载能力,而自立式脚手架相对要求较低。
在工程设计中,根据具体的地基条件和脚手架使用情况,可以通过相关的地质测试和计算方法来确定脚手架地基承载力调整系数,以确保脚手架的安全使用。
承载力修正系数规范表

承载力修正系数规范表承载力修正系数规范表在中国许多行业的地基设计中,存在一种用于计算地基承载力的深度校正系数的概念。
首先,它一直发挥着重要作用。
近年来,高层建筑越来越多,主楼和裙楼的结构一体化已变得普遍。
在计算主体建筑物的地基承载力时,需要将裙式建筑物的相应载荷转换为等效土层厚度,然后进行主体建筑物的地基承载力的深度校正。
有时,讲台大楼需要配备防浮措施。
为此,许多岩土工程和基础技术工作的新手需要认真研究和理解实质性要求。
因此,笔者认为,如果将“地基承载力的深度校正系数”的标题改为“地基承载力的过载校正系数”,将会更加理解和实用,并且会更加理解,灵活。
并掌握了考虑主楼基础之外的平台荷载对主楼基础承载力的影响的本质,从而避免了机械应用的“荷载换算等效土层厚度”的实践。
实际上,从以下地基承载力的理论表达式可以看出,地基承载力的大小与地基宽度和地基两侧的超载有关。
地基的承载能力与地基的深度有关,与本质无关,但与超载有关。
卡尔·特扎吉基金会的极限承载力:qu = 1 /2γ* B *Nγ+ q * Nq + c * Nc其中,Nq表示过载影响系数,Q表示基础两侧的过载。
其他符号在此省略。
GB50007-2011《建筑基础设计规范》中基础承载力的特征值表达;a=Mb *γ* b +Md *γm* d +Mc * cka=?ak+ηb*γ*(b-3)+ηd*γm*(d-0.5)Md和ηd分别代表地基承载力系数和地基埋深深度承载力校正系数(通常称为地基承载力深度校正系数)。
其他符号在此省略。
建议将“基础承载力的深度校正系数”的标题改为“基础承载力的过载校正系数”,然后建议将上述公式重写为:a=Mb *γ* b +Mq * q +Mc * cka=?ak+ηb*γ*(b-3)+ηq*(q-q0)其中,Mq和ηq分别代表过载对基础承载力的影响系数和基础承载力的过载修正系数。
Q表示基础两侧过载。
从上面的公式可以看出,Mq和ηq的值应与Md和ηd的值相同,但称谓已更改,纯粹是为了更多地反映本质,以便于理解和理解。
建筑地基基础计算

建筑地基基础计算地基基础计算用表1.地基基础设计等级(表2-27)地基基础设计等级表2-27根据建筑物地基基础设计等级及长期荷载作用下地基变形对上部结构的影响程度,地基基础设计应符合下列规定:(1)所有建筑物的地基计算均应满足承载力计算的有关规定。
(2)设计等级为甲级、乙级的建筑物,均应按地基变形设计。
(3)表2-28所列范围内设计等级为丙级的建筑物可不作变形验算,如有下列情况之一时,仍应作变形验算:1)地基承载力特征值小于130kPa,且体型复杂的建筑;2)在基础上及其附近有地面堆载或相邻基础荷载差异较大,可能引起地基产生过大的不均匀沉降时;3)软弱地基上的建筑物存在偏心荷载时;4)相邻建筑距离过近,可能发生倾斜时;5)地基内有厚度较大或厚薄不均的填土,其自重固结未完成时。
(4)对经常受水平荷载作用的高层建筑、高耸结构和挡土墙等,以及建造在斜坡上或边坡附近的建筑物和构筑物,尚应验算其稳定性。
(5)基坑工程应进行稳定性验算。
(6)当地下水埋藏较浅,建筑地下室或地下构筑物存在上浮间题时,尚应进行抗浮验算。
可不作地基变形计算设计等级为丙级的建筑物范围表2-28注:1.地基主要受力层系指条形基础底面下深度为3b(b为基础底面宽度),独立基础下为1.5b,且厚度均不小于5m的范围(二层以下一般的民用建筑除外);2.地基主要受力层中如有承载力特征值小于130kPa的土层时,表中砌体承重结构的设计,应符合《建筑地基基础设计规范》(GB 50007-2002)中第7章的有关要求;3.表中砌体承重结构和框架结构均指民用建筑,对于工业建筑可按厂房高度、荷载情况折合成与其相当的民用建筑层数;4.表中吊车额定起重量、烟囱高度和水塔容积的数值系指最大值。
2.基础宽度和埋深的地基承载力修正系数(表2-29)承载力修正系数表2-29注:1.强风化和全风化的岩石,可参照所风化成的相应土类取值,其他状态下的岩石不修正;2.地基承载力特征值按地基基础设计规范附录D深层平板载荷试验确定时ηd取0。
承载力修正系数规范表

我们反复强调,理解一个条文要放到“规范体系”中。
什么“规范体系”?
见下图。就是“国标”“行标”“地标”“协标”等等;这些标准各有特色,各有侧重点。
有人会说,这些“规范”前后矛盾,乱七八糟。这是你的认知问题,实际上,这些规范都会统一在一定的“机理”前提下,没有人会白纸黑字的写一些明显错误的东西。
5.2.4当基础宽度大于3m或埋置深度大于0.5m时,从载荷试验或其他原位测试、经验值等方法确定的地基承载力特征值,尚应按下式修正:
ƒa=ƒak+ηbγ(b-3)+ηdγm(d-0.5) [5.2.4]
注:1强风化和全风化的岩石,可参照所风化成的相应土类取值,其他状态下的岩石不修正;
“其他状态下的岩石不修正;”翻开条文说明,未做任何解释。
我们来看《核电厂岩土工程勘察规范GB 51041-2014》
核电厂岩土工程勘察规范GB 51041-2014 > 13岩土工程分析评价和成果报告> 13.3地基承载力
13.3.6深层平板载荷试验确定的地基承载力特征值可不进行深度修正;按本规范表13.3.3、公式(13.3.4)和浅层平板载荷试验确定的地基承载力特征值,可根据基础埋深按下式修正:
ƒa=ƒak+ηdγm(d-0.5) [13.3.6]
式中:
fa——修正的岩石地基承载力特征值;
ηd——岩石地基承载力修正系数,应按表13.3.6取值。
表13.3.6岩石地基承载力修正系数
我们反复强调,概念为先,机理为本。就是说,这么多条文,不管怎么写,都逃不脱“机理”这个框框,只要理解了机理,就能自由运用规范。
我们说:规范体系的任何一个系数,都应能找到它存在的机理!
所以我们说:只有深入理解规范体系,才谈得上“按规范执行”!
承载力修正系数规范表

承载力修正系数规范表根据不同的土质,按规范取值。
一般地质报告中会提出土的孔隙比,含水量等。
估算的时候地基承载力宽度修正系数取1.0就好了。
在荷载作用下,地基要产生变形。
随着荷载的增大,地基变形逐渐增大,初始阶段地基土中应力处在弹性平衡状态,具有安全承载能力。
当荷载增大到地基中开始出现某点或小区域内各点在其某一方向平面上的剪应力达到土的抗剪强度时,该点或小区域内各点就发生剪切破坏而处在极限平衡状态,土中应力将发生重分布。
这种小范围的剪切破坏区,称为塑性区(plastic zone)。
地基小范围的极限平衡状态大都可以恢复到弹性平衡状态,地基尚能趋于稳定,仍具有安全的承载能力。
但此时地基变形稍大,必须验算变形的计算值不允许超过允许值。
当荷载继续增大,地基出现较大范围的塑性区时,将显示地基承载力不足而失去稳定。
此时地基达到极限承载力。
确定方法(1)原位试验法(in-situ testing method):是一种通过现场直接试验确定承载力的方法。
包括(静)载荷试验、静力触探试验、标准贯入试验、旁压试验等,其中以载荷试验法为最可靠的基本的原位测试法。
(2)理论公式法(theoretical equation method):是根据土的抗剪强度指标计算的理论公式确定承载力的方法。
(3)规范表格法(code table method):是根据室内试验指标、现场测试指标或野外鉴别指标,通过查规范所列表格得到承载力的方法。
规范不同(包括不同部门、不同行业、不同地区的规范),其承载力不会完全相同,应用时需注意各自的使用条件。
(4)当地经验法(local empirical method):是一种基于地区的使用经验,进行类比判断确定承载力的方法,它是一种宏观辅助方法。
太沙基承载系数表

地基极限荷载是指地基土体完全发生剪切破坏时所承受的荷载,目前对于地基极限荷载的计算理论仅限于整体剪切破坏型式。
对于局部剪切破坏及刺入剪切破坏,尚无可靠的计算方法,通常是先按整体剪切破坏型式进行计算,再作某种修正.极限荷载的求解有两类途径:一类是根据土体的极限平衡原理,另一类是根据模型试验。
先假定在极限荷载作用时土中滑动面的形状,然后根据滑动土体的静力平衡条件求解极限荷载。
这类方法又由于假设的滑动面形状不同,导出了多种形式的计算公式。
•太沙基公式太沙基在1943年提出了确定条形浅基础的极限荷载公式。
太沙基认为当基础的长宽比l/b≥5及基础埋深d≤b时,就可视为条形浅基,基底以上土体看作是作用在基础两侧的均布荷载q=γd。
太沙基假定基础底面是粗糙的,地基的滑动面形状如图7-4所示,可分为三个区:图7—4I区-——基础底面下的土楔ABC,由于假定基底是粗糙的,具有很大的摩擦力,因此AB不会发生剪切位移,该区内土体处于弹性压密状态,它像一个“弹性核”随基础一起向下移动;II区—-—滑动面按对数螺旋线变化,在C点处螺旋线的切线垂直,D、E点处螺旋线的切线与水平线成45°—φ/2角;III区-——被动朗金区(底角与水平线成45°-φ/2角的等腰三角形).根据弹性土楔的静力平衡条件,可求得地基的极限荷载:式中:C—--土的粘聚力,KPa;q-—-基础两侧土压力q=γ0d,若地基土是均质,则基础两侧土压力q=γd;若地基土是非均质,则γ0是基底以上土的加权平均重度;d—-—基底埋深,m;b—--基础宽度,m;N、N q、N c-——无量纲承载力系数,可根据内摩擦角从表7-2查出。
r以上公式只适用于地基土整体剪切破坏情况,即地基土较密实,其P—S曲线有明显的转折点,破坏前沉降不大等情况.对于松软土质,地基破坏是局部剪切破坏,沉降较大,其极限荷载较小.太沙基建议采用较少的φ′,C′值代入公式计算极限荷载,即得:此时极限荷载公式为:式中N r′、N c′、N q′是相应于局部剪切破坏情况的承载力系数,根据降低后的摩擦角φ′查表7-2。
[精品文档]地基承载力设计值
![[精品文档]地基承载力设计值](https://img.taocdn.com/s3/m/1d0fb838b7360b4c2f3f6424.png)
地基承载力设计值【资料来源】《建筑地基基础设计规范》(GBJ 7-89)5.1.3 地基承载力设计值,应符合下列规定:一、当基础宽度大于3m或埋置深度大于0.5m 时,除岩石地基外,其地基承载力设计值应按下式计算:f=f k+ηbγ(b-3)+ηdγ0(d-0.5)(5.1.3)式中 f--- 地基承载力设计值;f k--- 地基承载力标准值,按本规范第3.2.1条至3.2.3条确定;ηb、ηd --- 基础宽度和埋深的地基承载力修正系数,按基底下土类查表5.1.3;γ--- 土的重度,为基底以下土的天然质量密度ρ 与重力加速度g 的乘积,地下水位以下取有效重度;b--- 基础底面宽度(m),当基宽小于3m 按3m 考虑,大于6m 按6m 考虑;γ0 --- 基础底面以上土的加权平均重度,地下水位以下取有效重度;d--- 基础埋置深度(m),一般自室外地面标高算起。
在填方整平地区,可自填土地面标高算起,但填土在上部结构施工后完成时,应从天然地面标高算起。
对于地下室,如采用箱形基础或筏基时,基础埋置深度自室外地面标高算起,在其他情况下,应从室内地面标高算起。
当计算所得设计值f<1.1f k时,可取f=1.1f k;二、当不满足按(5.1.3)式计算的条件时,可按f=1.1f k直接确定地基承载力设计值。
承载力修正系数表5.1.3注:①强风化的岩石,可参照所风化的相应土类取值;②Sr为土的饱和度,S r≤0.5,稍湿;0.5<S r≤0.8,很湿;r r>0.8,饱和。
搀扶扶持教学工作总结[搀扶扶持教学工作总结]本文章由a href="hao123/a合作伙伴hao123网址导行群发转栽而成时间荏苒,欢快而充实的工作时间总是短暂的,转眼到了这一学期的尾声,搀扶扶持教学工作总结。
回顾这一学期,我和我的学生们不仅在一次次的交往与碰撞中建立起了*而浓厚的师生情,而且在互相信任的条件下较圆满地完成了本学期的教学任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
承载力修正系数规范表
1 规范相关条文说明
《建筑地基基础设计规范》(简称规范)第5.2.4条指出:通过载荷试验或其它原位测试结果、经验值等方法确定的地基承载力特征值,需要进行深度修正。
其条文说明中还有一段论述:“目前建筑工程大量存在着主裙楼一体的结构,对于主体结构地基承载力的深度修正,宜将基础底面以上范围内的荷载,按基础两侧的超载考虑,当超载宽度大于基础宽度两倍时,可将超载折算成土层厚度作为基础埋深,基础两侧超载不等时,取小值。
”
目前工程届对地基承载力深度修正的认识还十分混乱。
本文拟进一步对地基承载力深度修正的实质进行总结,阐述其在常见的几种地基基础形式中的应用,同时剖析几种工程界中流行的认识,希望对广大设计人员有所帮助。
2.1深度修正的实质和要点
文【1】、【2】指出,进行地基承载力的深度修正,就是为了考虑基础两侧基底标高以上的超载q对基础两侧滑动土体向上滑动的抵抗作用。
这个超载可以直观地理解为作用在滑动土体表面的压重,见图1。
超载q可以是土自重q=rd;也可以是裙房产生的连续均布压力,计算公式可参考规范式(5.2.2-1),注意,活荷载应按“荷载规范”第4.1.2条要求折减。
因此,结合地基破坏机理,以及计算公式建立的前提,总结出地基承载力深度修正的几个要素分别如下:
(1)地基承载力的深度修正,其实都是超载的压重作用。
无论是用土的天然埋深,还是将裙房等其他连续均匀压重折算为土厚进行地基承载力的深度修正,其实质都是基础两侧超载对抗滑动土体向上运动的体现。
(2)对超载连续、均匀性和满足一定分布宽度的要求。
地基承载力计算公式的建立是以超载q为连续均布荷载,并作用在整个滑动体表面为前提的。
根据规范和文【2】的建议,超载的分布宽度满足大于(2~4)B(B为基础宽度)的要求即可进行地基承载力的深度修正。
如果是天然土层形成的超载,这个荷载基本上是连续均布的。
裙房等压重不一定能形成的连续均布的超载,具体分析见下文。
(3)取最小值的要求。
地基的破坏一般都发生在最薄弱部位,因此应取基础四周的埋深(或折算埋深)的最小值进行深度修正。
理解了地基承载力深度修正的实质,就可以把地基承载力深度修正的问题转化为考虑基础四周2~4倍基础边长范围内(表示为图2中反斜线)超载的大小与分布问题。
再抓住了上述3个要素,基本可以解决一般工程的深度修正取值问题。