第十一章--统计学-一元线性回归PPT课件
合集下载
《一元线性回归》课件

模型评价
使用评价指标对模型的性能进行评估。
《一元线性回归》PPT课 件
一元线性回归是一种用于探索变量之间关系的统计方法。本课件将介绍一元 线性回归的基本概念、模型、参数估计、模型评估以及Python实现。
一元线性回归-简介
一元线性回归是一种分析两个变量之间线性关系的方法。在这一节中,我们 将介绍一元线性回归的定义、使用场景以及它的重要性。
决定系数
4
方的平均值。
衡量模型对观测值的解释能力,取值范 围从0到1。
一元线性回归-Python实现
导入数据
使用Python的pandas库导入数据集。
划分数据集
将数据集划分为训练集和测试集。
预测结果
使用测试集数据对模型进行预测。
特征工程
选择合适的特征并对其进行处理。
训练模型
使用训练集数据训练线性Байду номын сангаас归模型。
一元线性回归-线性回归模型
1
简单线性回归模型
一个自变量和一个因变量之间的线性关
多元线性回归模型
2
系。
多个自变量和一个因变量之间的线性关
系。
3
线性回归模型的假设
包括线性关系、平均误差为零、误差具 有相同的方差、误差相互独立等。
一元线性回归-模型参数估计
1
最小二乘法
通过最小化观测值和模型预测值之间的平方误差来估计模型参数。
2
矩阵求导
使用矩阵求导的方法来计算模型参数的最优解。
3
梯度下降法
通过迭代的方式逐步优化模型参数,使得模型预测值与观测值之间的差距最小。
一元线性回归-模型评估
1
对模型误差的描述
通过各种指标来描述模型预测值和观测
使用评价指标对模型的性能进行评估。
《一元线性回归》PPT课 件
一元线性回归是一种用于探索变量之间关系的统计方法。本课件将介绍一元 线性回归的基本概念、模型、参数估计、模型评估以及Python实现。
一元线性回归-简介
一元线性回归是一种分析两个变量之间线性关系的方法。在这一节中,我们 将介绍一元线性回归的定义、使用场景以及它的重要性。
决定系数
4
方的平均值。
衡量模型对观测值的解释能力,取值范 围从0到1。
一元线性回归-Python实现
导入数据
使用Python的pandas库导入数据集。
划分数据集
将数据集划分为训练集和测试集。
预测结果
使用测试集数据对模型进行预测。
特征工程
选择合适的特征并对其进行处理。
训练模型
使用训练集数据训练线性Байду номын сангаас归模型。
一元线性回归-线性回归模型
1
简单线性回归模型
一个自变量和一个因变量之间的线性关
多元线性回归模型
2
系。
多个自变量和一个因变量之间的线性关
系。
3
线性回归模型的假设
包括线性关系、平均误差为零、误差具 有相同的方差、误差相互独立等。
一元线性回归-模型参数估计
1
最小二乘法
通过最小化观测值和模型预测值之间的平方误差来估计模型参数。
2
矩阵求导
使用矩阵求导的方法来计算模型参数的最优解。
3
梯度下降法
通过迭代的方式逐步优化模型参数,使得模型预测值与观测值之间的差距最小。
一元线性回归-模型评估
1
对模型误差的描述
通过各种指标来描述模型预测值和观测
一元线性回归PPT演示课件

196.2
15.8
16.0
102.2
12.0
10.0
本年固定资产投资额 (亿元) 51.9 90.9 73.7 14.5 63.2 2.2 20.2 43.8 55.9 64.3 42.7 76.7 22.8 117.1 146.7 29.9 42.1 25.3 13.4 64.3 163.9 44.5 67.9 39.7 97.1
6. r 愈大,表示相关关系愈密切.
例 11.7
根据例11.6的样本数据,计算不良贷款、贷款余额、应收 贷款、贷款项目、固定资产投资额之间的相关系数.
解:用Excel计算的相关系数矩阵如下.
三、相关系数的显著性检验
(一) r 的抽样分布
当样本数据来自正态总体,且 0 时,则
t r n 2 ~ t(n 2) 1 r2
时,yˆ ˆ0 .
二、参数的最小二乘估计
假定样本数据 (xi , yi ) , i 1,2,, n ,满足一元线性回归模 型, 根据(11.6)式则样本回归方程为
yˆi ˆ0 ˆ1xi , i 1,2,, n
(11.7)
最小二乘法是使因变量的观察值 yi 与估计值 yˆi 之间的离差平
i1 i1
n
n
n
n
n xi2 ( xi )2 n yi2 ( yi )2
i 1
i 1
i 1
i 1
( 11.1 ) ( 10.2 )
相关系数的取值范围及意义
1. r 的取值范围为[-1,1].
2. r 1 ,称完全相关,既存在线性函数关系.
r =1,称完全正相关. r =-1,称完全负相关. 3. r =0,称零相关,既不存在线性相关关系. 4. r <0,称负相关. 5. r >0,称正相关.
《一元线性回归》ppt课件

E (Y|X i)01X i
E (Y|Xi)01Xi2 E (Y|Xi)01 2Xi
三、总体回归模型与随机干扰项 〔 population regression model,PRM & stochastic disturbance/error〕
• 描画总体中解释变量X和被解释变量Y的个体值Yi之间的变 化规律:Yi=f〔Xi〕+μi
称为线性总体回归函数。其中,0,1是未知参数,称为回归系 数〔regression coefficients〕。
A1:“线性〞的含义
• 对变量为线性——解释变量以一次方的方式出现 • ○ 从几何上看,此时总体回归线是一条直线
• 对参数为线性——回归系数以一次方的方式出现 • ○ 从几何上看,此时总体回归线并不一定是直线
四、样本回归函数 〔sample regression function,SRF〕
•描画样本中解释变量X和被解释变量Y的之间的平均变化规 律:Y^i=f〔Xi〕
1、样本回归函数〔SRF〕
• 总体的信息往往无法掌握,因此PRF实践上未知 • 现实的情况只能是在一次观测中得到总体的一个样本,经过样本的信息来 估计总体回归函数。
1969 1991 2046 2068 2101
968 1045 1243 1474 1672 1881 1078 1254 1496 1683 1925
2189 2233
1122 1298 1496 1716 1969 1155 1331 1562 1749 2013
2244 2299
1188 1364 1573 1771 2035 1210 1408 1606 1804 2101
问题:能否从样本估计总体回归函数?
例2.2:从例2.1的总体中获得如下一个样本:
E (Y|Xi)01Xi2 E (Y|Xi)01 2Xi
三、总体回归模型与随机干扰项 〔 population regression model,PRM & stochastic disturbance/error〕
• 描画总体中解释变量X和被解释变量Y的个体值Yi之间的变 化规律:Yi=f〔Xi〕+μi
称为线性总体回归函数。其中,0,1是未知参数,称为回归系 数〔regression coefficients〕。
A1:“线性〞的含义
• 对变量为线性——解释变量以一次方的方式出现 • ○ 从几何上看,此时总体回归线是一条直线
• 对参数为线性——回归系数以一次方的方式出现 • ○ 从几何上看,此时总体回归线并不一定是直线
四、样本回归函数 〔sample regression function,SRF〕
•描画样本中解释变量X和被解释变量Y的之间的平均变化规 律:Y^i=f〔Xi〕
1、样本回归函数〔SRF〕
• 总体的信息往往无法掌握,因此PRF实践上未知 • 现实的情况只能是在一次观测中得到总体的一个样本,经过样本的信息来 估计总体回归函数。
1969 1991 2046 2068 2101
968 1045 1243 1474 1672 1881 1078 1254 1496 1683 1925
2189 2233
1122 1298 1496 1716 1969 1155 1331 1562 1749 2013
2244 2299
1188 1364 1573 1771 2035 1210 1408 1606 1804 2101
问题:能否从样本估计总体回归函数?
例2.2:从例2.1的总体中获得如下一个样本:
掌握一元线性回归分析-PPT模板

)(y x)2
y
)
a y bx
5
根据表计算
代入回归方程 yc a bx
6
序 号
产品产 生产费 量x 用y(万
(千吨) 元)
1 1.2
62
2 2.0
86
3 3.1
80
4 3.8
110
5 5.0
115
6 6.1
132
7 7.2
135
8 8.0
160
合 计
36.4
880
x2
1.44 4
9.61 14.44
207.54
xy 74.4 172 248 418 575 805.2 972 1 280
4 544.6
yc 66.79 77.11 91.3 100.33 115.81 130 144.19 154.51
880
(y yc)2 22.944 1 79.032 1 127.69 93.508 9 0.656 1
统计学基础
一、理解回归分析的概念
当给出自变量某一数值时,不能根据相 关系数来估计或预测因变量可能发生的数值。 回归分析就是对具有相关关系的变量之间数 量变化的一般关系进行测定,确定一个相关 的数学表达式,以便于进行估计或预测的统 计方法。
相关关系是一种数量关系不严格的相互依存关系。
2
二、掌握一元线性回归分析方法
1
一元线性回归分析的特点
在两个变量之间进行回归分析时,必须根据研究目的,具体确定
(1) 哪个是自变量,哪个是因变量。
在两个现象互为根据的情况下,可以有两个回归方程——y倚x回归方程和x倚y回
(2) 归方程。这和用以说明两个变量之间关系密切程度的相关关系只能计算一个是不相同的。
一元线性回归分析PPT课件

第18页/共40页
拟合程度评价
拟合程度是指样本观测值聚集在样本回归线周围的紧
密程度. ( Y t Y ) ( Y ˆ t Y ) ( Y t Y ˆ t)
n
n
n
(Y t Y )2 (Y ˆt Y )2 (Y t Y ˆ)2
t 1
t 1
t 1
n
(Yt Y)2 :总离差平方和,记为SST;
t1
n
第8页/共40页
例
食品序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
求和
脂肪Xt 4 6 6 8 19 11 12 12 26 21 11 16 14 9 9 5
热量Yt 110 120 120 164 430 192 175 236 429 318 249 281 160 147 210 120
第1页/共40页
回归分析的分类
一个自变量
一元回归
回归分析
两个及以上自变量
多元回归
线性 回归
非线性 回归
线性 回归
非线性 回归
第2页/共40页
一元线性回归模型
(一)总体回归函数
Yt=0+1Xt+ut
ut是随机误差项,又称随机干扰项,它是一个特殊的 随机变量,反映未列入方程式的其他各种因素对Y的 影响。
(ˆ1t(n2)Sˆ1)
2
第15页/共40页
回归分析的Excel实现
“工具”->“数据分析”->“回归”
第16页/共40页
ˆ 0
S ˆ 0
ˆ 1
S ˆ 1
(ˆ0t(n2)Sˆ0)
2
(ˆ1t(n2)Sˆ1)
2
第17页/共40页
拟合程度评价
拟合程度是指样本观测值聚集在样本回归线周围的紧
密程度. ( Y t Y ) ( Y ˆ t Y ) ( Y t Y ˆ t)
n
n
n
(Y t Y )2 (Y ˆt Y )2 (Y t Y ˆ)2
t 1
t 1
t 1
n
(Yt Y)2 :总离差平方和,记为SST;
t1
n
第8页/共40页
例
食品序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
求和
脂肪Xt 4 6 6 8 19 11 12 12 26 21 11 16 14 9 9 5
热量Yt 110 120 120 164 430 192 175 236 429 318 249 281 160 147 210 120
第1页/共40页
回归分析的分类
一个自变量
一元回归
回归分析
两个及以上自变量
多元回归
线性 回归
非线性 回归
线性 回归
非线性 回归
第2页/共40页
一元线性回归模型
(一)总体回归函数
Yt=0+1Xt+ut
ut是随机误差项,又称随机干扰项,它是一个特殊的 随机变量,反映未列入方程式的其他各种因素对Y的 影响。
(ˆ1t(n2)Sˆ1)
2
第15页/共40页
回归分析的Excel实现
“工具”->“数据分析”->“回归”
第16页/共40页
ˆ 0
S ˆ 0
ˆ 1
S ˆ 1
(ˆ0t(n2)Sˆ0)
2
(ˆ1t(n2)Sˆ1)
2
第17页/共40页
一元线性回归方程PPT课件

第一章 一元线性回归模型
以下设 x 为自变量(普通变量) Y 为因变量(随机变 量) .现给定 x 的 n 个值 x1,…, xn, 观察 Y 得到相应的 n 个 值 y1,…,yn, (xi ,yi) i=1,2,…, n 称为样本点.
以 (xi ,yi) 为坐标在平面直角坐标系中描点,所得到 的这张图便称之为散点图.
Yi = 0 + 1 Xi + εi
其中: Yi——被解释变量; Xi——解释变量;
ε I ——随机误差项; 0,1—回归系数
随机变量ε i包含:
回归模型中省略的变量; 确定数学模型的误差; 测量误差
第3页/共28页
假设调查了某社区所有居民,他们的人均可支 配收入和消费支出数据如下:
X 80 100 Y
=
(Xi X )2
=
( Xi X )Yi (Xi X )2
ˆ 令 ki
(Xi X) (Xi X )2
xi xi2
代入上式,得:
1
kiYi
同理可证:0也具有线性特性 。
第15页/共28页
2、无偏性
ki
(Xi - X) (Xi - X )2
xi xi2
证明: E(ˆ1) = E( kiYi ) = E [ki (0 1Xi i ] = 0E[ ki 1 ki Xi kii ] = 1E [ki (Xi X )] E (kiui )
Y
55
80 100 120140 160
X
第5页/共28页
二、随机误差项εi的假定条件
为了估计总体回归模型中的参数,需对随机误差项作出如下假定:
假定1:零期望假定:E(εi) = 0。 假定2:同方差性假定:Var(εi) = 2。 假定3:无序列相关假定:Cov(εi, εj) = 0, (i j )。 假定4: εi 服从正态分布,即εi N (0, 2 )。 前三个条件称为G-M条件
以下设 x 为自变量(普通变量) Y 为因变量(随机变 量) .现给定 x 的 n 个值 x1,…, xn, 观察 Y 得到相应的 n 个 值 y1,…,yn, (xi ,yi) i=1,2,…, n 称为样本点.
以 (xi ,yi) 为坐标在平面直角坐标系中描点,所得到 的这张图便称之为散点图.
Yi = 0 + 1 Xi + εi
其中: Yi——被解释变量; Xi——解释变量;
ε I ——随机误差项; 0,1—回归系数
随机变量ε i包含:
回归模型中省略的变量; 确定数学模型的误差; 测量误差
第3页/共28页
假设调查了某社区所有居民,他们的人均可支 配收入和消费支出数据如下:
X 80 100 Y
=
(Xi X )2
=
( Xi X )Yi (Xi X )2
ˆ 令 ki
(Xi X) (Xi X )2
xi xi2
代入上式,得:
1
kiYi
同理可证:0也具有线性特性 。
第15页/共28页
2、无偏性
ki
(Xi - X) (Xi - X )2
xi xi2
证明: E(ˆ1) = E( kiYi ) = E [ki (0 1Xi i ] = 0E[ ki 1 ki Xi kii ] = 1E [ki (Xi X )] E (kiui )
Y
55
80 100 120140 160
X
第5页/共28页
二、随机误差项εi的假定条件
为了估计总体回归模型中的参数,需对随机误差项作出如下假定:
假定1:零期望假定:E(εi) = 0。 假定2:同方差性假定:Var(εi) = 2。 假定3:无序列相关假定:Cov(εi, εj) = 0, (i j )。 假定4: εi 服从正态分布,即εi N (0, 2 )。 前三个条件称为G-M条件
一元线性回归模型ppt课件

差e的原因.
例1.(多选)在如图所示的四个散点图,适合用一元线性回
归模型拟合其中两个变量的是( AC ).
例2.在一元线性回归模型中,下列关于Y=bx+a+e的说法正确的是( C )
A.Y=bx+a+e是一次函数
B.响应变量Y是由解释变量x唯一确定的
C.响应变量Y除了受解释变量x的影响外,可能还受到其他因素的影响,这
Y bx a e
(1)
2
E (e ) 0,D(e ) .
追问3.对于父亲身高为xi的某一名男大学生,他的身高yi一定是bxi+a吗?
对于父亲身高为的某一名男大学生,他的身高 并不一定为
bxi+a ,它仅是该子总体的一个观测值,这个观测值与均值有一个误
差项ei=yi -(+a).
相关程度较高.
编号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
父亲身高/cm 174
170
173
169182172180172168
166
182
173
164
180
儿子身高/cm 176
176
170
170
185
176
178
174
170
168
178
172
165
182
问题2.根据表中的数据,儿子身高和父亲身高这两个变量之间的关系可以
参数;e是Y与bx+a之间的随机误差. 模型中的Y也是随机变量,其值虽不能由变
量x的值确定,但却能表示为bx+a与e的和,前一部分由x所确定,后一部分是随
第十一章统计学一元线性回归精品PPT课件

2. 0.5|r|<0.8时,可视为中度相关 3. 0.3|r|<0.5时,视为低度相关 4. |r|<0.3时,说明两个变量之间的相关程度
极弱,可视为不相关 5. 上述解释必须建立在对相关系数的显著性
进行检验的基础之上
相关系数(例题分析)
▪ 用Excel计算相关系数
相关系数的显著性检验
相关系数的显著性检验(检验的步骤)
4. 各观测点分布在直线周围
x
相关关系(几个例子)
父亲身高y与子女身高x之间的关系 收入水平y与受教育程度x之间的关系 粮食单位面积产量y与施肥量x1 、降雨量
x2 、温度x3之间的关系 商品的消费量y与居民收入x之间的关系 商品销售额y与广告费支出x之间的关系
相关关系(类型)
相关关系
本章教学重点与难点
重点
1.一元线性回归分析 2.用软件进行回归分析
难点
最小二乘法的原理并用它解决实际问题
11.1 变量间关系的度量
11.1.1 变量间的关系 11.1.2 相关关系的描述与测度 11.1.3 相关系数的显著性检验
变量间的关系
函数关系
1. 是一一对应的确定关系
2.
设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完
散点图(例题分析)
散点图(不良贷款对其他变量的散点图)
不良贷款
14
12
10
8
6
4
2
0 0
100
200
300
400
贷款余额 不良贷款与贷款余额的散点图
14
12
10
8
6
4
2
0 0
10
20
30
极弱,可视为不相关 5. 上述解释必须建立在对相关系数的显著性
进行检验的基础之上
相关系数(例题分析)
▪ 用Excel计算相关系数
相关系数的显著性检验
相关系数的显著性检验(检验的步骤)
4. 各观测点分布在直线周围
x
相关关系(几个例子)
父亲身高y与子女身高x之间的关系 收入水平y与受教育程度x之间的关系 粮食单位面积产量y与施肥量x1 、降雨量
x2 、温度x3之间的关系 商品的消费量y与居民收入x之间的关系 商品销售额y与广告费支出x之间的关系
相关关系(类型)
相关关系
本章教学重点与难点
重点
1.一元线性回归分析 2.用软件进行回归分析
难点
最小二乘法的原理并用它解决实际问题
11.1 变量间关系的度量
11.1.1 变量间的关系 11.1.2 相关关系的描述与测度 11.1.3 相关系数的显著性检验
变量间的关系
函数关系
1. 是一一对应的确定关系
2.
设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完
散点图(例题分析)
散点图(不良贷款对其他变量的散点图)
不良贷款
14
12
10
8
6
4
2
0 0
100
200
300
400
贷款余额 不良贷款与贷款余额的散点图
14
12
10
8
6
4
2
0 0
10
20
30
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 性质4:仅仅是x与y之间线性关系的一个度量,它不 能用于描述非线性关系。这意为着, r=0只表示两 个变量之间不存在线性相关关系,并不说明变量之
间没有任何关系
▪ 性质5:r虽然是两个变量之间线性关系的一个度量,
却不一定意味着x与y一定. 有因果关系
21
相关系数的经验解释
1. |r|0.8时,可视为两个变量之间高度相关 2. 0.5|r|<0.8时,可视为中度相关 3. 0.3|r|<0.5时,视为低度相关 4. |r|<0.3时,说明两个变量之间的相关程度
2. 为解决这些问题,在进行相关分析时,对总体有 以下两个主要假定
• 两个变量之间是线性关系
• 两个变量都是随机变量
.
12
散点图(scatter diagram)
完全正线性相关
正线性相关
完全负线性相关
负线性相关
.
非线性相关
不相关
13
散点图(例题分析)
▪ 【例】一家大型商业银行在多个地区设有分行, 其业务主要是进行基础设施建设、国家重点项 目建设、固定资产投资等项目的贷款。近年来, 该银行的贷款额平稳增长,但不良贷款额也有 较大比例的增长,这给银行业务的发展带来较 大压力。为弄清楚不良贷款形成的原因,管理 者希望利用银行业务的有关数据做些定量分析, 以便找出控制不良贷款的办法。下面是该银行 所属的25家分行2002年的有关业务数据
4. 各观测点分布在直线周围
x
.
8
相关关系(几个例子)
父亲身高y与子女身高x之间的关系 收入水平y与受教育程度x之间的关系 粮食单位面积产量y与施肥量x1 、降雨量
x2 、温度x3之间的关系 商品的消费量y与居民收入x之间的关系 商品销售额y与广告费支出x之间的关系
.
9
相关关系(类型)
30
累计应收贷款
不良贷款与累计应收贷款的散点图
14
12
10
8
6
4
2
0 0
50
100
150
200
固定资产投资额16
不良贷款与固定资产投资额的散点图
不良贷款
相关关系的描述与测度
(相关系数)
.
17
相关系数(correlation coefficient)
1. 度量变量之间关系强度的一个统计量
2. 对两个变量之间线性相关强度的度量称为简单相 关系数
.
18
相关系数 (计算公式)
▪ 样本相关系数的计算公式
r (xx)(yy) (xx)2(yy)2
或化简为 r
nx yxy
nx2x2 ny2y2
.
19
相关系数的性质
▪ 性质1:r 的取值范围是 [-1,1]
• |r|=1,为完全相关
▪ r =1,为完全正相关 ▪ r =-1,为完全负正相关
• r = 0,不存在线性相关关系
第11章 一元线性回归
11.1 变量间关系的度量 11.2 一元线性回归 11.3 利用回归方程进行估计和预测 11.4 残差分析
.
1
学习目标
1. 相关关系的分析方法 2. 一元线性回归的基本原理和参数的最小
二乘估计 3. 回归直线的拟合优度 4. 回归方程的显著性检验 5. 利用回归方程进行估计和预测 6. 用 Excel 进行回归
3. 若相关系数是根据总体全部数据计算的,称为总
体相关系数,记为
4. 若是根据样本数据计算的,则称为样本相关系数, 简称为相关系数,记为 r
• 也 称 为 线 性 相 关 系 数 (linear correlation coefficient)
• 或称为Pearson相关系数 (Pearson’s correlation coefficient)
• -1r<0,为负相关 • 0<r1,为正相关 • |r|越趋于1表示关系越强;|r|越趋于0表示
关系越弱
.
20
相关系数的性质
▪ 性质2:r具有对称性。即x与y之间的相关系数和y与 x之间的相关系数相等,即rxy= ry
▪ 性质3:r数值大小与x和y原点及尺度无关,即改变x 和y的数据原点及计量尺度,并不改变r数值大小
.
2
本章教学重点与难点
重点
1.一元线性回归分析 2.用软件进行回归分析
难点
最小二乘法的原理并用它解决实际问题
.
3
11.1 变量间关系的度量
11.1.1 变量间的关系 11.1.2 相关关系的描述与测度 11.1.3 相关系数的显著性检验
.
4
变量间的关系
.
5
函数关系
1. 是一一对应的确定关系
2.
相关关系
线性相关 非线性相关 完全相关 不相关
正相关 负相关
正相关 负相关
.
10
相关关系的描述与测度
(散点图)
.
11
相关分析及其假定
1. 相关分析要解决的问题
• 变量之间是否存在关系?
• 如果存在关系,它们之间是什么样的关系?
• 变量之间的关系强度如何?
• 样本所反映的变量之间的关系能否代表总体变量之 间的关系?
圆的面积S与半径R之间的关系可表示为
S=R2
企业的原材料消耗额y与产量x1 、单位产 量消耗x2 、原材料价格x3之间的关系可表 示为 y = x1 x2 x3
.
7
相关关系(correlation)
1. 变量间关系不能用函数关
系精确表达
y
2. 一个变量的取值不能由另 一个变量唯一确定
3. 当变量 x 取某个值时,变 量 y 的取值可能有几个
极弱,可视为不相关 5. 上述解释必须建立在对相关系数的显著性
进行检验的基础之上
.
22
相关系数(例题分析)
▪ 用Excel计算相关系数
.
23
相关系数的显著性检验
.
24
相关系数的显著性检验(检验的步骤)
1.检验两个变量之间是否存在线性相关关系
设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完
y
全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量
3. 各观测点落在一条线上
x
.
函数关系(几个例子)
某种商品的销售额y与销售量x之间的关系 可表示为 y = px (p 为单价)
.
14
散点图(例题分析)
.
15
散点图(不良贷款对其他变量的散点图)
不良贷款
14
12
10
8
6
4
2
0 0
100
200
300
400
贷款余额 不良贷款与贷款余额的散点图
14
12
10
8
6
4
2
0 0
10
20
30
40
贷款项目个数 .
不良贷款与贷款项目个数的散点图
不良贷款
不良贷款
14
12
10
8
6
4
2
0 0
10
20