【新整理】三角形“四心”向量形式的结论及证明(附练习答案)

合集下载

三角形“四心“的向量统一形式及证明

三角形“四心“的向量统一形式及证明

三角形“四心“的向量统一形式及证明三角形的“四心”是指三角形内部的四个特殊点:重心、外心、垂心和内心。

以三角形的三个顶点A、B、C为坐标原点,分别取AD、BE、CF 为坐标轴,其中D、E、F分别为BC、AC、AB的三个中点。

则A、B、C的坐标分别为A(0, 0)B(1, 0)C(k, m)其中k、m为未知数,待求。

重心的坐标为三个顶点坐标的平均值,即G((0+1+k)/3, (0+0+m)/3) = (1/3*k, m/3)外心的坐标可以通过垂直平分线的交点求得。

设AB的垂直平分线为x=1/2,AC的垂直平分线为y=mx+b,交点为(Ox, Oy)。

由于垂直平分线是两条对称轴,所以可以得到下面两个方程:(1/2 + k) / 2 = Oxm * Ox + b = Oy解方程可以得到Ox = 1/4 + k/2Oy = m/4 + b垂心的坐标可以通过高的垂直线交点求得。

设高的垂直线分别为x=c1和y=mc2+b2,两条垂直线的交点为(Hx, Hy)。

由于高的垂直线是两条轴线,所以可以得到下面两个方程:c1 = 0mc2 + b2 = 0解方程可以得到Hx = 0Hy = -b2/m内心的坐标可以通过三条角平分线的交点求得。

设角A的平分线为y=mx+b1,角B的平分线为y=mx+b2,角C的平分线为y=mx+b3,三条平分线的交点为(Ix, Iy)。

由于角平分线相交于内心,所以可以得到下面三个方程:Ix = (k+b2-b1) / (2*m)Iy = m * Ix + b2由以上分析可以得到“四心”的坐标:重心G:(1/3*k, m/3)外心O:(1/4 + k/2, m/4 + b)垂心H:(0, -b2/m)内心I:((k+b2-b1) / (2*m), m * ((k+b2-b1) / (2*m)) + b2)证明这些点的向量统一形式,可以分别计算这些点和三个顶点之间的向量,观察它们是否有统一的形式。

三角形四心与向量(最新整理)

三角形四心与向量(最新整理)
例 7 若 O 为 ABC 内一点, OA OB OC ,则 O 是 ABC 的( )
-2-
A.内心
B.外心 C.垂心 D.重心
解析:由向量模的定义知 O 到 ABC 的三顶点距离相等。故 O 是 ABC 的外心 ,选 B。
(五)将平面向量与三角形四心结合考查
例 8.已知向量 OP1 , OP2 , OP3 满足条件 OP1 + OP2 + OP3 =0,| OP1 |=| OP2 |=| OP3 |=1,
向量 ( AB AC )( 0) 所在直线过 ABC 的内心(是 BAC 的角平分线所在直 B
| AB | | AC |
线);
范例
(一)将平面向量与三角形内心结合考查
A
e1
C
P
e2
C C
例 1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点 P 满足 OP OA ( AB AC ) , 0,
例 3.(湖南)P 是△ABC 所在平面上一点,若 PA PB PB PC PC PA ,则 P 是△ABC 的(D )
A.外心
B.内心
C.重心
D.垂心
解析:由 PA PB PB PC得PA PB PB PC 0 .即 PB (PA PC) 0,即PB CA 0
(B )
A.AB 边中线的中点
B.AB 边中线的三等分点(非重心)
C.重心
D.AB 边的中点
1. B 取 AB 边的中点 M,则 OA OB 2OM ,由 OP = 1 ( 1 OA + 1 OB +2 OC )可得 3 OP 3OM 2MC ,
32
2

MP
2 3

三角形“四心”向量形式的结论及证明(附练习答案)

三角形“四心”向量形式的结论及证明(附练习答案)

三角形“四心”向量形式的充要条件应用在学习了《平面向量》一章的基础容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角形重心、垂心、外心、心向量形式的充要条件。

现归纳总结如下:一. 知识点总结 1)O 是ABC ∆的重心⇔0OC OB OA =++;若O 是ABC ∆的重心,则ABC AOB AOC BOC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++⇔G 为ABC ∆的重心.2)O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆ 故0OC C tan OB B tan OA A tan =++3)O 是ABC ∆的外心⇔|OC ||OB ||OA |==(或222OC OB OA ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆:::: 故0OC C 2sin OB B 2sin OA A 2sin =++4)O 是心ABC ∆的充要条件是|CB |CB |CA |CA OC |BC |BC |BA |BA OB ACAC |AB |AB OA =-⋅=-⋅=-⋅引进单位向量,使条件变得更简洁。

如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆心的充要条件可以写成:0)e e (OC )e e (OB )e e (OA 322131=+⋅=+⋅=+⋅ O 是ABC ∆心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ∆的心,则c b a S S S AOB AOC BOC ::::=∆∆∆故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或; ||||||0AB PC BC PA CA PB P ++=⇔ABC ∆的心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的心(是BAC ∠的角平分线所在直线);二. 例(一).将平面向量与三角形心结合考查例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )BCHA图6(A )外心(B )心(C )重心(D )垂心 解析:因为ABAB 是向量AB 的单位向量设AB 与AC 方向上的单位向量分别为21e e 和,又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.点评:这道题给人的印象当然是“新颖、陌生”,首先ABAB 是什么?没见过!想想,一个非零向量除以它的模不就是单位向量? 此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。

平面向量痛点问题之三角形“四心”问题(四大题型)(课件)高一数学新教材(人教A版2019必修第二册)

平面向量痛点问题之三角形“四心”问题(四大题型)(课件)高一数学新教材(人教A版2019必修第二册)

5
又 = 12 + 2 = 3,∴ = 9 ,
1
2
5
9
5
9
∵ = + = + ,∴ = = +
5
5
5
∴ + = 9 + 18 = 6.
5
,∴
18
5
5
= , = 18,
9
典型例题
题型三:外心定理
【典例3-1】(2024·吉林长春·高一东北师大附中校考阶段练习)已知点 O是△ABC的外心,AB=4,AC
2
1
则 × 4 × = × 6 × 4 × 2 + 16 ,得3 + 4 = 2②,
4
1
4
1
11
①②联立解得 = 9, = 6,所以 + = 9 + 6 = 18.故选:C.
典型例题
题型三:外心定理
【变式3-1】(2024·四川成都·高一成都市锦江区嘉祥外国语高级中学校考阶段练习)已知点 O是△ABC


+ ��
sin


= || ( + ) = 2|| ,
所以点在三角形的中线 上,则动点P的轨迹一定经过△ 的重心.故选:D.
典型例题
题型二:内心定理
【典例2-1】(2024·高一课时练习)已知点O是边长为 6的等边△ABC的内心,
则 + ⋅ + =
1

2
1
1
1
+ 3 ⋅ = 2 ⋅ + 3 2 = 30;
所以 2 = 45,由 = 30 2可得 = 2 10,即2 = 40;

三角形四心的向量性质及证明

三角形四心的向量性质及证明

三角形四心的向量性质及证明符号说明:“AB”表示向量,“|AB|”表示向量的模【一些结论】:以下皆是向量1 若P是△ABC的重心PA+PB+PC=02 若P是△ABC的垂心PA*PB=PB*PC=PA*PC(内积)3 若P是△ABC的内心aPA+bPB+cPC=0(abc是三边)4 若P是△ABC的外心|PA|=|PB|=|PC|(AP就表示AP向量 |AP|就是它的模)5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或AP=λ(AB+AC),λ∈[0,+∞) 经过重心8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,∠C的外角平分线的交点【以下是一些结论的有关证明】1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB)+cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c) OC+(aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。

必要性:已知O是三角形内心,设BO与AC相交于E,CO与AB相交于F,∵O是内心∴b/a=AF/BF,c/a=AE/CE过A作CO的平行线,与BO的延长线相交于N,过A作BO的平行线,与CO的延长线相交于M,所以四边形OMAN是平行四边形根据平行四边形法则,得向量OA=向量OM+向量ON=(OM/CO)*向量CO+(ON/BO)*向量BO=(AE/CE)*向量CO+(AF/BF)*向量BO=(c/a)*向量CO+(b/a)*向量BO∴a*向量OA=b*向量BO+c*向量CO∴a*向量OA+b*向量OB+c*向量OC=向量02.已知△ABC 为斜三角形,且O是△ABC所在平面上的一个定点,动点P满足向量OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)}, 求证P点轨迹过三角形的垂心OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},OP-OA=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},AP=入{(AB /|AB|^2*sin2B)+AC /(|AC|^2*sin2C)},AP*BC=入{(AB*BC /|AB|^2*sin2B)+AC*BC /(|AC|^2*sin2C)}, AP*BC=入{|AB|*|BC|cos(180° -B) /(|AB|^2*sin2B) +|AC|*|BC| cosC/(|AC|^2*sin2C)},AP*BC=入{-|AB|*|BC| cos B/(|AB|^2*2sinB cos B) +|AC|*|BC| cosC/(|AC|^2*2sinC cosC)},AP*BC=入{-|BC|/ (|AB|*2sinB) +|BC|/(|AC|*2sinC )},根据正弦定理得:|AB|/sinC=|AC|/ sinB,所以|AB|*sinB=|AC|*sinC ∴-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )=0,即AP*BC=0,P点轨迹过三角形的垂心3. OP=OA+λ(AB/(|AB|sinB)+AC/(|AC|sinC))OP-OA=λ(AB/(|AB|sinB)+AC/(|AC|sinC))AP=λ(AB/(|AB|sinB)+AC/(|AC|sinC))AP与AB/|AB|sinB+AC/|AC|sinC共线根据正弦定理:|AB|/sinC=|AC|/sinB,所以|AB|sinB=|AC|sinC,所以AP与AB+AC共线 AB+AC过BC中点D,所以P点的轨迹也过中点D,∴点P过三角形重心。

【新整理】三角形“四心”向量形式的结论及证明(附练习答案)

【新整理】三角形“四心”向量形式的结论及证明(附练习答案)

三角形“四心”向量形式的充要条件应用在学习了《平面向量》一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角形重心、垂心、外心、内心向量形式的充要条件。

现归纳总结如下:一. 知识点总结 1)O 是ABC ∆的重心⇔0OC OB OA =++;若O 是ABC ∆的重心,则ABC AOB AOC BOC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++⇔G 为ABC ∆的重心.2)O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆ 故0OC C tan OB B tan OA A tan =++3)O 是ABC ∆的外心⇔|OC ||OB ||OA |==(或222OC OB OA ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆:::: 故0OC C 2sin OB B 2sin OA A 2sin =++4)O 是内心ABC ∆的充要条件是|CB |CB |CA |CA OC |BC |BC |BA |BA OB ACAC |AB |AB OA =-⋅=-⋅=-⋅引进单位向量,使条件变得更简洁。

如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成:0)e e (OC )e e (OB )e e (OA 322131=+⋅=+⋅=+⋅ O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ∆的内心,则c b a S S S AOB AOC BOC ::::=∆∆∆故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或; ||||||0AB PC BC PA CA PB P ++=⇔ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);二. 范例(一).将平面向量与三角形内心结合考查例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心BCHA图6解析:因为ABAB 是向量AB 的单位向量设AB 与AC 方向上的单位向量分别为21e e 和,又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.点评:这道题给人的印象当然是“新颖、陌生”,首先ABAB 是什么?没见过!想想,一个非零向量除以它的模不就是单位向量? 此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。

【新整理】三角形“四心”向量形式的结论及证明(附练习答案)[1]2

【新整理】三角形“四心”向量形式的结论及证明(附练习答案)[1]2

三角形“四心”向量形式的充要条件应用在学习了《平面向量》一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角形重心、垂心、外心、内心向量形式的充要条件。

现归纳总结如下:一. 知识点总结 1)O 是ABC ∆的重心⇔0OC OB OA =++;若O 是ABC ∆的重心,则ABC AOB AOC BOC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++⇔G 为ABC ∆的重心. 2)O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S A OB A OC BOC ::::=∆∆∆ 故0OC C tan OB B tan OA A tan =++3)O 是ABC ∆的外心⇔|OC ||OB ||OA |==(或222OC OB OA ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOCsin S S S A OB A OC BOC =∠∠∠=∆∆∆:::: 故0OC C 2sin OB B 2sin OA A 2sin =++4)O 是内心ABC ∆的充要条件是)|CB |CB |CA |CA (OC )|BC |BC |BA |BA (OB )ACAC |AB |AB (OA =-⋅=-⋅=-⋅引进单位向量,使条件变得更简洁。

如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成:0)e e (O C )e e (O B )e e (O A 322131=+⋅=+⋅=+⋅O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ∆的内心,则c b a S S S A OB A OC BOC ::::=∆∆∆故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或; ||||||0AB PC BC PA CA PB P ++=⇔ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);二. 范例(一).将平面向量与三角形内心结合考查例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足)(ACAC ABAB OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心ACB1e 2e PBCHA图6解析:因为ABAB 是向量AB 的单位向量设AB 与AC方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(,同理AB HC ⊥,BC HA ⊥.故H 是△ABC 的垂心. (反之亦然(证略))例3.(湖南)P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的(D ) A .外心 B .内心 C .重心 D .垂心 解析:由0=⋅-⋅⋅=⋅PC PB PB PA PC PB PB PA 得. 即0,0)(=⋅=-⋅CA PB PC PA PB 即 则AB PC BC PA CA PB ⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选 D.变式:若H 为△ABC 所在平面内一点,且222222AB HC CA HB BC HA +=+=+ 则点H 是△ABC 的垂心证明: 2222BC CA HB HA -=-BA CB CA BA HB HA ∙+=∙+∴)()((平方差公式) =∙--+BA CB CA HB HA )(得0 即=∙+BA HC HC )(0HC AB ⊥∴同理HB AC ⊥,HA BC ⊥ 故H 是△ABC 的垂心(三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心.证明 作图如右,图中GE GC GB =+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线.将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略))例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=. 证明 CG PC BG PB AG PA PG +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3ABCE DO由此可得)(31PC PB PA PG ++=.(反之亦然(证略))例6若O 为ABC ∆内一点,0OA OB OC ++=,则O 是ABC ∆ 的( )A .内心B .外心C .垂心D .重心解析:由0OA OB OC ++= 得OB OC OA +=-,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=,由平行四边形性质知12OE OD = ,2OA OE =,同理可证其它两边上的这个性质,所以是重心,选D 。

三角形四心的向量性质及应用(详细答案版)

三角形四心的向量性质及应用(详细答案版)

三角形“四心”的向量性质及其应用三角形“四心”的概念介绍(1)重心—三条中线的交点:重心将中线长度分成2:1;(2)外心—三边中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等;(3)垂心—三条高线的交点:高线与对应边垂直;(4)内心—三条内角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等.工具:O 为ABC △内一点,则有:0+⋅+⋅∆∆∆OC S OB S OA S O O CA O BC 证明:作:OA S OA OCB ⋅=∆',OB S OB OCA ⋅=∆',S OC OAB =∆'不难得知:AOB COA BOC OC B S S OC OC OB OB S S ∆∆∆∆⋅=⋅=''''即BO C AO B CO A O C B S S S S ∆∆∆∆⋅⋅='';同理==∆∆''''O B A O A C S S ''O C B BO C AO B CO A S S S S ∆∆∆∆=⋅⋅ 从而:O 为'''C B A ∆的重心,则+'OA +'OB 0'=OC , 得:0=⋅+⋅+⋅∆∆∆OC S OB S OA S O AB O CA O BC .一、三角形的重心的向量表示及应用知识:G 是ABC △的重心⇔)(31AC AB AG +=⇔0=++GC GB GA ⇔)(31OC OB OA OG ++= (O 为该平面上任意一点)变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则0=++CF BE AD . 二、三角形的外心的向量表示及应用知识:O 是ABC △的外心⇔222||||||OC OB OA OC OB OA ==⇔== 02sin 2sin 2sin =⋅+⋅+⋅⇔OC C OB B OA A略证:C B A S S S O AB O CA O BC 2sin :2sin :2sin ::=∆∆∆,得:02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A ;常用结论:O 是ABC △的外心⇒.2|| ;2||22AC AO AC AB AO AB =⋅=⋅ 三、三角形的垂心的向量表示及应用知识:H 是ABC △的垂心⇔HA HC HC HB HB HA ⋅=⋅=⋅⇔222222||||||||||||AB HC CA HB BC HA +=+=+0tan tan tan =⋅+⋅+⋅⇔HC C HB B HA A略证:C B A S S S H AB H CA H BC tan :tan :tan ::=∆∆∆,得:0tan tan tan =⋅+⋅+⋅HC C HB B HA A ; 扩展:若O 是ABC △的外心,点H 满足:OC OB OA OH ++=,则H 是ABC △的垂心. 证明:如图:BE 为直径,H 为垂心,O 为外心,D 为BC 中点;'有:为平行四边形AHCE EA CH AB EA AB CH EC AH BC EC BC AH ⇒⎪⎪⎭⎪⎪⎬⎫⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊥⊥////进而得到:,//EC AH 且EC AH =,即:EC AH =; 又易知:OC OB OD EC +==2;故:OA OH OC OB AH -=+=,即:OC OB OA OH ++=又:OG OC OB OA ⋅=++3(G 为重心),故:OG OH ⋅=3;故:得到欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.证毕. 四、三角形的内心的向量表示及应用知识:I 是ABC △的内心⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅0||||0||||0||||CB CB CA CA CI BC BC BA BA BI AC AC AB AB AI ⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅0||||0||||0||||CA CA BC BC CI BA BA CB CB BI AC AC BA BA AI 0=⋅+⋅+⋅⇔IC c IB b IA a c b a OCc OB b OA a OI ++⋅+⋅+⋅=⇔cb a ACc AB b AI ++⋅+⋅=⇔ 0sin sin sin =⋅+⋅+⋅⇔IC C IB B IA A 注:式子中|||,||,|AB c CA b BC a ===,O 为任一点.略证:C B A c b a S S S IAB ICA IBC sin :sin :sin ::::==∆∆∆,得之. 五.欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.(前已证) 测试题一.选择题1.O 是ABC ∆所在平面上一定点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:点P 的轨迹为BC 边的中线(射线),选C2.(03全国理4)O 是ABC ∆所在平面上一定点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:AC AB OA OP ++=λ⇔AC AB AP +=λAC AB +必平分BAC ∠,理由如下:ADACABACACABAB=+==1111,1==,故四边形11DCAB为菱形,对角线AD平分一组对角,ADACAB=+必定平分11ACB∠,即BAC∠,从而ACABAP+=λ也平分BAC∠.故知点P的轨迹为A∠的内角平分线(射线),选 B3.O是ABC∆所在平面上一定点,动点P满足ACABOAOP++=λ,R∈λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:ACABOAOP++=λ⇔ACABAP+=λ由BCACBCABBCACBCABBCAP+=+=⋅λλ得:0|)|||(=+-=⋅BCBCBCAPλ,得BCAP⊥点P的轨迹为BC边的高线所在直线. 选D4.O是ABC∆所在平面上一定点,动点P满足ACABOAOP+=λ,[)+∞∈,0λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:由于CACCbBcBAB sin||sinsinsin||=⋅=⋅=,知点P的轨迹为BC边的中线(射线),选C5.O是ABC∆所在平面上一定点,动点P满足2cos cosOB OC AB ACOPAB B AC Cλ⎛⎫+ ⎪=++⎪⎝⎭,R∈λ,则点P的轨迹一定通过ABC△的( ).A.外心B.内心C.重心D.垂心解析:0||||=+-=+=⋅+BCBCBCACBCABBCACAB知点P的轨迹为BC边的中垂线, 选A6.O是ABC∆所在平面上一定点,动点P满足])21()1()1[(31OCOBOAOPλλλ++-+-=,*R∈λ,则点P的轨迹一定通过ABC△的( ).A.内心B.垂心C.重心D.AB边的中点解析:])21()1()1[(31OCOBOAOPλλλ++-+-=OCOD3)21(3)22(λλ++-=(D为AB边的中点)知CDP,,三点共线(因1321322=++-λλ),故知点P 的轨迹为AB 边的中线所在直线,但是0≠λ,故除去重心. 选D 7.已知O 是ABC ∆的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为ABC △的( ) A .AB 边中线的中点 B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点解析:)22121(31OC OB OA OP ++=OC OD 3231+=(D 为AB 边的中点) 进而有:PC DP 2=,故为AB 边中线的三等分点(非重心), 选B8.在ABC △中,动点P 满足:CP AB CB CA ⋅-=222,则P 点轨迹一定通过△ABC 的( )A.外心 B.内心 C .重心 D .垂心解析:CP AB CB CA ⋅-=222⇔02))((222=⋅-+-=⋅--CP AB CA CB CA CB CP AB CA CB 进而有:02=⋅PD AB (D 为AB 边的中点),故知点P 的轨迹为AB 边的中垂线, 选A9.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( )A .2B .23C .3D .6 解析:P 为重心,得)(31AC AB AP +=,故AP AC AB ⋅=+3,选C10.设点P 是ABC ∆内一点,用ABC S ∆表示ABC ∆的面积,令ABC PBC S S ∆∆=1λ,ABCPCA S S∆∆=2λ,ABC PAB S S ∆∆=3λ.定义),,()(321λλλ=P f ,若)61,31,21()(),31,31,31()(==Q f G f 则( )A .点Q 在ABG ∆内B .点Q 在BCG ∆内C .点Q 在CAG ∆内D .以上皆不对 解析:G 为重心,画图得知, 选A11.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 解析:由OC OB OA -=+,平方得知, 选D12.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:由2222CA OB BC OA +=+⇔2222BC CA OB OA -=-BA BC CA OB OA BA BC CA BC CA OB OA OB OA ⋅-=+⋅⇔+-=+-⇔)()())(())(( 0)2()(=⋅=-++⋅⇔OC BA CA BC OB OA BA ,得AB OC ⊥;同理得:AC OB ⊥,BC OA ⊥,故为垂心, 选D 13.(06陕西)已知非零向量AB 与AC 满足0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB 21||||=AC AC AB AB , 则ABC ∆为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形解析:21||||=AC AC AB AB 0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB :表明A ∠的内平分线也垂直于BC (三线合一), 知ABC ∆等腰;21||||=AC AC AB AB :得到︒=∠60A ;两者结合得到ABC ∆为等边三角形. 选D 14.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( )A .等腰三角形B .等腰直角三角形C .直角三角形D .既非等腰又非直角三角形 解析:CA BC CB AB AC AB AB ⋅+⋅+⋅=2CA BC AB CA BC CB AC AB ⋅+=⋅++⋅=2)( 得到:0=⋅CA BC ,得:︒=∠90C ,选C 二.填空题15.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 1 . 解析:直接用结论16.ABC ∆中,7,3,1===BC AC AB ,O 为重心,则=⋅AC AO27. 解析:)9(31)(31)(312+⋅=+⋅=+=⋅AC AB AC AC AB AC AC AB AC AO 利用:CB AC AB =-,两边平方得.23=⋅AC AB 故27)923(31=+=⋅AC AO17.点O 在ABC ∆内部且满足032=++OC OB OA ,则:ABC S ∆=∆AOC S 3 .解析:法1:利用工具结论易知:AOB COA BOC S S S ∆∆∆=::3:2:1,得:ABC S ∆=∆AOC S 32:6= 法2:0422232=+=+++=++OD OE OC OB OC OA OC OB OA (E 为AC 的中点,D 为BC 的中点)易得:D O E ,,三点共线,且OD EO 2=,从而得到:ABC ADC AOC S S S ∆∆∆==3132. 法3:作:OA OA =',OB OB 2'=,OC OC 3'=则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧======∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 236'''''' 从而得:331:13:)236(:==++=∆∆S S S S S S COA ABC . 18.点O 在ABC ∆内部且满足AC AB AO 5152+=,则:ABC S ∆=∆AOB S 5 . 解析:法1:AC AB AO 5152+=,用O 拆开得:022=+⋅+⋅OC OB OA , 'A 'B 'C O)(A BC利用工具结论易知:AO B CO A BO C S S S ∆∆∆=::1:2:2,则:ABC S ∆51:5==∆AO B S 法2:AC AD AC AB AO 51545152+=+=,(D 为AB 边的中点),得到:C O D ,,共线,且OD CO 4=, 则:ABC S ∆5:==∆OD CD S AO B . 法3:同上题中法3,此处略.19.已知ABC ∆中,6,5===BC AC AB ,I 为ABC ∆的内心,且BC AB AI μλ+=,则=+μλ1615. 解析:法1:由BC AB BC AB AB AC AB c b a AC c AB b AI ⋅+⋅=+⋅+⋅=++⋅+⋅=++⋅+⋅=165161016)(5555655法2:如图,线长易知,角平分线分线段成比例,得:3:5:=ID AI , 故)21(8585BC AB AD AI ⋅+⋅=⋅=AB +⋅=1658520.已知ABC ∆中,1,1,2-=⋅==AC AB AC AB ,O 为ABC ∆的外心,且BC y AB x AO +=,则=+y x 27. 解析:法1:由BC y AB x AO +=AC y AB y x +-=)(,由AC AB y AB y x ABBC y AB y x AB AO AB ⋅+-=⇒+-⋅=⋅22)(2))((,得:y y x --=)(42;同理22)(2))((AC y AC AB y x ACBC y AB y x AC AO AC +⋅-=⇒+-⋅=⋅,得:y y x +--=)(21;易得:34,613==y x ,得27=+y x . 法2:以},{AC AB 为基底,表示:CO BO AO ,,,利用222CO BO AO ==,得之BC y AB x AO +=AC y AB y x +-=)(,y y x y y x AO )(2)(4222--+-=; AC y AB y x AB AO BO +--=-=)1(,y y x y y x BO )1(2)1(4222---+--=; AC y AB y x AC AO CO )1()(-+-=-=,)1)((2)1()(4222----+-=y y x y y x CO ;由22BO AO =0254=--⇒⇒y x 移项做差; 由22CO AO =0142=+-⇒⇒y x 移项做差; 联立方程解得:34,613==y x ,得27=+y x .BCA MNG21.已知O 为锐角ABC ∆的外心,︒=∠30A ,若AO m B C AC C B AB 2sin cos sin cos =⋅+⋅,则=m 21. 解析:由AO m AB B CAC C B AB AB 2)sin cos sin cos (⋅=⋅+⋅⋅ 得:22||sin cos cos ||||sin cos ||AB m B CA AC ABC B AB =⋅⋅⋅+⋅得:C m C A B mc BCA b c CB c sin cos cos cos sin cos cos sin cos 22⋅=+⇒=⋅⋅⋅+⋅得到:C A C A C A C A B C m sin sin cos cos )cos(cos cos cos sin =++-=+=⋅ 得:.2130sin sin =︒==A m 22.在ABC∆中,1,==⊥AD BC AB AD ,则⋅AD AC解析:.33)(2===⋅=⋅+=⋅AD AD AD BC AD BC AB AD AC 三.解答题23. 如图,已知点G 是ABC ∆的重心,过G 作直线与AC AB ,两边分别交于N M ,两点,且AM xAB = ,AN yAC = ,求证:113x y+=.解:由N G M ,,三点共线, 得:AN t AM t AG ⋅+⋅-=)1(AC ty AB x t ⋅+⋅-=)1(--------①又G 是ABC ∆的重心得:AC AB AG ⋅+⋅=3131 ---------② 由①②得:⎪⎪⎩⎪⎪⎨⎧==-3131)1(ty x t ,消去t 得:113x y +=.24.设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 求证:AO B CO A BO C S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S SSS∆∆∆==::::::211332321λλλλλλλλλ25.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证:321P P P ∆为正三角形. 证明:由1OP +2OP +3OP =0⇒1OP +2OP =3OP -平方得:1212112121-=⋅⇒=⋅++OP OP OP OP'A 'B 'C OABC从而得:3||21====P P同理可得:3||||1332==P P P P ,即321P P P ∆为正三角形. 26.在ABC ∆中,︒===60,5,2A AC AB ,求从顶点B A ,出发的两条中线BE AD ,的夹角的余弦值.解:设b AB a AC ==,,则,560cos 25,4,2522=︒⨯⨯=⋅==b a b a且b a BE b a AD -=+=21),(21; 则,3)8525(41)2(41)21()(2122=--=-⋅-=-⋅+=⋅b b a a b a b a BE AD2394102521|)(|21||=++==+=b a AD22116202521|)2(|21||=+-==-=b a BE 故:.919149142212393||||,cos ==⋅=>=<BE AD BEAD BE AD27.已知H 是ABC △的垂心,且||||BC AH =,试求∠A 的度数.解:设ABC △的外接圆半径为R ,点O 是ABC △的外心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形“四心”向量形式的充要条件应用在学习了《平面向量》一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角形重心、垂心、外心、内心向量形式的充要条件。

现归纳总结如下:一. 知识点总结 1)O 是ABC ∆的重心⇔0OC OB OA =++;若O 是ABC ∆的重心,则ABC AOB AOC BOC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++⇔G 为ABC ∆的重心.2)O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆ 故0OC C tan OB B tan OA A tan =++3)O 是ABC ∆的外心⇔|OC ||OB ||OA |==(或222OC OB OA ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆:::: 故0OC C 2sin OB B 2sin OA A 2sin =++4)O 是内心ABC ∆的充要条件是|CB ||CA |OC |BC ||BA |OB AC|AB |OA =-⋅=-⋅=-⋅引进单位向量,使条件变得更简洁。

如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成:0)e e (OC )e e (OB )e e (OA 322131=+⋅=+⋅=+⋅ O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ∆的内心,则c b a S S S AOB AOC BOC ::::=∆∆∆故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或; ||||||0AB PC BC PA CA PB P ++=⇔ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);二. 范例(一).将平面向量与三角形内心结合考查例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P满足OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心 解析:因为是向量AB 的单位向量设AB 与AC 方向上的单位向量分别为21e e 和,又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.点评:这道题给人的印象当然是“新颖、陌生”是什么?没见过!想想,一个非零向量除以它的模不就是单位向量? 此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。

(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(,同理AB HC ⊥,BC HA ⊥.故H 是△ABC 的垂心. (反之亦然(证略))例3.(湖南)P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的(D ) A .外心 B .内心 C .重心 D .垂心 解析:由0=⋅-⋅⋅=⋅PC PB PB PA PC PB PB PA 得.即0,0)(=⋅=-⋅CA PB PC PA PB 即 则AB PC BC PA CA PB ⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选D.点评:本题考查平面向量有关运算,及“数量积为零,则两向量所在直线垂直”、三角形垂心定义等相关知识.将三角形垂心的定义与平面向量有关运算及“数量积为零,则两向量所在直线垂直” 等相关知识巧妙结合。

变式:若H 为△ABC== 则点H 是△ABC 的垂心证明: 2222BC CA HB HA -=-BA CB CA BA HB HA •+=•+∴)()( =•--+BA CB CA HB HA )(得0即=•+BA HC HC )(0HC AB ⊥∴同理HB AC ⊥,HA BC ⊥故H 是△ABC 的垂心(三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心.证明 作图如右,图中GE GC GB =+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线.将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略))例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=. 证明 CG PC BG PB AG PA PG +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3 由此可得)(31PC PB PA PG ++=.(反之亦然(证略))例6若O 为ABC ∆内一点,0OA OB OC ++= ,则O 是ABC ∆ 的( ) A .内心 B .外心 C .垂心 D .重心解析:由0OA OB OC ++=得OB OC OA +=-,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=,由平行四边形性质知12OE OD =,2OA OE =,同理可证其它两边上的这个性质,所以是重心,选D 。

点评:本题需要扎实的平面几何知识,平行四边形的对角线互相平分及三角形重心性质:重心是三角形中线的内分点,所分这比为21λ=。

本题在解题的过程中将平面向量的有关运算与平行四边形的对角线互相平分及三角形重心性质等相关知识巧妙结合。

变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则AD BE CF ++=0. 证明:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=GCCF GBBE GA AD 232323 )(23GC GB GA CF BE AD ++-=++∴0=++GC GB GA AD BE CF ∴++=0..变式引申:如图4,平行四边形ABCD 的中心为O ,P 为该平面上任意一点,ABCE DOA B(x 1,0C(x 2,y 2)yxH Q GD E F 则1()4PO PA PB PC PD =+++.证明:1()2PO PA PC =+,1()2PO PB PD =+, 1()4PO PA PB PC PD ∴=+++.点评:(1)证法运用了向量加法的三角形法则, 证法2运用了向量加法的平行四边形法则.(2)若P 与O 重合,则上式变OA OB OC OD +++=0.(四).将平面向量与三角形外心结合考查例7若O 为ABC ∆内一点,OA OB OC ==,则O 是ABC ∆ 的( ) A .内心 B .外心 C .垂心 D .重心解析:由向量模的定义知O 到ABC ∆的三顶点距离相等。

故O 是ABC ∆ 的外心 ,选B 。

点评:本题将平面向量模的定义与三角形外心的定义及性质等相关知识巧妙结合。

(五)将平面向量与三角形四心结合考查例8.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1, 求证 △P 1P 2P 3是正三角形.(《数学》第一册(下),复习参考题五B 组第6题)证明 由已知1OP +2OP =-3OP ,两边平方得1OP ·2OP =21-, 同理 2OP ·3OP =3OP ·1OP =21-,∴|21P P |=|32P P |=|13P P |=3,从而△P 1P 2P 3是正三角形.反之,若点O 是正三角形△P 1P 2P 3的中心,则显然有1OP +2OP +3OP =0且|1OP |=|2OP |=|3OP |. 即O 是△ABC 所在平面内一点,1OP +2OP +3OP =0且|1OP |=|2OP |=|3OP |⇔点O 是正△P 1P 2P 3的中心.例9.在△ABC 中,已知Q 、G 、H 分别是三角形的外心、重心、垂心。

求证:Q 、G 、H 三点共线,且QG:GH=1:2。

【证明】:以A 为原点,AB 所在的直线为x 轴,建立如图所示的直角坐标系。

设A(0,0)、B (x 1,0)、C(x 2,y 2),D 、E 、F 分别为AB 、BC 、AC 的中点,则有:112222,0)(,)(,)22222x x x y x y E F +D (、、由题设可设1324,)(,)2x Q y H x y (、,122(,)33x x y G +212243(,)(,)222x x y AH x y QF y ∴==--, 212(,)BC x x y =-2212422142()0()AH BCAH BC x x x y y x x x y y ⊥∴•=-+=-∴=-212223221232()()0222()22QF ACx x yQF AC x y y x x x y y y ⊥∴•=-+-=-∴=+121221224323()(,),)22x x x x x x y QH x y y --∴=--=--2(22y 2112212221232122122122122()(,),)3233223()23()1 (,)(,)6321=3x x x y x x y x x x y QG y x x x x x y x x x x x y QH+--∴=--=------=--=--222(62y 66y 22y即=3QH QG ,故Q 、G 、H 三点共线,且QG :GH =1:2【注】:本例如果用平面几何知识、向量的代数运算和几何运算处理,都相当麻烦,而借用向量的坐标形式,将向量的运算完全化为代数运算,这样就将“形”和“数”紧密地结合在一起,从而,很多对称、共线、共点、垂直等问题的证明,都可转化为熟练的代数运算的论证。

相关文档
最新文档