直升机飞行操控的基本原理
直升飞机飞行原理

直升飞机飞行原理直升机是一种垂直起降的飞行器,它可以在空中悬停、向前、向后、向左、向右飞行,还可以进行定点停留、低高度飞行、复杂地形涂毒、运输货物等,是一种非常灵活多变的飞行器。
那么,直升机是如何实现这种“绕不过去”的飞行方式的呢?下面,我们来了解一下直升机的飞行原理。
一、空气动力学基础不论是飞机还是直升机,它们都要靠空气动力学来实现飞行。
空气动力学是研究空气对物体的作用的学科。
在空气中,物体移动时,空气会对其产生阻力、升力和推力等作用。
在直升机的飞行中,最主要的就是升力了。
升力是空气对直升机产生的向上的支持力,使其能够腾空而起。
而产生升力的关键,则是由于在直升机的旋转叶片上产生了一个向下的气流,这个气流将气体压缩,使其速度加快,压力降低,形成低压区。
而直升机上方的空气则形成高压区,从而产生了升力。
二、基本构造1.机身部分:直升机的主体部分,其中装置有驾驶室、乘客和货物舱、发动机等。
2.旋翼部分:直升机最重要的部分,由主旋翼和尾旋翼组成。
3.主旋翼:是直升机上的最重要的部分,主要产生升力和推进力。
它是一组大型的可旋转叶片,可以轮流地在上下、左右和前后方向调整。
4.尾旋翼:又称为方向舵,主要负责平衡和转向直升机。
5.起落架:支撑直升机在地面或者水面上的装置。
三、飞行原理我们知道,飞机在飞行中通过翼面产生升力和推力来维持飞行。
而直升机则是通过旋翼来产生升力和推力,从而可以实现垂直起降和各种方向的移动。
正常飞行时,主旋翼的旋转速度越快,升力就越大。
主旋翼在旋转时还产生了空气流,对于尾旋翼而言,这种空气流就相当于一束强劲的风,从而也可以产生升力和推力,平衡直升机并控制飞行方向。
直升机的旋翼不仅可以产生升力和推力,还可以调整飞行方向。
当主旋翼向右旋转时,直升机就会向左飞行,反之亦然。
而尾旋翼则可以扭转调整直升机的飞行方向。
在直升机的飞行过程中,由于旋翼旋转的高速气流形成较大的后向力,所以需要加装平衡重量使其平衡。
直升机飞行手册

直升机飞行手册一、介绍直升机作为一种独特的飞行器具有广泛的应用。
本文将详细介绍直升机飞行手册,包括基本原理、飞行操纵、安全操作等内容。
二、基本原理直升机的飞行原理有别于固定翼飞机。
直升机通过产生升力和推力来保持飞行平衡。
2.1 产生升力直升机通过旋转主旋翼产生升力。
主旋翼的叶片角度和旋转速度决定了产生的升力大小。
2.2 产生推力直升机通过尾旋翼产生推力,以抵消主旋翼反作用力和旋转桨叶产生的扭矩。
三、飞行操纵直升机的飞行操纵包括操纵杆、脚踏板和控制面等操作。
3.1 操纵杆操纵杆用于控制直升机的上下倾斜和左右转向。
向前推动操纵杆可以使直升机向前倾斜,增加前进速度。
3.2 脚踏板脚踏板用于控制直升机的转向,向左踏板可以使直升机向左转向,向右踏板则相反。
3.3 控制面直升机的控制面包括副翼、升降舵和方向舵等。
副翼用于横滚控制,升降舵用于上升和下降控制,方向舵用于方向控制。
四、安全操作直升机的安全操作对飞行员来说至关重要。
以下是一些安全操作的注意事项。
4.1 事前检查在飞行前必须进行彻底的事前检查,包括机身、旋翼、发动机、燃油系统等。
确保所有部件正常运作,不存在故障或损坏。
4.2 保持平衡直升机在飞行过程中需要保持平衡,飞行员需要不断调整操纵杆和脚踏板来控制飞行姿态。
保持飞行平衡可以提高飞行的安全性。
4.3 飞行规则遵守飞行规则是确保航空安全的重要措施。
飞行员应严格遵守空中交通管制规定,如保持适当距离、避免违规飞行等。
4.4 应急处置在紧急情况下,飞行员应能够迅速做出正确决策和应急处置。
训练良好的飞行员能够在危险情况下保持冷静,并及时采取必要的应对措施。
结论直升机飞行手册包括基本原理、飞行操纵和安全操作等内容。
了解和掌握这些知识对于成为一名合格的直升机飞行员至关重要。
飞行员需要在训练中不断学习和提升自己的技能,以确保飞行的安全和顺利。
直升机飞行操控的基本原理

直升机飞行操控的基本原理图 1 直升机飞行操纵系统- 概要图(a)(b)图2 直升机操纵原理示意图1.改变旋翼拉力的大小2.改变旋翼拉力的方向3.改变尾桨的拉力飞行操纵系统包括周期变距操纵系统、总距操纵系统和航向操纵系统。
如图2所示,周期变距操纵系统控制直升机的姿态(横滚和俯仰),总距操纵系统控制直升机的高度,航向操纵系统控制直升机的航向。
一、周期变距操纵系统周期操纵系统用于操纵旋翼桨叶的桨距周期改变。
当桨距周期改变时,引起桨叶拉力周期改变,而桨叶拉力的周期改变,又引起桨叶周期挥舞,最终使旋翼锥体相对于机身向着驾驶杆运动的方向倾斜,从而实现直升机的纵向(包括俯仰)及横向(包括横滚)运动。
纵向和横向操纵虽然都通过驾驶杆进行操纵,但二者是各自独立的。
周期变距操纵系统(见图3)包括右侧和左侧周期变距操纵杆(1)和(3)、可调摩擦装置(2)、橡胶波纹套(4)、俯仰止动件(5)、横滚连杆(7)、俯仰连杆(8)、横滚止动件及中立位置定位孔(9)、横滚拉杆(10)、横滚协调拉杆(11)、俯仰扭矩管轴组件(12)、总距拉杆(13)、与复合摇臂相连接的拉杆(14)、伺服机构(15)、伺服机构(横滚+总距)(16)、伺服机构(俯仰+总距)(17)和可调拉杆(18)等组件。
1.右侧周期变距操纵杆3.左侧周期变距操纵杆2.可调摩擦装置4.橡胶波纹套5.俯仰止动件6.复合摇臂 7.横滚连杆8.俯仰连杆9.横滚止动件及中立位置定位孔10.横滚拉杆11.横滚协调拉杆12.俯仰扭矩管轴组件13.总距拉杆14.与复合摇臂相连接的拉杆15.伺服机构16.伺服机构(横滚+总距)17.伺服机构(俯仰+总距)18.可调拉杆图 3 直升机周期变距操纵系统(一)纵向操纵情况当前推驾驶杆时,通过俯仰扭矩管轴组件(9)及俯仰连杆(8),使复合摇臂(6)上的纵向摇臂逆时针转动,通过其后的拉杆、摇臂,使左前侧纵向伺服机构下移,自动倾斜器固定盘向左前方倾斜,旋翼桨盘前倾,进而使直升机向前运动。
无人机飞行原理—无人直升机飞行原理

4.操纵性
1、操纵方式
直升机的操纵都是通过主旋翼及尾桨来实现的,由于直升机的纵向移动与俯仰转动、横侧移动与滚转是 不能独立分开的,因此直升机的操纵主要有以下4种方式:
(1)垂直运动操纵。通过总距杆改变旋翼桨叶角而改变旋翼拉力,操纵直升机升降改变升力的大小来 实现。
(2)纵向运动操纵。通过改变旋翼纵向倾斜角而改变拉力方向,产生附加纵向力来操纵直升机前进或 后退。
(3)横侧运动操纵,通过改变旋翼横向倾斜角而改变拉力方向,产生附加横侧力来实现。 (4)航向运动操纵,通过改变尾桨拉力大小,改变尾桨桨距而改变尾桨拉力来保证原定航向或进行左 右转弯。
三、无人直升机飞行原理
4.操纵性
2、操纵方法
直升机的操纵系统,是指传递操纵指令、进行总操纵、变距操纵和航向操纵的操纵机构和操纵线路。 1)总距操纵 总距操纵,是通过操纵自动倾斜器调节变距铰,使各片桨叶的安装角同时增大或减小,进而使主旋翼的 总桨距改变,从向改变旋翼拉力F的大小。当拉力F大于直升机重力G时,直开机就上升,反之,直升机则 下降。
直升机在垂直飞行状态(轴流状态)时,每片桨叶受到的作用力,除桨叶自身重力外,还有桨叶的拉力 和惯性离心力。由于旋翼周向气流是对称的,每片桨叶在旋转一周中,拉力和惯性离心力不变,所以,桨 叶在各个方向上扬起的角度均相同,主旋翼上的拉力如图。
三、无人直升机飞行原理源自3.稳定性稳定性,是直升机的一种运动属性,通常指直升机保持固有运动状态或抵制外界扰动的能力。 直升机的静稳定性是指平衡状态被破坏瞬间的直升机运动趋势,包括3种形式:静稳定的、静不稳定的和 中性稳定的。 影响直升机稳定性的影响因素很多,主要有如下两点: (1)飞行速度。在低速前飞时平尾提供静不稳定力矩,但随着前飞速度增加,当旋翼尾流不影响到平尾 时,平尾能改善直升机的速度稳定性;同时在较大速度下,平尾也能改善直升机的迎角稳定性。 (2)重心位置。直升机重心对迎角稳定性有明显的影响,后重心时的迎角不稳定性要比正常重心时严重, 这是由于旋翼拉力增量对重心产生的力矩是不稳定的抬头力矩。为了使旋冀对迎角的不稳定程度不是太严 重,要严格限制直升机的后重心。
直升机的飞控原理

直升机的飞控原理直升机的飞控系统是控制直升机飞行的核心部件,它的基本原理是通过对旋钮、操纵杆等操纵装置的操作转换成电信号,再通过电子设备对这些信号进行处理和控制,最终传达给直升机各个部位,实现对直升机姿态、航向、高度、速度等参数的控制。
直升机的飞控系统由多个部分组成,包括飞行总线、飞行控制计算机、电动操纵表面、液压操纵系统等。
飞行总线是连接飞行控制计算机和其他部件的通信系统,用于传输控制指令和接收状态信息。
飞行控制计算机是控制系统的核心,负责处理操纵装置转换成的电信号,根据飞行任务要求和飞行状态进行计算和控制,再通过飞行总线向其他部件发送控制指令。
直升机的飞控系统实现对姿态的控制主要是通过电动操纵表面和液压操纵系统来实现的。
电动操纵表面一般包括前翼、副翼和方向舵等,通过电机驱动改变表面的位置和角度,从而改变直升机的姿态。
液压操纵系统一般包括液压泵、液压缸和液压阀等,通过泵将液压油输送到缸中,使缸表面的活塞发生位移,进而改变操纵表面的位置和角度。
直升机的飞控系统还可以实现对航向、高度和速度等参数的控制。
航向控制主要是通过控制尾桨的转动来实现的。
尾桨通过尾桨马达驱动,可以改变直升机的航向。
高度控制主要是通过改变旋翼的推力来实现的。
旋翼的叶片角度可以通过电机驱动的系统或液压驱动的系统进行调节,从而改变旋翼的推力。
速度控制主要是通过改变旋翼的转速来实现的。
旋翼的转速可以通过燃油分配系统或液压调节系统来进行控制。
飞行控制计算机是直升机飞控系统的核心部件,它通过接收操纵装置的输入信号,根据飞行任务和状态信息进行计算和控制,最终向操纵表面和液压操纵系统发送控制指令。
飞行控制计算机一般具有实时计算、状态估计和故障处理等功能。
它可以实现对直升机的自动控制和稳定飞行。
总之,直升机的飞控系统是控制直升机飞行的关键部件,通过操纵装置的操作转换成电信号,然后通过飞行控制计算机进行处理和控制,最终传达给直升机各部件,实现对直升机的姿态、航向、高度、速度等参数的控制。
直升机飞行原理(图解)

飞行原理(图解)直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。
旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。
旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题.直升机主旋翼反扭力的示意图没有一定的反扭力措施,直升机就要打转转/ 尾桨是抵消反扭力的最常见的方法直升机抵消反扭力的方案有很多,最常规的是采用尾桨。
主旋翼顺时针转,对机身就产生逆时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力.抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见/ 典型的贝尔407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。
有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。
各国直升机主旋翼旋转方向的比较尾桨给直升机的设计带来了很多麻烦。
尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。
极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆.尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。
为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性.尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制.在战斗中,直升机因为尾桨受损而坠毁的概率远远高于因为其他部位被击中的情况。
直升机控制方向的原理

直升机控制方向的原理直升机控制方向的原理可真是个有趣的话题!大家都知道,直升机看似在空中翩翩起舞,实际上它的控制原理可不简单。
想象一下,直升机就像是一位优雅的舞者,随时准备在空中翻转、旋转。
这其中的关键,当然少不了那几个重要的部分,像是主旋翼、尾旋翼,还有驾驶舱里的各种操控杆。
主旋翼就像直升机的心脏,负责提供升力。
说白了,就是让它飞起来的那个“推手”。
当飞行员拉动操控杆,主旋翼的角度就会发生变化,升力也随之变化。
就像人们在跳舞时需要根据节奏调整动作,直升机也得根据飞行的需求来调整旋翼的角度。
这时候,飞行员就像是导演,负责指挥这场空中舞蹈。
只要一用力,直升机就会瞬间向上升,真是太酷了!尾旋翼也是个关键角色,别小看它!它的作用是抵消主旋翼带来的扭转力。
如果没有尾旋翼,直升机可能会在空中像个失控的陀螺,转得人晕头转向。
尾旋翼通过调整自己的角度,给直升机提供了一个稳定的方向感。
简而言之,尾旋翼就像是舞者的另一只手,帮助保持平衡。
飞行员只需要稍微调一下控制杆,就能让直升机稳定地向某个方向飞去,真是灵活得很!在实际飞行中,直升机的控制可不是一帆风顺的。
风的影响、空气的流动,还有各种气候变化,都会对飞行造成挑战。
这时候,飞行员的技术就显得尤为重要。
可以说,飞行员就像是直升机的灵魂人物,操控着这台空中机器在各种情况下游刃有余。
面对突如其来的气流,飞行员只需迅速调整操控杆,直升机就能像一只灵活的小鸟,轻松应对。
想想看,能在空中自由飞翔,那种感觉简直就是人生赢家!飞行员在操作直升机时,还得运用到“集体控制”和“局部控制”的原理。
集体控制主要影响主旋翼的角度,决定直升机的升降。
而局部控制则是调整尾旋翼,帮助直升机进行转向。
就好比在团体舞中,大家需要配合默契,才能跳得好。
飞行员通过精妙的配合,令直升机在空中游走如飞。
这个过程真的是一门艺术,甚至有点像是在空中绘画,每一个动作都是一笔,最终勾勒出一幅美丽的图画。
说到直升机的方向控制,那可真是个技术活!飞行员通过操控杆的前后左右移动,来实现直升机的飞行方向。
直升机的操纵原理

直升机操纵原理
旋翼不仅提供升力同时也是直升机的主要操 纵面。
总距操纵杆:通过自动倾斜器改变旋翼桨叶 总距,控制直升机的升降运动。提杆,增大 总距,升力增大,直升机上升;压杆,减小 总距,直升机下降。
周期变距操纵杆:操纵周期变距操纵杆,使 自动倾斜器相应的倾斜,从而使桨叶的桨距 作每周一次的周期改变,造成旋翼拉力矢量 按相应的方向倾斜,达到控制直升机的前、 后(左、右)和俯仰(或横滚)运动。
驾驶杆和脚蹬
驾驶杆位于驾驶员座椅前面,通过操纵线系与旋翼 的自动倾斜器连接。驾驶杆偏离中立位置表示:
向前——直升机低头并向前运动; 向后——直升机抬头并向后退; 向左——直升机向左倾斜并向左侧运动; 向右——直升机向右倾斜并向右侧运动。 脚蹬位于座椅前下部,对于单旋翼带尾桨的直升机
旋翼自动倾斜器
自动倾斜器
自动倾斜器发明于1911年,由于其出现使直升机的复杂 操纵得以实现,现已在所有直升机上应用。其构造形式虽 有多种,但工作原理基本相同。一般由与操纵线系相连的 不旋转件和与桨叶变距拉杆相连的旋转件组成。不旋转件 通过径向止推轴承与旋转件相连。由操纵线系输入的操纵 量,经过不旋转件转换成旋转件的上下移动和倾斜运动, 再由旋转件通过与桨叶变距摇臂相连的桨叶变距拉杆去改 变桨叶桨距,使旋翼拉力的大小和方向改变,从而实现直 升机的飞行操纵。倾斜盘旋转件的转动由与旋翼桨毂相连 的扭力臂带动。倾斜盘在结构上要保证纵向、横向和总距 操纵的独立性。
6.3.2 布局形式对旋翼操纵的影响
对双旋翼直升机(纵列式﹑横列式和共轴式) 的上升和下降﹑俯仰﹑偏航﹑滚转及侧向运 动,主要靠控制两旋翼自动倾斜器和总距的 协调工作而达到控制目的。
(1)垂直操纵原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直升机飞行操控的基本原理
图1 直升机飞行操纵系统- 概要图
(a)
(b)
图2 直升机操纵原理示意图
1.改变旋翼拉力的大小
2.改变旋翼拉力的方向
3.改变尾桨的拉力
飞行操纵系统包括周期变距操纵系统、总距操纵系统和航向操纵系统。
如图2所示,周期变距操纵系统控制直升机的姿态(横滚和俯仰),总距操纵系统控制直升机的高度,航向操纵系统控制直升机的航向。
一、周期变距操纵系统
周期操纵系统用于操纵旋翼桨叶的桨距周期改变。
当桨距周期改变时,引起桨叶拉力周期改变,而桨叶拉力的周期改变,又引起桨叶周期挥舞,最终使旋翼锥体相对于机身向着驾驶杆运动的方向倾斜,从而实现直升机的纵向(包括俯仰)及横向(包括横滚)运动。
纵向和横向操纵虽然都通过驾驶杆进行操纵,但二者是各自独立的。
周期变距操纵系统(见图3)包括右侧和左侧周期变距操纵杆(1)和(3)、可调摩擦装置(2)、橡胶波纹套(4)、俯仰止动件(5)、横滚连杆(7)、俯仰连杆(8)、横滚止动件及中立位置定位孔(9)、横滚拉杆(10)、横滚协调拉杆(11)、俯仰扭矩管轴组件(12)、
总距拉杆(13)、与复合摇臂相连接的拉杆(14)、伺服机构(15)、伺服机构(横滚+总距)(16)、伺服机构(俯仰+总距)(17)和可调拉杆(18)等组件。
1.右侧周期变距操纵杆3.左侧周期变距操纵杆
2.可调摩擦装置 4.橡胶波纹套 5.俯仰止动件 6.复合摇臂7.横滚连杆8.俯仰连杆9.横滚止动件及中立位置定位孔10.横滚拉杆11.横滚协调拉杆12.俯仰扭矩管轴组件1
3.总距拉杆1
4.与复合摇臂相连接的拉杆1
5.伺服机构1
6.伺服机构(横滚+总距)1
7.伺服机构(俯仰+总距)1
8.可调拉杆
图3 直升机周期变距操纵系统
(一)纵向操纵情况
当前推驾驶杆时,通过俯仰扭矩管轴组件(9)及俯仰连杆(8),使复合摇臂(6)上的纵向摇臂逆时针转动,通过其后的拉杆、摇臂,使左前侧纵向伺服机构下移,自动倾斜器固
定盘向左前方倾斜,旋翼桨盘前倾,进而使直升机向前运动。
后拉驾驶杆,情况相反。
(二)横向操纵情况
当右压驾驶杆时,驾驶杆向右偏转,带动左横滚连杆(7)向前运动,同时右横滚连杆(7)向后运动。
通过复合摇臂(6)及其后的拉杆、摇臂,使左后侧横向伺服机构上移,右侧伺服机构下移,自动倾斜器固定盘向右前方倾斜,旋翼桨盘右倾,进而使直升机向右运动。
左压驾驶杆情况相反。
二、总距操纵系统
总距操纵系统用于操纵旋翼的总桨距,使各片桨叶的桨距同时增大或减小,从而改变旋翼拉力的大小。
旋翼总桨距改变时,其需用功率也随之改变。
因此,还必需相应地改变发动机的油门,使发动机输出功率与旋翼的需用功率相匹配。
为了减轻驾驶员的负担,通常将发动机的油门操纵与总桨距操纵交联。
这样,当驾驶员操纵总桨距时,发动机的油门开度(供油量)也相应改变。
所以,总桨距操纵又称为桨距—油门操纵,它是由一根桨距—油门杆来进行操纵的。
旋翼的总桨距以及周期变距操纵都是通过自动倾斜器实现的。
总距操纵系统包括旋翼手柄(1)、可调摩擦装置(2)、总距扭矩管(3)、总距拉杆(4)、复合摇臂(5)、总距杆配平弹簧(6)、总距止动件及中心位置定位孔(7)、左侧和右侧总距杆(8)和(9)、复合摇臂上的预调器操纵摇臂(10)、横滚连杆(11)、俯仰拉杆(12)、与复合摇臂相连接的拉杆(13)、伺服机构(14)、伺服机构(横滚+总距)(15)、伺服机构(俯仰+总距)(16)和可调拉杆(17)等组件。
1.旋翼手柄
2.可调摩擦装置
3.总距扭矩管
4.总距拉杆
5.复合摇臂
6.总距杆配平弹簧
7.总距止动件及中心位置定位孔
8.左侧总距杆
9.右侧总距杆10.复合摇臂上的预调器操纵摇臂11.横滚连杆12.俯仰拉杆13.与复合摇臂相连接的拉杆14.伺服机构
15.伺服机构(横滚+总距16.伺服机构(俯仰+总距)17.可调拉杆
图4 直升机总距操纵系统
当上提总距杆时,总距拉杆(4)向前运动,带动复合摇臂及其上的三个周期变距操纵摇臂顺时针旋转,经后面三个拉杆(13)、摇臂传动使伺服机构作动筒壳体都向上移动同一位移,自动倾斜器也上移同一位移,三片桨叶安装角同时增大某一值,进而使直升机的升力增加。
下放总距杆时正好相反。
三、航向操纵系统
航向操纵系统用于操纵尾桨叶的桨距,改变尾桨推力(或拉力)大小,以实现航向操纵。
航向操纵系统由脚蹬组件和操纵线系两大部分组成。
航向操纵系统(见图8-7和8-8)包括右侧脚蹬组件(1)、尾梁中的连接装置(2)、航向柔性操纵钢索(3)、止动件(4)、左侧脚蹬组件(5)和扭力管(6)等组件。
1.右侧脚蹬组件
2.尾梁中的连接装置
3.航向柔性操纵索
4.止动件
5.左侧脚
蹬组件
6.扭力管
图5 直升机航向操纵系统
图6 脚蹬组件分解
驾驶员蹬脚蹬,经操纵线系,保持或改变尾桨叶的桨距,以改变尾桨推力的大小,保持或改变直升机的方向。
当向前蹬右脚蹬时,尾桨叶桨距增加,进而增加尾桨推力,直升机向右转;而向前蹬左脚蹬时,效果正好相反。
四、飞行操纵系统简要说明
图5 操纵杆操作简要示意图
图6总桨距操作简要示意图
尾桨操纵的工作原理:
当向前蹬右脚蹬时,尾桨桨距
增加,当向前蹬左脚蹬时其效果相
反。
旋翼操纵系统的工作原理:
周期变距操纵杆和总桨距操纵
杆的作用如图7所示。
1) 横向周期变距操纵杆的作
用:
当向左压周期变距操纵杆时,左
右横向线系作反向的等距运动,使自
动倾斜器绕Y轴(该Y轴通过纵向伺服
机构安装点)向右倾斜。
2)纵向周期变距操纵杆的作
用:
当向前推周期变距操纵杆时,
纵向线系使自动倾斜器绕X轴(该轴
通过两个横向伺报机构的安装点)向
前倾斜。
3) 总桨距操纵杆的作用:
当上提总桨距操纵杆时,总桨距
值增大,纵向和横向线系自复合摇臂处起,在相同方向作等量的位移,使得自动倾斜器平行于初始位置向上平移。
图8 复合摇臂运动示意图。