直升机与普通飞机区别及飞行简单原理

合集下载

直升飞机飞行原理

直升飞机飞行原理

直升飞机飞行原理直升机是一种垂直起降的飞行器,它可以在空中悬停、向前、向后、向左、向右飞行,还可以进行定点停留、低高度飞行、复杂地形涂毒、运输货物等,是一种非常灵活多变的飞行器。

那么,直升机是如何实现这种“绕不过去”的飞行方式的呢?下面,我们来了解一下直升机的飞行原理。

一、空气动力学基础不论是飞机还是直升机,它们都要靠空气动力学来实现飞行。

空气动力学是研究空气对物体的作用的学科。

在空气中,物体移动时,空气会对其产生阻力、升力和推力等作用。

在直升机的飞行中,最主要的就是升力了。

升力是空气对直升机产生的向上的支持力,使其能够腾空而起。

而产生升力的关键,则是由于在直升机的旋转叶片上产生了一个向下的气流,这个气流将气体压缩,使其速度加快,压力降低,形成低压区。

而直升机上方的空气则形成高压区,从而产生了升力。

二、基本构造1.机身部分:直升机的主体部分,其中装置有驾驶室、乘客和货物舱、发动机等。

2.旋翼部分:直升机最重要的部分,由主旋翼和尾旋翼组成。

3.主旋翼:是直升机上的最重要的部分,主要产生升力和推进力。

它是一组大型的可旋转叶片,可以轮流地在上下、左右和前后方向调整。

4.尾旋翼:又称为方向舵,主要负责平衡和转向直升机。

5.起落架:支撑直升机在地面或者水面上的装置。

三、飞行原理我们知道,飞机在飞行中通过翼面产生升力和推力来维持飞行。

而直升机则是通过旋翼来产生升力和推力,从而可以实现垂直起降和各种方向的移动。

正常飞行时,主旋翼的旋转速度越快,升力就越大。

主旋翼在旋转时还产生了空气流,对于尾旋翼而言,这种空气流就相当于一束强劲的风,从而也可以产生升力和推力,平衡直升机并控制飞行方向。

直升机的旋翼不仅可以产生升力和推力,还可以调整飞行方向。

当主旋翼向右旋转时,直升机就会向左飞行,反之亦然。

而尾旋翼则可以扭转调整直升机的飞行方向。

在直升机的飞行过程中,由于旋翼旋转的高速气流形成较大的后向力,所以需要加装平衡重量使其平衡。

直升机与飞机的区别

直升机与飞机的区别

直升机与飞机的区别《中国大百科全书》 (l985 版 ) 对飞机的定义是 :" 由动力装置产生前进推力 , 由固定机翼产生升力 , 在大气层中飞行的重于空气的航空器。

" 特别指出 : 无动力装置的滑翔机、以旋翼作为主要升力面的直升机以及在大气层外飞行的航天飞机都不属于飞机的范围。

但在日常生活中, 盲人习惯地将气球、飞艇以外的航空器泛称飞机。

那么什么是直升机呢 ? 《中国大百科全书》对直升机的定义是: " 以动力驱动的旋翼作为主要升力来源、能垂直起落的重于空气的航空器。

" 它既区别于以旋翼作为主要升力来源但不能垂直起落的旋翼机、又区别于不是以旋翼作为主要升力来源的垂直起落飞机。

直升机属于旋翼航空器 , 装有一副或几副类似于大直径螺旋桨的旋翼。

旋翼安装在机体上方近于铅垂的旋翼轴上、由动力装置驱动, 能在静止的空气和相对气流中产生向上的升力。

旋翼由自动倾斜器控制, 又可产生向前、向后、向左或向右的水平分力, 因此直升机既能垂直上升下降、空中悬停 , 又能向前后左右任一方向飞行。

直升机可以在狭小的场地上垂直起飞和降落而无需跑道。

装有轮式起落架的直升机也可滑跑起飞。

当发动机在空中停车 , 直升机还可以利用旋翼自转下滑, 安全着陆。

直升机与固定翼飞机各有所长、优势互补。

直升机的突出特点是可以做低空飞 (离地面数米) 、低速飞(从悬停开始) 、倒飞和侧飞等机动飞行 , 特别是可在小面积场地垂直起降。

这些特点使直升机具有广阔的用途及发展前景。

在军用方面 ,它已广泛应用于对地攻击、机降登陆、武器运送、后勤支援、战场救护、侦察巡逻、指挥控制、通信联络、反潜扫雷、电子对抗等。

在民用方面 , 它已应用于短途运输、医疗救护、抢险救灾、紧急营救、吊装设备、地质勘探、护林灭火、空中摄影等。

海上油井与基地间的人员及物资运输是民用的一个重要方面。

在直升机发展过程中, 人们曾对各种结构类型进行过探索, 而目前最流行的主要有单旋翼直升机和双旋翼直升机两种。

直升飞机的原理

直升飞机的原理

直升飞机的原理
直升飞机是一种垂直起降的飞行器,它的原理主要依靠旋翼和尾桨的运动。

下面是直升飞机的工作原理的详细解释:
旋翼是直升飞机的关键部件,通过其转动产生升力。

旋翼由多个叶片组成,叶片的形状以及角度可以根据需要进行调整。

旋翼通过由发动机提供的动力加以驱动,以高速旋转。

在旋翼转动的过程中,叶片产生了一个向上的推力,使得直升飞机可以升空。

为了保持飞机的平衡和稳定,直升飞机还配备了尾桨。

尾桨位于飞机的尾部,与旋翼呈垂直方向。

尾桨的主要作用是对飞机进行控制,通过改变桨叶的角度来摆动飞机的尾部,以调整飞机的方向和平衡。

直升飞机的驾驶员使用控制杆和脚踏来控制飞机的运动。

通过控制杆,驾驶员可以改变旋翼的角度,从而调整升力和下降速度。

同时,通过脚踏控制尾桨的摆动,以进行方向上的调整。

在起飞和降落的过程中,直升飞机使用发动机提供的动力使旋翼产生足够的升力,将飞机垂直起飞或垂直降落。

一旦达到所需高度或目的地,飞机可以向前飞行,通过倾斜控制杆和改变旋翼的角度来调整飞机的速度和位置。

总之,直升飞机的原理主要依靠旋翼和尾桨的运动,通过旋翼产生升力,尾桨进行控制。

驾驶员通过控制杆和脚踏来操纵飞
机的运动。

这使得直升飞机能够在没有跑道的情况下垂直起降,并在需要时进行精确的悬停和飞行。

直升机和飞机的区别

直升机和飞机的区别

直升机和飞机的区别
区别:
1、直升机飞行原理和结构与飞机不同。

飞机靠它的固定机翼产生升力,而直升机是靠它头上的螺旋桨旋转产生升力。

2、直升机的结构和飞机不同。

主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。

3、单旋翼式直升机尾部还装有尾翼,其主要作用,抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。

扩展资料
直升机作为20世纪航空技术极具特色的创造之一,极大地拓展了飞行器的应用范围。

直升机是典型的军民两用产品,可以广泛的应用在运输、巡逻、旅游、救护等多个领域。

直升机的最大时速可达300km/h以上,俯冲极限速度近400km/h,实用升限可达6000米,一般航程可达600到800km左右。

携带机内、外副油箱转场航程可达2000km以上。

飞机是指具有一具或多具发动机的动力装置产生前进的推力或拉力,由机身的固定机翼产生升力,在大气层内飞行的重于空气的航空器。

飞机是20世纪初最重大的`发明之一,公认由美国人莱特兄弟发明。

他们在1903年12月17日进行的飞行作为第一次重于空气的航空器进行的受控的持续动力飞行被国际航空联合会所认可,同年他们创办了莱特飞机公司。

直升机飞行原理

直升机飞行原理

2.5 直升机与旋翼机的飞行原理2.5.1 直升机的飞行原理1. 概况与普通飞机相比,直升机不仅在外形上,而且在飞行原理上都有所不同。

一般来讲它没有固定的机翼和尾翼,主要靠旋翼来产生气动力。

这里所说的气动力既包括使机体悬停和举升的升力,也包括使机体向前后左右各个方向运动的驱动力。

直升机旋翼的桨叶剖面由翼型构成,叶片平面形状细长,相当于一个大展弦比的梯形机翼,当它以一定迎角和速度相对于空气运动时,就产生了气动力。

桨叶片的数量随着直升机的起飞重量而有所不同。

重型直升机的起飞重量在20t 以上,桨叶的数目通常为六片左右;而轻、小型直升机,起飞重量在1.5t 以下,一般只有两片桨叶。

直升机飞行的特点是:(1) 它能垂直起降,对起降场地要求较低;(2) 能够在空中悬停。

即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓下降趋势;(3) 可以沿任意方向飞行,但飞行速度较低,航程相对来说也较短。

2. 直升机旋翼的工作原理直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同于一个机翼。

旋翼的截面形状是一个翼型,如图2.5.1所示。

翼型弦线与垂直于桨毂旋转轴平面(称为桨毂 旋转平面)之间的夹角称为桨叶的安装角,以ϕ表示,有时简称安装角或桨距。

各片桨叶的桨距的平均值称为旋翼的总距。

驾驶员通过直升机的操纵系统可以改变旋翼的总距和各片桨叶的桨距,根据不同的飞行状态,总距的变化范围约为2º~14º。

气流V 与翼弦之间的夹角即为该剖面的迎角α。

显然,沿半径方向每段叶片上产生的空气动力在桨轴方向上的分量将提供悬停时需要的升力;在旋转平面上的分量产生的阻力将由发动机所提供的功率来克服。

旋翼旋转时将产生一个反作用力矩,使直升机机身向旋翼旋转的反方向旋转。

前面提到过,为了克服飞行力矩,产生了多种不同的结构形式,如单桨式、共轴式、横列式、纵列式、多桨式等。

对于最常见的单桨式,需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。

(完整版)直升机操控系统飞控原理简介

(完整版)直升机操控系统飞控原理简介

直升机操控系统飞控原理简介作为一种特殊的飞行器,直升机的升力和推力均通过螺旋桨的旋转获得,这就决定了其动力和操作系统必然与各类固定机翼飞机有所不同。

一般固定翼飞机的飞行原理从根本上说是对各部位机翼的状态进行调节,在机身周围制造气压差而完成各类飞行动作,并且其发动机只能提供向前的推力。

但直升机的主副螺旋桨可在水平和垂直方向上对机身提供动力,这使其不需要普通飞机那样的巨大机翼,二者的区别可以说是显而易见。

操纵系统直升机的操纵系统可分为三大部分:踏板在直升机驾驶席的下方通常设有两块踏板,驾驶员可以通过它们对尾螺旋桨的输出功率和桨叶的倾角进行调节,这两项调整能够对机头的水平方向产生影响。

周期变距杆位于驾驶席的中前方,该手柄的控制对象为主螺旋桨下方自动倾斜器的不动环。

不动环可对主螺旋桨的旋转倾角进行调整,决定机身的飞行方向。

总距杆位于驾驶席的左侧,该手柄的控制对象为主螺旋桨下方自动倾斜器的动环。

动环通过对主螺旋桨的桨叶倾角进行调节来对调整动力的大小。

另外,贝尔公司生产的系列直升机在总距杆上还集成有主发动机功率控制器,该控制器可根据主螺旋桨桨叶的旋转倾角自动对主发动机的输出功率进行调整。

飞行操作升降有些读者可能会认为,直升机在垂直方向上的升降是通过改变主螺旋桨的转速来实现的。

诚然,改变主螺旋桨的转速也不失为实现机体升降的方法之一,但直升机设计师们很早之前便发现,提升主螺旋桨输出功率会导致机身整体负荷加大。

所以,目前流行的方法是在保持主螺旋桨转速一定的情况下依靠改变主螺旋桨桨叶的倾角来调整机身升力的大小。

驾驶员可通过总距杆完成这项操作。

当把总距杆向上提时,主螺旋桨的桨叶倾角增大,直升机上升;反之,直升机下降。

需要保持当前高度时,一般将总距杆置于中间位置。

平移直升机最大飞行优势之一是:可以在不改变机首方向的情况下,随时向各个方向平移。

这种移动是通过改变主螺旋桨的旋转倾角来实现的。

当驾驶员向各个方向扳动周期变距杆时,主螺旋桨的主轴也会发生相应的倾斜。

直升机的工作原理

直升机的工作原理

直升机的工作原理
直升机的工作原理是利用主旋翼和尾推力来产生升力和动力。

主要包括以下几个部分:
1. 主旋翼:主旋翼是直升机最重要的部分,通常由三至六片可调节的旋翼叶片组成。

当发动机提供足够的动力使主旋翼快速旋转时,旋翼叶片会产生升力。

通过改变叶片的推力和螺旋桨角度,可以控制直升机的升力和姿态。

2. 尾推力:直升机的尾部有一根垂直的尾旋翼,它的作用是产生推力和水平方向的倾斜力。

通过改变尾旋翼的推力和方向,可以控制直升机的方向和平衡。

3. 方向舵:直升机的尾部还有一个水平的方向舵,用来控制直升机的左右转向。

通过改变方向舵角度,可以改变直升机的水平方向。

4. 发动机:直升机的发动机通常是内燃机或涡轮发动机,提供所需的动力和转动力给主旋翼。

5. 操纵系统:直升机的操纵系统包括操纵杆、脚踏板、控制杆等。

驾驶员通过操纵这些操纵设备来改变主旋翼和尾推力的推力、角度和方向,从而控制直升机的升力、姿态和飞行方向。

总结来说,直升机的工作原理通过旋转的主旋翼产生升力,通过尾推力和调整方向舵来控制飞行方向,通过发动机提供动力。

驾驶员通过操纵系统来控制这些机构,使直升机飞行在所需高度和方向上。

直升机与飞机的区别

直升机与飞机的区别

直升机与飞机的区别《中国大百科全书》 (l985 版 ) 对飞机的定义是 :" 由动力装置产生前进推力 , 由固定机翼产生升力 , 在大气层中飞行的重于空气的航空器。

" 特别指出 : 无动力装置的滑翔机、以旋翼作为主要升力面的直升机以及在大气层外飞行的航天飞机都不属于飞机的范围。

但在日常生活中, 盲人习惯地将气球、飞艇以外的航空器泛称飞机。

那么什么是直升机呢 ? 《中国大百科全书》对直升机的定义是: " 以动力驱动的旋翼作为主要升力来源、能垂直起落的重于空气的航空器。

" 它既区别于以旋翼作为主要升力来源但不能垂直起落的旋翼机、又区别于不是以旋翼作为主要升力来源的垂直起落飞机。

直升机属于旋翼航空器 , 装有一副或几副类似于大直径螺旋桨的旋翼。

旋翼安装在机体上方近于铅垂的旋翼轴上、由动力装置驱动, 能在静止的空气和相对气流中产生向上的升力。

旋翼由自动倾斜器控制, 又可产生向前、向后、向左或向右的水平分力, 因此直升机既能垂直上升下降、空中悬停 , 又能向前后左右任一方向飞行。

直升机可以在狭小的场地上垂直起飞和降落而无需跑道。

装有轮式起落架的直升机也可滑跑起飞。

当发动机在空中停车 , 直升机还可以利用旋翼自转下滑, 安全着陆。

直升机与固定翼飞机各有所长、优势互补。

直升机的突出特点是可以做低空飞 (离地面数米) 、低速飞(从悬停开始) 、倒飞和侧飞等机动飞行 , 特别是可在小面积场地垂直起降。

这些特点使直升机具有广阔的用途及发展前景。

在军用方面 ,它已广泛应用于对地攻击、机降登陆、武器运送、后勤支援、战场救护、侦察巡逻、指挥控制、通信联络、反潜扫雷、电子对抗等。

在民用方面 , 它已应用于短途运输、医疗救护、抢险救灾、紧急营救、吊装设备、地质勘探、护林灭火、空中摄影等。

海上油井与基地间的人员及物资运输是民用的一个重要方面。

在直升机发展过程中, 人们曾对各种结构类型进行过探索, 而目前最流行的主要有单旋翼直升机和双旋翼直升机两种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直升机与普通飞机区别及飞行简单原理:
不可否认,直升机和飞机有些共同点。

比如,都是飞行在大气层中,都重于空气,都是利用空气动力的飞行器,但直升机有诸多独有特性。

(1)直升机飞行原理和结构与飞机不同飞机靠它的固定机翼产生升力,而直升机是靠它头上的桨叶(螺旋桨)旋转产生升力。

(2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。

根据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。

(3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。

(4)直升机最显眼的地方是头上窄长的大刀式的旋翼,一般由2~5片桨叶组成一副,由1~2台发动机带动,其主要作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气向上的力)使飞机能够平稳的悬在空中。

三、平衡分析(对单旋翼式):
(1)直升飞机的大螺旋桨旋转产生升力平衡重力。

直升飞机的桨叶大概有2—3米长,一般有5叶组成。

普通飞机是靠翅膀产生升力起飞的,而直升飞机是靠螺旋桨转动,拨动空气产生升力的。

直升飞机起飞时,螺旋桨越转越快,产生的升力也越来越大,当升力比飞机的重量还大时,飞机就起飞了。

在飞行中飞行员调节高度时,就只要通过改变大螺旋桨旋转的速度就可以了。

(2)直升飞机的横向稳定。

因为直升飞机如果只有大螺旋桨旋,那么根据动量守衡,机身就也会旋转,因此直升飞机就必须要一个能够阻止机身旋转的装置。

而飞机尾部侧面的小型螺旋桨就是起到这个作用,飞机的左转、右转或保持稳定航向都是靠它来完成的。

同时为了不使尾桨碰到旋翼,就必须把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。

四、能量方式分析。

根据能量守恒定律可知:能量既不会消失,也不会无中生有,它只能从一种形式转化成为另一种形式。

在低速流动的空气中,参与转换的能量只有压力能和动能。

一定质量的空气具有一定的压力,能推动物体做功;压力越大,压力能也越大;流动的空气具有动能,流速越大,动能也越大。

而空气的流速只有来自于发动机所带的螺旋桨对空气的作用,当然从这里分析能量也是守衡的。

直升机螺旋桨升力计算公式
一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。

也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。

1.现在的直升机螺旋桨(叫旋翼)的桨叶是由碳纤维和玻璃钢纤维与复合材料制造而成。

有一定的弹性,不转时,桨叶略有下垂弯曲。

当螺旋桨旋转时,由于离心力的原理,
桨叶会被拉直。

打个比方,我们看杂技“水流星”吧,两只水碗栓在一根绳子两端,放着不动时,绳子是支持不了水碗的,当旋转起来后,我们看到水碗和绳子象直线一样,
空中飞舞。

2.直升机的主螺旋桨是怎么支撑飞机的重量?这个问题就是直升机的飞行原理:(以一般直升机为例)直升机能在空中进行各种姿态的飞行,都是由主旋翼(你讲的螺旋桨)
旋转产生的升力并操纵其大小和方向来实现的。

升力大于重量时,就上升,反之,就下降。

平衡时,就悬停在空中。

直升机的升力大小,不但决定于旋翼的转速,
而且决定于旋翼的安装角(又称桨叶角)。

升力随着转速.桨叶角的增大而增大;随着转速.桨叶角的减小而减小。

直升机在飞行时,桨叶在转每一圈的过程中,桨叶角都是不同的;而且,每片桨叶的桨叶角也是不同的。

这才使直升机能够前.后仰,
左.右倾,完成各种姿态。

直升机尾旋翼的转速和桨叶角的变化同主旋翼原理相同,
控制直升机的左转弯.右转弯和直飞。

不管天空有风无风,直升机要稳定飞行,不变航向,也要靠稳定陀螺仪控制尾旋翼来完成。

总之,直升机旋翼系统非常复杂,
我只讲直升机空中姿态变化与旋翼的关系。

1,直接影响螺旋桨性能的主要参数有:
a.直径D——相接于螺旋桨叶尖的圆的直径。

通常,直径越大,效率越高,但直径往往受到吃水和输出转速等的限制;
b.桨叶数N;
c.转速n——每分钟螺旋桨的转数;
d.螺距P——螺旋桨旋转一周前进的距离,指理论螺距;
e.滑失率——螺旋桨旋转一周,船实际前进的距离与螺距之差值与螺距之比;
f.螺距比——螺距与直径的比(P/D),一般在0.6~1.5之间;一般地说来,高速轻载船选取的值比较大,低速重载的船选取的值比较小;
g.盘面比——各桨叶在前进方向上的投影面积之和与直径为D的圆面积之比。

通常,高转速的螺旋桨所取的比值小,低速、大推力的螺旋桨所取的比值大。

例如,拖轮的螺旋桨盘面比大于1.2甚至更大的情况也不少见;
机翼升力计算公式
升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N)
机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。

在标识的1位置是抖振点,2位置是自动上仰点,3位置是反横操纵和方向发散点,4位置是失速点。

对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力
滑翔比与升阻比
升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。

滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。

如果有两台飞行器,有着完全相同的气动外形,一台大量采用不锈钢材料的,另一台大量采用碳纤维材料,那么碳纤维材料的滑翔比肯定优于不锈钢材料的。

这个在SU-27和歼11-B身上就能体现出来,歼11-B应该拥有更大的滑翔比。

螺旋桨拉力计算公式(静态拉力估算)
你的飞行器完成了,需要的拉力与发动机都计算好了,但螺旋桨需要多大规格呢?下面我们就列一个估算公式解决这个问题
螺旋桨拉力计算公式:
直径(米)×螺距(米)×浆宽度(米)×转速平方(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)
或者
直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速平方(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克)
前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。

1000米以下基本可以取1。

例如:直径100厘米*螺蚊距离45厘米的浆,浆的大宽度10厘米,转速50转/秒,计算可得:
100*45*10*50*50*1*0.00025/1000=28.125公斤。

相关文档
最新文档