2020年高二数学必修三知识点归纳范文

合集下载

高二数学必修三知识点

高二数学必修三知识点

高二数学必修三知识点高二数学必修三是中学数学的重要阶段,学习者在此阶段会接触到许多重要的数学知识点。

本文将介绍高二数学必修三的知识点,包括函数和导数。

一、函数函数是数学中的重要概念,它描述了一种特定的关系,其中每个自变量对应唯一的因变量。

高二数学必修三主要学习了以下几种函数:1. 一次函数:一次函数的表达式为y = kx + b,其中k为斜率,b为截距。

一次函数的图像是一条直线,斜率表示了直线的倾斜程度,截距表示了直线与y轴的交点位置。

2. 二次函数:二次函数的表达式为y = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。

二次函数的图像是一条抛物线,开口的方向取决于a的正负情况。

3. 三角函数:三角函数包括正弦函数、余弦函数和正切函数等。

它们与三角比的关系紧密相关,可以描述角度与边长之间的关系。

4. 指数函数:指数函数的表达式为y = a^x,其中a为底数,x为指数。

指数函数的图像呈现出逐渐增长或逐渐减小的特点。

二、导数导数是函数求导运算的结果,它表示函数在某一点的瞬时变化率。

高二数学必修三讲解了导数的定义、求导法则和应用等内容。

1. 导数的定义:导数的定义是函数在某一点的极限值,可以通过极限运算来计算得到。

导数表示了函数在该点的瞬时变化率。

2. 导数的求导法则:求导法则是计算函数导数的基本规则,其中包括常数因子法则、幂函数求导法则、和差法则、乘积法则、商法则和复合函数求导法则等。

3. 导数的应用:导数在数学和实际问题中有广泛的应用。

它可以用于求解极值问题、判定函数的增减性、描述曲线的凹凸性等。

总结:高二数学必修三的学习内容主要涵盖了函数和导数。

通过学习这些知识点,学习者可以掌握函数的特性和变化规律,进一步理解函数在数学和实际问题中的应用。

同时,导数的学习可以帮助学习者理解函数的变化率和相关概念,为进一步学习微积分打下坚实的基础。

以上就是高二数学必修三的知识点介绍,希望可以对您的学习有所帮助。

高二必修三数学知识点归纳

高二必修三数学知识点归纳

高二必修三数学知识点归纳1.高二必修三数学知识点归纳篇一(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的`前提下可以近似地作为这个事件的概率2.高二必修三数学知识点归纳篇二直线方程:1.点斜式:y-y0=k(x-x0)(x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。

x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。

2.斜截式:y=kx+b直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。

该方程叫做直线的斜截式方程,简称斜截式。

此斜截式类似于一次函数的表达式。

3.两点式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)如果x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线。

如果x1=x2,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式。

如果x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式。

高二数学必修三知识点总结

高二数学必修三知识点总结

高二数学必修三知识点总结
直线与平面的位置关系:这包括空间直线与直线的位置关系、直线与平面的位置关系以及平面与平面的位置关系。

此外,还有直线与平面平行的判定定理的符号表示以及平面与平面平行的判定定理的符号表示。

抛物线的性质:抛物线是一个轴对称图形,其对称轴为直线x=-b/2a。

抛物线的顶点P是对称轴与抛物线的交点,其坐标为P(-
b/2a,(4ac-b)/4a)。

二次项系数a决定抛物线的开口方向和大小,而一次项系数b和二次项系数a共同决定对称轴的位置。

函数的零点:对于由基本函数通过四则运算结合而成的函数,其定义域是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

此外,还有零点存在性定理法和数形结合法来确定函数的零点个数。

频率与概率:随机事件的频率是此事件发生的次数nA与试验总次数n 的比值,它具有一定的稳定性。

随着试验次数的增多,频率会在某个常数附近摆动,这个常数就是随机事件的概率。

直线方程:直线方程有多种形式,包括点斜式、斜截式和两点式。

点斜式方程为y-y0=k(x-x0),其中(x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。

斜截式方程为y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。

两点式方程为(y-y1)/(y2-y1)=(x-x1)/(x2-x1),但需要注意,如果x1=x2且y1=y2,则两点重合,不能确定一条直线。

以上就是高二数学必修三的主要知识点总结,具体的学习和理解还需要结合教材和课堂讲解进行。

数学必修三知识点总结与复习范文

数学必修三知识点总结与复习范文

数学必修三知识点总结与复习范文首先,空间几何与立体几何是数学必修三中的重要内容。

在空间几何中,我们需要掌握立体的名称、性质和刻画方法,如球、锥、柱、棱柱、棱锥等。

通过研究这些立体的性质,我们能够更好地理解空间几何的规律和特点。

在学习立体的刻画方法时,我们需要掌握投影的概念和方法,以及投影的性质和运用。

在解题过程中,我们还需要通过绘图来辅助思考和理解。

此外,我们还需要学习立体几何的相交关系和位置关系,如平行关系、垂直关系、共面关系等。

通过学习和研究这些知识,我们能够培养和发展我们的几何思维能力。

其次,解三角形是数学必修三中的另一个重要内容。

在解三角形的过程中,我们需要运用三角函数和三角恒等式来推导和证明各种三角关系。

在研究三角形的内角和外角时,我们需要掌握内外角的性质和运用。

在解题过程中,我们还需要掌握解三角形的一般步骤和方法,如辅助线法、相似三角形法、正弦定理、余弦定理、正切定理等。

通过研究和解决三角形相关的问题,我们能够培养和发展我们的推理和证明能力。

再次,平面向量是数学必修三中的另一个重要内容。

在学习平面向量的基本概念时,我们需要掌握向量的定义、运算和性质。

在研究平面向量的相等和共线关系时,我们需要运用向量的性质和运算来进行推导和证明。

在解题过程中,我们还需要掌握求向量的模、方向和分解的方法和技巧。

通过学习和研究平面向量相关的知识,我们能够培养和发展我们的代数思维能力。

此外,数列和等比数列是数学必修三中的另一个重要内容。

在学习数列和等比数列的定义和性质时,我们需要掌握数列和等比数列的概念、公式和特点。

在研究数列和等比数列的通项和求和时,我们需要掌握推导和证明的方法和技巧。

在解题过程中,我们还需要掌握数列和等比数列的递推公式和递推关系,以及求和的方法和技巧。

通过学习和研究数列和等比数列相关的知识,我们能够培养和发展我们的数学推理和计算能力。

最后,函数和射线方程是数学必修三中的另一个重要内容。

在学习函数和射线方程的基本概念时,我们需要掌握函数和射线方程的定义、性质和运用。

高二数学必修三知识点总结

高二数学必修三知识点总结

高二数学必修三知识点总结高二数学必修三包含了数列与立体几何两个部分,本文将针对这两个部分的知识点进行总结。

一、数列数列是指按照一定规律排列的一系列数,包括等差数列和等比数列两种。

1. 等差数列等差数列的定义是:数列中相邻两项的差值都相等。

即对于数列{a1, a2, a3, ..., an},满足an - an-1 = d,其中d为公差。

等差数列的求和公式为Sn = (n/2)(a1 + an),其中Sn为前n项和,a1为首项,an为末项。

在解决等差数列问题时,我们常使用以下几个重要的性质:- 通项公式:an = a1 + (n - 1)d;- 前n项和公式:Sn = (n/2)(a1 + an);- 通项公式的推导过程。

2. 等比数列等比数列的定义是:数列中相邻两项的比值都相等。

即对于数列{a1, a2, a3, ..., an},满足an/an-1 = q,其中q为公比。

等比数列的求和公式为Sn = a1(1 - q^n)/(1 - q),其中Sn为前n 项和,a1为首项,q为公比。

在解决等比数列问题时,我们常使用以下几个重要的性质:- 通项公式:an = a1 * q^(n - 1);- 前n项和公式:Sn = a1 * (1 - q^n)/(1 - q);- 通项公式的推导过程。

二、立体几何立体几何是研究空间内各种几何体的形状、性质和相互关系的数学分支。

1. 空间几何体的表面积和体积在立体几何中,我们常常需要计算几何体的表面积和体积。

常见的几何体包括立方体、正方体、长方体、圆柱体、圆锥体和球体,它们的表面积和体积的计算公式如下:- 立方体的表面积:S = 6 * a^2,体积:V = a^3;- 正方体的表面积:S = 6 * a^2,体积:V = a^3;- 长方体的表面积:S = 2 * (a * b + a * c + b * c),体积:V = a * b * c;- 圆柱体的表面积:S = 2πr(r + h),体积:V = πr^2h;- 圆锥体的表面积:S = πr(r + l),体积:V = (1/3)πr^2h,其中l 为直径;- 球体的表面积:S = 4πr^2,体积:V = (4/3)πr^3。

高二数学必修三重点知识点归纳

高二数学必修三重点知识点归纳

高二数学必修三重点知识点归纳(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二数学必修三重点知识点归纳本店铺为各位同学整理了《高二数学必修三重点知识点归纳》,希望对你的学习有所帮助!1.高二数学必修三重点知识点归纳篇一(一)导数第一定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第一定义(二)导数第二定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第二定义(三)导函数与导数如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。

高二数学必修3知识点总结

高二数学必修3知识点总结

高二数学必修3知识点总结高二数学必修3知识点包括平面向量、解析几何、立体几何和概率统计。

本文将对这些知识点进行总结和归纳,以帮助同学们更好地理解和掌握这些知识。

一、平面向量1. 向量的基本概念:矢量、向量的模、单位向量、零向量等。

2. 向量的表示法:坐标表示法、位置矢量表示法和线段表示法。

3. 向量的运算:向量的相等、加法、减法、数乘等运算。

4. 向量的数量积:数量积的定义、性质和计算方法。

5. 向量的向量积:向量积的定义、性质和计算方法。

6. 向量的混合积:混合积的定义、性质和计算方法。

二、解析几何1. 坐标表示方法:直角坐标系、点的坐标、向量的坐标等。

2. 直线的方程:点斜式、一般式、两点式等。

3. 平面的方程:点法式、一般式等。

4. 直线与直线的位置关系:相交、平行、重合等。

5. 直线与平面的位置关系:相交、平行、垂直等。

6. 平面与平面的位置关系:相交、平行、垂直等。

三、立体几何1. 空间几何体的基本概念:点、线、面、体等。

2. 平行线、平面、垂直线、垂直平面等的性质。

3. 球的性质:球面、球心、半径、切线等。

4. 圆锥、圆台的性质:侧面、底面、母线等。

5. 空间坐标系:直角坐标系、柱面坐标系等。

6. 空间几何体的体积和表面积的计算方法。

四、概率统计1. 随机事件的基本概念:样本空间、随机事件、必然事件、不可能事件等。

2. 事件的关系:包含关系、互斥关系、对立关系等。

3. 概率的基本性质和计算方法:古典概型、排列组合等。

4. 条件概率和乘法定理:条件概率的概念、乘法定理的应用等。

5. 全概率公式和贝叶斯定理:全概率公式的定义和应用、贝叶斯定理的定义和应用等。

6. 随机变量和概率分布:离散随机变量、连续随机变量、概率分布等。

以上为高二数学必修3知识点的总结。

希望本文能帮助同学们巩固和复习这些知识,提升数学学习的效果。

最后,祝大家在数学学习中取得好成绩!。

高二必修三数学知识点总结笔记

高二必修三数学知识点总结笔记

高二必修三数学知识点总结笔记(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二必修三数学知识点总结笔记本店铺整理的《高二必修三数学知识点总结笔记》希望能够帮助到大家。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【一】
简单随机抽样的定义:
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

简单随机抽样的特点:
(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n 的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为
(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;
(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.
(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样
简单抽样常用方法:
(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率.
【二】
一.随机事件的概率及概率的意义
1、基本概念:
(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S 的必然事件;
(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;
(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;
(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;
(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;
对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率
二.概率的基本性质
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B 互斥;
(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;
(4)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);若事件A与B为对立事件,则A∪B为必然事件,所以
P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性质:
1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;
2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);
3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪
B)=P(A)+P(B)=1,于是有P(A)=1—P(B);
4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;
(2)事件A不发生且事件B发生;
(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B 有且仅有一个发生,其包括两种情形;
(1)事件A发生B不发生;
(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。

三.古典概型及随机数的产生
(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

(2)古典概型的解题步骤;①求出总的基本事件数;
②求出事件A所包含的基本事件数,然后利用公式P(A)=
四.几何概型及均匀随机数的产生
基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;
(2)几何概型的概率公式:P(A)=;
(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;
2)每个基本事件出现的可能性相等.。

相关文档
最新文档