最新对称、平移、旋转练习题一
2024年数学五年级下册图形的平移与旋转基础练习题(含答案)

2024年数学五年级下册图形的平移与旋转基础练习题(含答案)试题部分一、选择题:1. 下列哪个图形不是轴对称图形?()A. 长方形B. 正方形C. 椭圆D. 平行四边形2. 一个图形平移后,下列哪个属性不会发生改变?()A. 形状B. 大小C. 方向D. 位置3. 下列哪个现象属于旋转现象?()A. 拉抽屉B. 推门C. 滚动圆球D. 滑动滑板4. 将一个正方形绕着它的一个顶点旋转90度,得到的图形是?()A. 矩形B. 菱形C. 正方形D. 平行四边形5. 在平移现象中,下面哪个说法是正确的?()A. 平移前后图形的大小和形状会改变B. 平移前后图形的方向会改变C. 平移前后图形的位置会发生改变D. 平移前后图形的面积会改变6. 下列哪个图形可以通过平移得到另一个相同的图形?()A. 心形B. 数字“8”C. 英文字母“Z”D. 英文字母“B”7. 一个图形绕着某一点旋转180度,得到的图形与原图形()A. 重合B. 相似C. 全等D. 不确定8. 在平移过程中,下面哪个量是不变的?()A. 路程B. 速度C. 时间D. 方向9. 下列哪个图形可以通过旋转90度后与原图形重合?()A. 正三角形B. 正方形C. 长方形D. 梯形10. 一个图形平移3格,再旋转90度,平移2格,这个图形的最终位置与原来相比()A. 向右平移了5格B. 向左平移了5格C. 向上平移了5格D. 向下平移了5格二、判断题:1. 平移是指将一个图形上的所有点按照某个方向作相同距离的移动。
()2. 旋转是指将一个图形绕着某一点转动一个角度的图形变换。
()3. 平移和旋转都不会改变图形的大小和形状。
()4. 旋转180度后,图形的每个点都会与原来的点关于旋转中心对称。
()5. 平移和旋转都是刚体变换。
()6. 一个图形旋转360度后,会回到原来的位置。
()7. 平移和旋转都可以改变图形的位置。
()8. 旋转过程中,图形的大小和形状会发生改变。
小学数学 《图形的平移、旋转与轴对称》习题1

1、分别画出将平行四边形向下平移4格,向左平移8格后得到的图形。
2、把图形向右平移7格后得到的图形涂上颜色。
3、把图形向左平移5格后得到的图形涂上颜色。
4、画出小船向右平移6格后的图形。
5、画下面的图形向右平移6格后的图形。
6、小汽车向()平移了()格,小船机向()平移了()格,小飞机向()平移了()格。
(2)图1绕点“O”逆时针旋转1800到达图()的位置;
(3)图1绕点“O”顺时针旋转()到达图4的位置;
(4)图2绕点“O”顺时针旋转()到达图4的位置;
(5)图2绕点“O”顺时针旋转900到达图()的位置。
10、选择。
(1)时钟从6:00走到18:00是围绕钟面中心旋转()。
(A)180°(B)90°(C)360°
(2)时钟围绕钟面中心旋转()才能从3:00走到9:00。
(A)180°(B)90°(C)360°
11、如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是()。
A B C D
12、如图是用纸折叠成的图案,其中是轴对称图形的有()。
A B C
13、下面的图形是轴对称图形吗?如果是,请你画出它们的对称轴。
22、照这样排下去,第26图形是()。
23、有一列数按“654321654321……”排列着,则第34个数字应是()。
24、王兵在家练习硬笔书法时,写“我们爱科学我们爱科学……”依次写下去,那么第23个字应是()。
25、北京奥运北京奥运北京奥运……,根据排列规律,第43个字是(),第84个字是(),第105个字是(),第122个字是()。
7、画出三角形向右平移4格和梯形向左平移2格后的图形。
五年级对称平移与旋转的习题

五年级对称平移与旋转的习题篇一:潍坊版五年级上册第二单元对称平移与旋转练习题青岛版五年级上册闭合第二单元对称、平移与旋转单元考题一.填空。
1.如果一个图形沿着圆锥一条抛物线对折,两侧的纹理能够完全重合,这个图形就是(),折痕利皮扬卡的直线叫做()。
2.圆的对称轴有()条,半圆形的对称轴有()条。
3.在对称图形中,对称轴两侧相对的零点到对称轴的()。
4.()三角形有三条对称轴,()三角形有一处对称轴。
5.正方形有()条对称轴,长方形有()条对称轴,等腰梯形有()条对称轴。
6、钟表分针的一种全民运动可看做一种旋转现象,一只技术规范时钟的分针匀速旋转,经过15分钟旋转了()度。
二.判断。
1.通过一个圆的圆心的直线是这个圆的。
()2.圆是轴对称图形,每一条直径约都是都它的对称轴。
()3.等腰梯形是对称图象。
()4.正方形只有一条轴线。
( )5、等腰三角形、梯形和圆都是轴对称图形。
()6、所有的统统直径全都是圆的对称轴。
()7、平行四边形也可能是轴对称对角图形。
()三.选择。
1.下列图形中,对称轴最多的是()。
① 等边三角形② 正方形③ 圆④ 长方形2.下面不是轴对称二维的是()。
① 长方形② 平行四边形③ 圆④ 半圆3.要使大小两个圆有无数条旋转轴,应采用第()种画法。
② ①③4、绘图下列图形中不是轴对称图形的是()。
①、等腰梯形②、平行四边形③、等边三角形④、长方形5、将图1所示的图案通过平移后可以得到的图案是:()图1 ① ② 6、如图△ABC经过怎样的平移获得△DEF()。
①、把△ABC向左平移4个单位,再向下平移2个单位。
②、把△ABC向右平移4个单位,再向下平移2个单位。
③、把△ABC向右平移4个单位,再向上平移2个单位。
④、把△ABC向左平移4个单位,再向④ F 上平移两个单位。
7、如图点A、B、C、D、O都在方格纸的格点上才,△COD是由△AOB绕点O按逆时针方向旋转而都,则旋转的角度为()①、30° ②、45° ③、90°④、135° A8、如图四边形ABCD是正方形,E是边CD上一点, D 若△AFB经过逆时针旋转后才,与△AED旋转角可能为()E ①、90° ②、60° ③、45° ④、30°四、画出分别有1、2、3、4条对称轴的图形各一个。
图形的平移,对称与旋转的经典测试题附答案

∵点A向右平移 个单位,向下平移6个单位得到点
∴ 的坐标为 .
故选:D.
【点睛】
本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.
16.观察下列图形,其中既是轴对称又是中心对称图形的是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
∴在Rt∆A′】
本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.
2.如图,在 中, , , ,将 绕一逆时针方向旋转 得到 ,点 经过的路径为弧 ,则图中阴影部分的面积为( )
A. B. C. D.
【答案】D
D、能够通过平移得到,故符合题意,
故选D.
【点睛】
本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.
6.如图,在平面直角坐标系中, 的顶点 在第一象限,点 在 轴的正半轴上, , ,将 绕点 逆时针旋转 ,点 的对应点 的坐标是()
A. B. C. D.
【答案】D
【详解】
由旋转的性质可知, ,
∵ , ,
∴ 为等边三角形,
∴ ,
∴ ,
故选:A.
【点睛】
此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB
19.下列图形中,既是轴对称图形,又是中心对称图形的是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
初一数学图形的对称平移与旋转试题答案及解析

初一数学图形的对称平移与旋转试题答案及解析1.下面有4个汽车标志图案,其中是轴对称图形的有( )A.1个B.2个C.3个D.4个【答案】C.【解析】由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故是轴对称图形的有3个.故选C.【考点】轴对称图形.2.如图,将三角形ABC绕点O旋转得到三角形A/B/C/,且∠AOB=300,∠AOB/=200,则(1)点B的对应点是________________;(2)线段OB的对应线段是____________;(3)∠AOB的对应角是________________;(4)三角形ABC旋转的角度是__________;【答案】B′,OB′,∠A′OB′,50°.【解析】△ABC经过旋转得到△A′B′C′,旋转中心为点O,点B的对应点是B′,线段OB的对应线段为OB′,∠AOB对应∠A′OB′,旋转角∠BOB′=∠AOB+∠AOB′.试题解析:依题意,△ABC经过旋转得到△A′B′C′,可知:旋转中心为点O,点B的对应点是B′,线段OB的对应线段为OB′,∠AOB对应∠A′OB′,∠BOB′=∠AOB+∠AOB′=30°+20°=50°.【考点】旋转的性质.3.下列说法不正确的是()A.平移或旋转后的图形的形状大小不变B.平移过程中对应线段平行(或在同一条直线上)且相等C.旋转过程中,图形中的每一点都旋转了相同的路程D.旋转过程中,对应点到旋转中心的距离相等【答案】C【解析】A、平移或旋转后的图形的形状大小不变,所以A选项的说法正确;B、平移过程中对应线段平行(或在同一条直线上)且相等,所以B选项的说法正确;C、旋转过程中,图形中的每一点所旋转的路程等于以旋转中心为圆心、每个点到旋转中心的距离为半径、圆心角为旋转角的弧长,所以C选项的说法不正确;D、旋转过程中,对应点到旋转中心的距离相等,所以D选项的说法正确.故选C.【考点】1、旋转的性质;2、平移的性质4.(本题4分)如图,在方格纸中,△ABC的三个顶点和点M都在小方格的顶点上.按要求作图,使△ABC的顶点在方格的顶点上.(1)过点M做直线AC的平行线;(2)将△ABC平移,使点M落在平移后的三角形内部.【答案】作图见解析.【解析】(1)根据直线AC经过的网格得出过点M作直线AC的平行线.(2)再将△ABC向下平移1个单位向右平移5个单位得出即可.试题解析:(1)如图所示:(2)如图所示:【考点】作图—基本作图和平移变换.5.把两块全等的直角三角形和叠放在一起,使三角板的锐角顶点与三角板的斜边中点重合,其中,,,把三角板固定不动,让三角板绕点旋转,设射线与射线相交于点,射线与线段相交于点.(1)如图1,当射线经过点,即点与点重合时,易证.此时,;将三角板由图1所示的位置绕点沿逆时针方向旋转,设旋转角为.其中,问的值是否改变?答:(填“会”或“不会”);若改变,的值为(不必说明理由);(2)在(1)的条件下,设,两块三角板重叠面积为,求与的函数关系式.(图2,图3供解题用)【答案】(1)8,不会;(2)当时,当时,.【解析】(1)根据旋转的性质及相似三角形的性质求解即可;(2)情形1:当时,,即,此时两三角板重叠部分为四边形,过作于,于,根据三角形的面积公式求解即可;情形2:当时,时,即,此时两三角板重叠部分为,由于,,易证:,根据相似三角形的性质求解即可.(1)由题意得8;将三角板旋转后的值不会改变;(2)情形1:当时,,即,此时两三角板重叠部分为四边形,过作于,于,由(2)知:得于是情形2:当时,时,即,此时两三角板重叠部分为,由于,,易证:,即,解得于是综上所述,当时,当时,.本题涉及了旋转问题的综合题,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.6.在正方形网格中,每个小正方形的边长均为1个单位长度,△的三个顶点的位置如图所示,现将△平移,使点对应点,点分别对应点.(1) 画出平移后的△.(2) △的面积是_ ;(3) 连接,则这两条线段之间的关系是__ __.【答案】(1)作图见解析;(2)3.5;(3)平行且相等.【解析】(1)由图可得将△ABC先向左平移了3个单位长度,又向下平移了1个单位长度,则可画出图形;(2)△A′B′C′的面积等于边长为3的正方形的面积减去直角边长为2,1的直角三角形的面积,减去边长为1,3的直角三角形面积,减去直角边长为3,2的直角三角形的面积;(3)根据平移前后对应点的连线平行且相等判断即可.试题解析::(1)如图:=3×3-×1×2-×1×3-×2×3=3.5;(2)S△A′B′C′(3)平行且相等.【考点】作图—平移变换.7.如图的图形中只能用其中一部分平移可以得到的是()【答案】B.【解析】A、图形为轴对称所得到,不属于平移;B、图形的形状和大小没有变化,符合平移性质,是平移;C、图形为旋转所得到,不属于平移;D、最后一个图形形状不同,不属于平移.故选B.【考点】利用平移设计图案.8.将长度为5cm的线段向上平移10cm,则所得线段的长度为()A.5cm B.10cm C.15cm D.无法确定【答案】A.【解析】根据平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得:线段长度不变,还是5cm.故选A.【考点】平移的性质.9.把图形(1)进行平移,能得到的图形是()【答案】C【解析】观察图形可知图形进行平移,能得到的图形C,故选C.【考点】生活中的平移现象.10.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为。
2023年苏教版四年级数学下册第一单元平移、旋转和轴对称测试卷含答案

《平移、旋转和轴对称》学校:___________姓名:___________班级:___________考号:___________评卷人得分一、选择题(共10分)1.(本题1分)平移所给图形可得()。
A.B.C.D.2.(本题1分)下面图形中,对称轴条数最多的是()。
A.B.C.D.3.(本题1分)街心花园的花圃进行了园艺造型设计(如下图),涂色部分种植月季花,其余部分种植郁金香,从示意图中可以看出种植月季花的面积是整个花圃的()。
A.13B.无法确定C.14D.124.(本题1分)钟表上时针指向2,分针指向12,3小时后,时针旋转了()°。
A.30B.90C.120D.1505.(本题1分)再画一个小正方形,使下图成为轴对称图形,共有()种不同的画法。
A.2B.3C.4D.56.(本题1分)下图都是常见的安全标记,其中()是轴对称图形。
A.B.C.D.7.(本题1分)从6:00到9:00,时针旋转了()度。
A.90°B.180°C.360°D.120°8.(本题1分)下列图形中,()是轴对称图形。
A.B.C.D.9.(本题1分)如图,在图形中再给2个格子涂上颜色,使整个图形成为一个轴对称图形。
有()种不同的涂法。
A.6B.7C.8D.910.(本题1分)这是一个电风扇开关,数字表示风速档。
现在风扇在“1”档运行,如果要关闭,可将旋钮()。
A.按顺时针方向旋转90°B.按顺时针方向旋转120°C.按逆时针方向旋转90°D.按逆时针方向旋转120°评卷人得分二、填空题(共10分)11.(本题1分)下面的图形是绕( )点按( )方向旋转的。
12.(本题1分)(1)图1笑脸平移后得到的图形是( );(2)图2小船平移后得到的图形是( )。
13.(本题1分)如图,指针从“12”出发,绕点O顺时针旋转( )°到“4”。
图形的平移,对称与旋转的经典测试题含答案

【点睛】
本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.
11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()
A.5 B.4 C.6 D.7
【答案】D
【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
15.下列几何图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )
故选:D.
12.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()
A. B. C. D.4
【答案】A
【解析】
旋转平移对称练习题

旋转平移对称练习题### 旋转平移对称练习题1. 旋转变换:在平面直角坐标系中,点A(3,4)绕原点O(0,0)顺时针旋转90°后,求点A的新坐标。
2. 平移变换:若直线y=2x+1向右平移3个单位,求平移后的直线方程。
3. 对称变换:已知点B(-2,-1),求点B关于x轴的对称点B'的坐标。
4. 旋转和平移结合:若点C(1,-2)先顺时针旋转45°,再向右平移5个单位,求点C变换后的坐标。
5. 对称和平移结合:若点D(-1,3)先关于y轴对称,再向下平移2个单位,求点D变换后的坐标。
6. 图形旋转:正方形ABCD的四个顶点坐标分别为A(1,1), B(1,4),C(4,4), D(4,1),求正方形绕点A顺时针旋转90°后的顶点坐标。
7. 图形平移:已知矩形EFGH的四个顶点坐标分别为E(-1,2), F(-1,5), G(3,5), H(3,2),求矩形向右平移4个单位后的顶点坐标。
8. 图形对称:已知三角形IJK的三个顶点坐标分别为I(2,-3), J(-2,-3), K(0,1),求三角形IJK关于y轴对称后的顶点坐标。
9. 旋转对称结合:若平行四边形LMNO的四个顶点坐标分别为L(0,0), M(4,0), N(4,3), O(0,3),求平行四边形绕点O顺时针旋转60°后,再关于x轴对称的顶点坐标。
10. 平移对称结合:已知圆心在P(-3,-1),半径为2的圆,求圆先向上平移3个单位,再关于x轴对称后的圆的方程。
11. 图形综合变换:已知椭圆Q(0,0)为中心,长轴为6,短轴为4的椭圆,求椭圆先绕原点顺时针旋转30°,再向右平移2个单位,最后关于y轴对称后的椭圆方程。
12. 变换的应用:在平面直角坐标系中,某图形经过旋转、平移、对称等变换后,其面积和周长是否会发生变化?请说明理由。
13. 变换的逆运算:若已知变换后的图形坐标,如何求出原图形的坐标?请给出一般步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习4
轴对称图形、平移、旋转练习5 班别:姓名:学号:一、按要求画一画。
轴对称图形、平移、旋转练习5 班别:姓名:学号:一、按要求画一画。
轴对称图形、平移、旋转练习6 班别:姓名:学号:二、找一找,下列哪些字是轴对称图形,画“√”。
轴对称图形、平移、旋转练习6 班别:姓名:学号:
二、找一找,下列哪些字是轴对称图形,画“√”。
对称、平移和旋转
镜子中的数学:(镜面对称现象)
从镜子中看到的左边图形的样子是什么?画“√”。
()()()
镜子()()()
如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形。
折痕所在的这条直线叫做对称轴。
练一练:下面图形中哪些是轴对称图形?再画出它们的对称轴。
画出下面每组图形的对称轴。
各能画几条?
平移和旋转:
像缆车、红旗等物体沿着一条直线运动的现象叫平移。
像大风车、飞机螺旋桨等绕着一个点或一个轴为中心做圆周运动的现象叫做旋转。