图形的平移,旋转和对称知识点梳理

合集下载

图形的平移、旋转与轴对称单元知识点总结

图形的平移、旋转与轴对称单元知识点总结

二、图形的平移、旋转与轴对称1.图形的平移●平移的定义:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定距离的图形运动。

●平移两要素:平移的方向、平移的距离●平移前的图形:画虚线;箭头:表示平移的方向;平移后的图形:画实线。

●注意:平移几格不是原图形与平移后图形之间的格数,而是指图形的对应点之间的格数。

●关键点:一般是图形的各顶点或线段的交点。

●注意:平移前后,图形的大小、形状、方向都不变,只是位置变了。

●画平移后图形的方法:①找关键点②定平移方向、距离③找对应点④依次连线。

2.图形的旋转●旋转的定义:旋转是指在平面内,将某个图形绕一个定点沿某个方向旋转一个角度的图形运动。

这个定点称为旋转中心,旋转的角度称为旋转角度。

●旋转三要素①旋转中心:点/轴②旋转方向:顺时针方向/逆时针方向③旋转角度●怎样描述图形的旋转:将某图形绕某点沿某时针方向旋转某度到某位置。

●画旋转后图形的方法:①找旋转中心②找准关键线段③旋转关键线段④画出旋转后的图形●旋转中心:一般是两个图形的公共点●关键线段:过旋转中心的线段。

为了保证旋转角度,一般选与方格纸重合的线段作为关键线段。

●注意:旋转前后,图形的大小、形状都不发生改变,但位置和方向一般会发生变化。

3.轴对称图形●定义:轴对称图形沿一条直线对折后,两部分能完全重合,折痕所在的直线叫做它的对称轴(对称轴画虚线,画超出图形)。

●轴对称图形至少有一条对称轴。

●轴对称图形中每一组对称点到对称轴的距离相等。

●轴对称图形中对称点的连线与对称轴互相垂直。

●轴对称图形和对称轴的数量:①正方形(4条对称轴)②长方形(2条对称轴)③等腰三角形(1条对称轴)④等边三角形也叫正三角形(3条对称轴)⑤菱形(2条对称轴)⑥圆形(无数条对称轴)⑦等腰梯形(1条对称轴)⑧五角星(5条对称轴)⑨正五边形(5条对称轴)●生活中的轴对称图形或轴对称现象:京剧脸谱、剪纸、国徽、天坛、北京故宫、凯旋门、蝴蝶、空调、人的五官和身体等●画对称轴的方法:①找一组对应点②画对应点间线段的中垂线③画虚线●画轴对称图形另一半的方法:①找关键点②定对称点③依次连线(一般画虚线)4.设计图案●利用平移设计图案的方法:①选好基本图形②确定平移的方向③确定平移的距离④进行多次平移●利用旋转设计图案的方法:①选和基本图形②确定旋转方向和角度③确定旋转中心④依次画出每次旋转后的图形●利用轴对称设计图案的方法:①选好基本图形②确定对称轴③画出基本图形的另一半5.探索规律●观察图形变化时,先确定变化方式(平移、旋转或轴对称),再确定位置变化的规律。

初中数学知识归纳平移旋转和对称变换

初中数学知识归纳平移旋转和对称变换

初中数学知识归纳平移旋转和对称变换初中数学知识归纳:平移、旋转和对称变换数学是一门具有广泛应用的学科,也是培养学生逻辑思维和解决问题能力的重要学科之一。

在初中数学中,平移、旋转和对称变换是数学中常见的几何变换操作,对于学生们的几何观念理解和图形思维的培养具有重要意义。

本文将对初中数学中的平移、旋转和对称变换进行归纳和总结。

一、平移(Translation)平移是指在平面内按照一定的方向和距离将图形移动到另一个位置的几何变换操作。

平移操作不改变图形的大小和形状,只是改变了图形的位置。

在平移中,每个点都按照相同的方向和距离进行移动。

平移的基本要素有:平移向量和被平移图形。

平移向量是指平移的方向和距离,可以用箭头表示。

被平移图形是指需要进行平移操作的图形。

二、旋转(Rotation)旋转是指按照某个中心点和旋转角度将图形绕这个中心点进行旋转的几何变换操作。

旋转不改变图形的大小和形状,只是改变了图形的方向。

在旋转中,每个点都绕着中心点按照相同的角度进行旋转。

旋转的基本要素有:旋转中心、旋转角度和被旋转图形。

旋转中心是指旋转的中心点,旋转角度是指旋转的角度大小,可以用度数表示。

被旋转图形是指需要进行旋转操作的图形。

三、对称变换(Symmetry)对称变换是指通过某条线、某个点或某个面将图形镜像成另一个图形的几何变换操作。

对称变换不改变图形的大小和形状,只是改变了图形的位置或方向。

在对称变换中,每个点通过指定的对称轴或对称中心得到对应的镜像点。

常见的对称变换有关于x轴、y轴和原点的对称等。

关于x轴的对称是指图形在x轴上下对称,即图形上的每个点与其镜像点关于x轴对称;关于y轴的对称是指图形在y轴左右对称,即图形上的每个点与其镜像点关于y轴对称;关于原点的对称是指图形在原点内外对称,即图形上的每个点与其镜像点关于原点对称。

综上所述,初中数学中的平移、旋转和对称变换是数学几何中常见的几何变换操作。

通过学习和理解这些几何变换,学生们可以更好地把握图形的性质和形态,同时培养几何思维和问题解决能力。

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。

平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。

知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。

旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。

注意:旋转分为顺时针旋转和逆时针旋转。

知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。

轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。

三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。

A.B.C.D.2.在括号中填“平移”或“旋转”。

(1)小明进教室开门时,门的运动是()。

(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。

(3)小红拉开窗帘,窗帘的运动是()。

(4)老师将课桌拖到最后一排,桌子的运动是()。

3.观察下面的图形,然后填空。

(1)小汽车向()平移了()格。

(2)小船向()平移了()格。

(3)飞机向()平移了()格。

4.如图所示。

(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。

(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。

A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。

7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。

用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。

观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。

初中数学知识归纳平移旋转与对称变换的特点

初中数学知识归纳平移旋转与对称变换的特点

初中数学知识归纳平移旋转与对称变换的特点初中数学知识归纳:平移、旋转与对称变换的特点在初中数学学习中,平移、旋转和对称变换是常见的几何变换形式。

它们在几何图形的变换和性质研究中起着重要的作用。

本文将对平移、旋转和对称变换的特点进行归纳总结。

一、平移的特点平移是指在平面上将一个图形沿着固定的方向和距离移动,使得图形的每一个点都按照相同的方式进行移动。

平移的特点可以归纳如下:1. 保持图形的大小和形状不变:平移只改变图形的位置,而不改变它的大小和形状。

2. 保持图形的内外角度不变:平移前后的图形内外角度是相等的。

3. 保持图形的对称性质:如果一个图形在平移前是对称的,那么它在平移后仍然是对称的。

二、旋转的特点旋转是指将一个图形绕着某一点旋转一定角度,使得图形相对于旋转中心发生变换。

旋转的特点可以归纳如下:1. 保持图形的大小和形状不变:旋转只改变图形的位置和方向,而不改变它的大小和形状。

2. 保持图形的对称性质:如果一个图形在旋转前是对称的,那么它在旋转后仍然是对称的。

3. 保持图形的内外角度不变:旋转前后的图形内外角度是相等的。

三、对称变换的特点对称变换是指将一个图形通过镜像等方式进行改变,使得图形的形状相对于某一条直线、某一点或某个轴对称。

对称变换的特点可以归纳如下:1. 保持图形的大小和形状不变:对称变换只改变图形的位置和方向,而不改变它的大小和形状。

2. 保持图形的内外角度不变:对称变换前后的图形内外角度是相等的。

3. 保持图形的对称性质:对称变换前后的图形仍然是对称的,对称轴或对称中心位置可能发生改变。

综上所述,平移、旋转和对称变换是初中数学中常见的几何变换形式。

它们在图形位置、形状和对称性质的研究中具有重要的作用。

通过对它们的特点进行归纳总结,我们可以更好地理解和应用这些数学概念。

当然,除了这几种几何变换外,还有其他形式的变换,如放缩变换、剪切变换等,它们在实际问题中也有广泛的应用。

通过学习和掌握这些变换的特点,我们可以更好地理解和分析几何图形的性质,并应用于解决实际问题。

对称平移旋转知识点

对称平移旋转知识点

对称平移旋转知识点一、对称对称是指在一些中心或条轴线上,图形的两个相互对应的点、线、面或者物体的位置互换,使其保持不变。

对称可以分为以下几种类型:1.轴对称:图形在条轴线上对称,比如正方形的对角线、长方形的中心对称轴等。

2.点对称:图形以一些点为中心对称,比如圆形的中心点。

3.旋转对称:图形以一些旋转中心旋转一定角度后与原图重合。

对称的性质:1.对称图形与原图形有相同的形状和大小;2.图形中任意两点关于对称轴对称的点的距离相等;3.以对称轴为界,若一个点在轴上的一侧,则与该点关于对称轴对称的点必在轴上的另一侧。

二、平移平移是指在几何空间中,通过将图形在同一平面内的各点按照相同且给定的方向和距离进行平移,使图形保持形状和大小不变。

平移可以基于以下要素进行操作:1.平移向量:平移向量是指从图形的每个点指向其平移后的对应位置的向量。

2.平移轴:平移轴是指平移向量的方向。

平移的性质:1.图形的每一点平移后仍在同一平面上;2.图形的平移前后点之间的距离保持不变;3.平移不改变图形的形状和大小。

三、旋转旋转是指在平面或者空间中按照一些中心或条轴线,将图形围绕旋转中心或轴线进行旋转,使图形在平面或者空间中绕旋转中心或轴线旋转一定角度。

旋转的参数:1.旋转角度:旋转的角度可以是顺时针或逆时针方向。

2.旋转中心:旋转中心是指旋转轴线上的一个点,图形按照该点为中心进行旋转。

旋转的性质:1.旋转不改变图形的形状和大小;2.旋转后图形中任意两点之间的距离保持不变;3.旋转后图形的对称性质可能会发生变化。

在实际应用中,对称、平移和旋转经常被用于图形的变换、模式识别、计算机图形学等各个领域。

比如,在计算机动画中,通过对图像进行平移和旋转操作,可以实现各种图形效果和动画效果;在建筑设计中,对称性和对称变换被广泛运用于设计美学和结构均衡等方面。

总之,对称、平移和旋转是几何学中的重要概念和操作,它们的理论和应用对于提高空间想象力、解决实际问题具有重要意义。

形的平移旋转与对称小学数学知识点总结

形的平移旋转与对称小学数学知识点总结

形的平移旋转与对称小学数学知识点总结在小学数学教学中,形的平移、旋转和对称是重要的几何概念。

学生通过学习这些知识点,可以帮助他们理解空间结构和形状变化的规律。

本文将对形的平移、旋转和对称进行总结,并探讨其在小学数学教学中的应用。

一、形的平移形的平移是指在平面上以某个向量为参考,将一个形状沿着平行的方向进行移动,移动后的形状与原来的形状相对应。

平移的基本性质有以下几点:1. 平移保持形状不变。

即形状的大小、角度和边长在平移过程中不发生变化。

2. 平移保持相对位置关系不变。

即平移后的形状上任意两点之间的距离和原来的形状上对应点之间的距离是相等的。

3. 平移也可以看作是两个向量的和。

即平移的向量可以表示为原向量加上平移向量。

在小学数学教学中,通过使用平移的概念,可以帮助学生理解平面上的位置关系、掌握坐标系等概念。

二、形的旋转形的旋转是指在平面上围绕某个点进行转动,使得原来的形状与转动后的形状相对应。

旋转的基本性质有以下几点:1. 旋转保持形状不变。

即形状的大小、角度和边长在旋转过程中不发生变化。

2. 旋转保持顺时针或逆时针方向不变。

即旋转后的形状上任意三点按照顺时针或逆时针方向连接后的角度与原来的形状上对应三点按照同样的方向连接后的角度是相等的。

3. 旋转是以旋转中心为中心的对称变换。

即旋转前的形状上的一条线段经过旋转后仍然是直线。

在小学数学教学中,通过引入旋转的概念,可以帮助学生理解平面上的旋转对称性,如正方形的旋转对称性等,并培养学生观察和发现问题的能力。

三、形的对称形的对称是指形状围绕某个中心进行折叠,使得原来的形状的一部分与另一部分完全重合。

对称的基本性质有以下几点:1. 对称保持形状不变。

即形状的大小、角度和边长在对称过程中不发生变化。

2. 对称保持相对位置不变。

即对称后的形状上任意两点之间的距离和原来的形状上对应的两点之间的距离是相等的。

3. 对称中心可以位于形状内部或外部。

即对称可以以形状内部的点为对称中心,也可以以形状外部的点为对称中心。

小学六年数学重要知识点总结形的平移旋转与对称性

小学六年数学重要知识点总结形的平移旋转与对称性

小学六年数学重要知识点总结形的平移旋转与对称性形的平移旋转与对称性是小学数学的重要知识点,它们是培养学生空间想象力和几何直观的基础。

本文将对小学六年级数学中与形的平移旋转与对称性相关的重要知识点进行总结。

一、形的平移形的平移是指将一个平面图形沿着某个方向移动一定距离,而形状大小不变的变换。

在小学六年级数学中,学生需要掌握以下几个与形的平移相关的知识点。

1. 平移的定义与表示方法:平移是指在平面上保持图形大小和形状不变的情况下,把它沿着某个方向移动一定距离。

平移可以用向量表示,也可以用坐标表示。

2. 平移的性质:(1)平移保持图形的大小和形状不变;(2)平移前后图形的对应点在同一直线上。

3. 平移的实际应用:平移在日常生活中有着广泛的应用,比如地图的制作和使用、机器人的移动等。

二、形的旋转形的旋转是指以某一点为中心,将一个图形围绕这个中心点旋转一定角度,而形状大小不变的变换。

在小学六年级数学中,学生需要了解以下与形的旋转相关的知识点。

1. 旋转的定义与表示方法:旋转是指以某一点为中心,将图形围绕这个中心点旋转一定角度,而形状大小不变。

旋转可以用角度表示,也可以用旋转中心的坐标表示。

2. 旋转的性质:(1)旋转保持图形的大小和形状不变;(2)旋转前后图形的对应点与旋转中心连成的线段相等。

3. 旋转的实际应用:旋转在日常生活中也有许多实际应用,比如车轮的旋转、地球的自转等。

三、对称性对称性是指图形能够在某条直线、点或者平面上成为自身的重合变换。

对称性也是小学六年级数学中重要的知识点。

1. 线对称:线对称是指图形能够在某条直线上成为自身的重合变换。

学生需要掌握以下与线对称相关的知识点:(1)线对称的定义与表示方法;(2)线对称的性质,如对称轴上的任意一点与对称图形上的对应点相等。

2. 点对称:点对称是指图形能够以某个点为中心,成为自身的重合变换。

学生需要了解以下与点对称相关的知识点:(1)点对称的定义与表示方法;(2)点对称的性质,如对称中心上的任意一点与对称图形上的对应点相等。

平移_旋转_轴对称_知识点总结

平移_旋转_轴对称_知识点总结
线,做其垂直平
线找其中点
分线。找两组
两组对应点连
对应点连线,过
线的交点
两条中点的直线
找关键点
找关键点
找关键点
找关犍点
过每个关键点
过每个关犍点做
连接关键点与旋
连接关键点与
做对称轴的垂线
平移方向的平行线
转中心,将这条线
对称中心,延长

截取与之相等的
截取与之相等的距
段按方向和角度旋
并截取相等的长
距离,标出对应
旋转.平移.轴对称、中心对称知识点总结
轴对称
平移
旋转
中心对称
全等
一个(两个)平
平面图形在它所在
一个平面图形绕一
一个图形旋转
能够完全重合的
面图形沿某条直
平面上的平行移动。
定点按一定的方向
180°能与自身
两个图形
线对折能够完全
决定要素:平移的方
旋转一定的角度的
重合
表示方法:

重合
向.平移的距离
运动。
AABC^ADEF
离,标出对应点
转.标出对应点
度.标出对应点

连接对应点。
连接对应点。
连接对应点。
连接对应点。
线段是轴对称
多次平移相当于
线段旋转90°
中心对称一定
一个图形经过
图形,对称轴是
一次平移
后与原來的位置垂
是旋转对称.旋
轴对称、平移或选
它的垂直平分
两条对称轴平行

转对称不一定是
转等变换得到的
线。
时,两次轴对称相当

轴对称
成轴对
中心对
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要注意新画图形的形状、大小 都不变。
平移的过程要注意:
• 1、找一个点,点对点的进 行平移
• 平移几格不是看空格,而
是点对点数,数点移动了 几格
什么是旋转呢? 把某一个图形绕着某一点
转动一个角度的图形变换叫就 叫旋转。
看了旋转的定义,大家知道了吧, 所有的图形都能旋转。
重点归纳
• 与时针旋转的方向相同, 通常叫顺时针方向旋转。
二单元
• 图形的平移、旋转和对称
什么叫平移
• 物体从一个位置沿着某一方向运 动到另一位置,这样的现象就叫 平移。
• 平移的要素: • 方向(上、下、左、右) • 距离
一是平移前,先确定一个点, 看这个点会平移到哪儿,保证 平移的格数正确;
二是注意看原来的图中的每条线 段各占几格,保证图形和原来一 样。
• 与时针旋转的方向相反, 通常叫逆时针方向旋转。
介绍旋转要交代清楚 4点
位置 固定 旋转方


旋转 角度
在同类图形中,越特殊的图形对称轴 就越多
7
Байду номын сангаас
图 形 名 对称轴数



一般三角形
0

等腰三角形
1

等边三角形
3
一般平行四
0
四 平行四 边形
边 边形
长方形
2

正方形
4
一般梯形
0
梯 形 等腰梯形
1
怎样画对称图形的另一半
1、找准对称轴 2、找出关键点 3、找到关键点的对应点 4、画线段(注意每条线段的长度) 5、检查自己画的是不是轴对称图形
相关文档
最新文档