第5讲 角平分线的性质及判定综合

合集下载

角平分线性质

角平分线性质
BD=CD, ∠1= ∠2.
求证:AD平分∠BAC
A
E
F
1 D2
B
C
课堂练习
已知:BD⊥AC于点D,CE⊥AB于 点E,BD,CE交点F,CF=BF,
求证:点F在∠A的平分线上.
C D
F
A
EB
1、角平分线的判定: 在一个角的内部,且到角的两边距 离相等的点,在这个角的平分线上。
2、三角形角平分线的交点性质: 三角形的三条角平分线交于一点。
课堂练习 如图,已知△ABC的外角
∠CBD和∠BCE的平分线相交于点F,
求证:点F在∠DAE的平分线上.
证明:过点F作FG⊥AE于G,FH⊥AD
于H,FM⊥BC于M,
∵点F在∠BCE的平分线上,
G
FG⊥AE, FM⊥BC,
∴FG=FM.
又∵点F在∠CBD平分线上, FH⊥AD, FM⊥BC. ∴FM=FH.
角平分线的性质:
角的平分线上的点到角的两边的距离相等。
几何语言: ∵ OC平分∠AOB, 且PD⊥OA, PE⊥OB
∴ PD= PE
A D
P到OA的距离
C
角平分线上的点
P
P到OB的距离
O
E B 不必再证全等
反过来,到一个角的两边的距离相等 的点是否一定在这个角的平分线上呢?
已知:如图,PD⊥OA,PE⊥OB, 点D、E为垂足,PD=PE. 求证:点P在∠AOB的平分线上
是E、F,且BE=CF。
A
求证:AD是△ABC的角平分线
E
F
B
C D
课堂练习 在△ABC中,AB=AC,
AD平分∠BAC ,DE⊥AB, DF⊥AC, 下面给出三个结论(1)DA平分∠EDF; (2)AE=AF;(3)AD上的点到B、C两点的 距离相等,其中正确的结论有( )

角的平分线的性质

角的平分线的性质

角的平分线的性质一. 根底知识1.角的平分线的性质(1)内容角的平分线上的点到角的两边的距离相等.(2)书写格式如下列图,∵点P在∠AOB的角平分线上,PD⊥OA,PE⊥OB,∴PD=PE.2.角的平分线的判定(1)内容角的内部到角的两边的距离相等的点在角的平分线上.(2)书写格式如下列图,∵PD⊥OA,PE⊥OB,PD=PE,∴点P在∠AOB的角平分线上.3.运用角的平分线的性质解决实际问题运用角的平分线的性质的前提条件是角的平分线以及角平分线上的点到角两边的距离.在运用角的平分线的性质解决实际问题时,题目中常常出现求到某个角的两边距离相等的点的位置,只要作出角的平分线即可.运用角平分线的性质解决实际问题时,一定要把实际问题中道路、河流等抽象成数学图形直线,并且要求的点是到两线的距离相等,常常确定两线夹角的平分线上的点,这个过程就是建立数学模型的过程,这是在解决实际问题中常用的方法.4.运用角的平分线的判定解决实际问题在实际问题中,如果出现了某个地点到某些线的距离相等,常先把实际问题转化为数学问题,即建立数学模型(角的平分线).然后根据某点到角两边的距离相等,那么常常联想到用角的平分线的判定得到角的平分线来解决问题.解技巧巧用角的平分线的性质和判定解决问题能根据条件联想到角的平分线的性质或判定是解决问题的关键.找到解决问题的切入点就是条件中有点到直线的距离相等或要找到到两条直线的距离相等的点.5.综合运用角的平分线的性质和判定解决实际问题角的平分线的性质和判定的关系如下:对于角的平分线的性质和判定,一方面要正确理解和明确其条件和结论,“性质〞和“判定〞恰好是条件和结论的互换,在应用时不要混淆,性质是证两条线段相等的依据,判定是证明两角相等的依据.析规律构造角的平分线的模型证明线段相等当有角平分线时,常过角平分线上的点向角的两边作垂线,根据角平分线的性质得线段相等.同样,欲证明某射线为角平分线时,只需过其上一点向角的两边作垂线,再证线段相等即可.6.运用角的平分线的性质和判定解决探究型问题在实际问题中,确定位置(如建货物中转站、建集市、建水库等)的问题,常常用到角的平分线的性质来解决.尤其是涉及作图探究的题目,性质“角的内部到角两边的距离相等的点在这个角的平分线上〞的应用是寻找角的平分线的一种比较简单的方法.三角形有三条角平分线交于三角形内部一点,并且交点到该三角形三边的距离都相等,其实只要作出其中两条角平分线的交点,第三条角平分线一定过此交点.三角形两个外角的平分线也交于一点,这点到该三角形三边所在的直线距离相等.三角形外角平分线共有三条,所以到三角形三边所在直线距离相等的点共有4个.【例6】如以下列图所示,三条公路l1,l2,l3两两相交于A,B,C三点,现方案修建一个商品超市,要求这个超市到三条公路的距离相等,可供选择的地方有多少处?你能在图中找出来吗?解:三角形的三条角平分线的交点到该三角形三条边的距离相等;∠ACB,∠ABC的外角平分线交于一点,利用角的平分线的性质和判定定理,可以得到此点也在∠CAB的平分线上,且到公路l1,l2,l3的距离相等;同理还有∠BAC,∠BCA的外角平分线的交点;∠BAC,∠CBA的外角平分线的交点,因此满足条件的点共有4个.作法:(1)如右图所示,作出△ABC两内角∠BAC,∠ABC的平分线的交点O1.(2)分别作出∠ACB,∠ABC的外角平分线的交点O2,∠BAC,∠BCA的外角平分线的交点O3,∠BAC,∠CBA的外角平分线的交点O4;故满足条件的修建点有四处,即点O1,O2,O3,O4处.课堂练习一、填空题1.:△ABC中,∠B=90°,∠A、∠C的平分线交于点O,那么∠AOC的度数为.2.角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.3.∠AOB的平分线上一点M,M到OA的距离为1.5 cm,那么M到OB的距离为_________.4.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________. 5.如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3 cm,BD=5 cm,那么BC=_____cm.第4题第5题第6题第7题6.如图,CD为Rt△ABC斜边上的高,∠BAC的平分线分别交CD、CB于点E、F,FG⊥AB,垂足为G,那么CF______FG,CE________CF.7.如图,AB、CD相交于点E,∠AEC及∠AED的平分线所在的直线为PQ与MN,那么直线MN与PQ的关系是_________.8.三角形的三条角平分线相交于一点,并且这一点到________________相等.9.点O是△ABC内一点,且点O到三边的距离相等,∠A=60°,那么∠BOC的度数为_____________.10.在△ABC中,∠C=90°,AD平分∠BAC交BC于D,假设BC=32且BD∶CD=9∶7,那么D到AB的距离为.二、选择题11.三角形中到三边距离相等的点是〔 〕A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点12.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,以下结论错误的选项是〔 〕A 、PD =PEB 、OD =OEC 、∠DPO =∠EPOD 、PD =OD13.如图,直线l 1,l 2,l 3表示三条相互穿插的公路,现要建一个货物中转站,要求它到三条公路的距离相等,那么可供选择的地址有〔 〕A 、1处B 、2处C 、3处D 、4处14.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,那么△DEB 的周长为〔 〕 A 、4㎝ B 、6㎝ C 、10㎝ D 、不能确定21DAPOEBl 2l 1l 3DCEB第12题第13题第14题15.如图,MP ⊥NP ,MQ 为△MNP 的角平分线,MT =MP ,连接TQ ,那么以下结论中不正确的选项是〔 〕A 、TQ =PQB 、∠MQT =∠MQPC 、∠QTN =90°D 、∠NQT =∠MQTNTQPM第15题16.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )EDCBAA .2 cmB .3 cmC .4 cmD .5 cm17.如图,AB =AC ,AE =AF ,BE 与CF 交于点D ,那么对于以下结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的选项是〔〕A .①B .②C .①和②D .①②③EDC BAF18.如图,AB =AD ,CB =CD ,AC 、BD 相交于点O ,那么以下结论正确的选项是〔〕A .OA =OCB .点O 到AB 、CD 的距离相等C .∠BDA =∠BDCD .点O 到CB 、CD 的距离相等19.△ABC 中,∠C =90°,点O 为△ABC 三条角平分线的交点,OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F ,且AB =10cm ,BC =8cm ,AC =6cm ,那么点O 到三边AB 、AC 、BC 的距离为〔〕A .2cm ,2cm ,2cm ;B . 3cm ,3cm ,3cm ;C . 4cm ,4cm ,4cm ;D . 2cm ,3cm ,5cm20.两个三角形有两个角对应相等,正确说法是〔〕A .两个三角形全等B .如果还有一角相等,两三角形就全等C .两个三角形一定不全等D .如果一对等角的角平分线相等,两三角形全等三、解答与证明21.如图,△ABC 中,AB =AC ,D 是BC 的中点,求证:D 到AB 、AC 的距离相等.22.如图,BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 相交于点D ,假设BD =CD .求证:AD 平分∠BAC .DCBAO 第18题23.如图,BE 平分∠ABC ,CE 平分∠ACD ,且交BE 于E .求证:AE 平分∠FAC .DF CBAE24.如图,AB =AC ,AD =AE ,DB 与CE 相交于O . (1)假设DB ⊥AC 于D ,CE ⊥AB 于E ,试判断OE 与OD 的大小关系.并证明你的结论. (2)假设没有第〔1〕中的条件,是否有这样的结论"试说明理由.DCBAOE25.如图,∠B =∠C =90°M 是BC的中点,DM 平分∠ADC ,求证:AM 平分∠DAB .重点题型讲解1.如图.在△ABC 中,∠A 、∠B 的角平分线交于点O ,过O 作OP ⊥BC 于P ,OQ ⊥AC 于Q ,OR ⊥AB于R,AB=7,BC=8,AC=9.〔1〕求BP、CQ、AR的长.〔2〕假设BO的延长线交AC于E,CO的延长线交AB于F,假设∠A=60゜,求证:OE=OF.2.如图.AE、BD是△ABM的高.AE、BD交于点C,且AE=BE,BD平分∠ABM.〔1〕求证:BC=2AD;〔2〕求证:AB=AE+CE;〔3〕求证:DE平分∠MDB3.如图,点M〔2,2〕,将一个90°的角尺的直角顶点放在点M处,角尺的两边分别交x轴、y轴正半轴于A、B,AP平分∠OAB,交OM于点P,PN⊥x轴于N,把角尺绕点M旋转时:〔1〕求证:OM平分∠AOB;〔2〕求OA+OB的值4.如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于点H,连CH.〔1〕求证:△ACD≌△BCE;〔2〕求证:CH平分∠AHE;〔3〕求∠CHE的度数.〔用含α的式子表示〕家庭作业1角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.2、∠AOB的平分线上一点M,M到OA的距离为1.5 cm,那么M到OB的距离为_________.3、如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________.4、如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,那么BC =_____cm .5、三角形的三条角平分线相交于一点,并且这一点到________________相等。

八下第五讲 中垂线 角平分线性质与判定定理书写的规范

八下第五讲 中垂线 角平分线性质与判定定理书写的规范
小பைடு நூலகம்:
其实,有关中垂线,角平分线性质和判定定理的书写并不难,我们只要注意写好必要步骤, 由因得果,会比全等的书写简单许多,不信,来看第一个例题.
例1:
如图,已知△ABC的外角∠CBD和∠BCE的平分线相交于点P,求证:点P在∠DAE的平分线
上.
分析:
在《 八上第四讲 全等辅助线(3)见角平 分线作垂直 》中,我们已经介绍了辅助线的 作法,见角平分线作垂直,这里出现了两个外 角,那一共是作三次垂直,这样,我们就可以 用角平分线的性质定理,来证明所作的垂线段 相等,接着,利用角平分线的判定定理,求证 点P的位置.
PE⊥AB,PG⊥BD ∴PE=PG ∵CPPF平⊥分AC∠,ACPGD⊥BD ∴PF=PG ∴PE=PF 又∵PE⊥AB,PF⊥AC ∴AP平分∠EAF 易知∠BAC=2∠BPC= 80°(上学期反复讲过的结 论) ∴∠CAE=100° ∠CAP=50°
小结:
对于含多个角平分线的问题,与之前证全等的思路一致,我们应该第一时刻想到作垂直的辅 助线,但是,现在我们也可以多用角平分线的性质和判定定理进行书写了.
小结:
以上2题主要是对中垂线的性质定理和判定定理的灵活运用,这里常用的辅助线就是连接中垂 线上的点和线段的两个端点.运用时,给出中垂线,就用性质定理,要证明某点的位置,就用判 定定理.
例3: 已知:如图,在△ABC中,D是BC的中点,DE⊥BC,交∠BAC的平分线AM于点
E,EF⊥AB,垂足为F,EG⊥AC,交AC延长线于点G,求证:BF=CG
1、中垂线的性质定理:线段垂直平分线上的点 到线段两端的距离相等. 书写格式1: ∵OP⊥AB,AP=PB ∴AO=BO 书写格式2: ∵点O在线段AB的中垂线上 ∴AO=BO

8年级数学上第5讲角平分线的性质及运用讲义

8年级数学上第5讲角平分线的性质及运用讲义

学科教师辅导讲义第五讲角平分线的性质及应用一、知识点精讲知识点一角平分线的定义从一个角的顶点出发的一条射线,如果把这个角分成两个相等的角,这条射线就叫这个角的平分线。

知识点二作角平分线(尺规作图,四弧一线)在∠AOB中,画角平分线:1.以点O为圆心,以任意长为半径画弧,两弧交∠AOB两边于点M,N。

2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。

3.作射线OP。

射线OP就是所求作的∠AOB的角平分线。

依据是知识点三角平分线的性质角平分线上的点到角的两边的距离相等。

符号语言:知识点四角平分线的判定到角的两边距离相等的点在角的平分线上。

符号语言:.知识点五与角平分线有关的辅助线模型(1)在角的平分线上取一点向角的两边作垂线段。

(点垂线,垂两边,线等全等都出现)(2)在角两边截取相等的线段,构造全等三角形。

(角分线,分两边,对称全等要记全)(3)角平分线+垂线,全等必出现。

二、经典例题讲解例1:如图,已知点C为直线AB上一点,过C作直线CM,使CM AB⊥于C。

(分析:由于AB是直线,要求作CM AB∠的平分线。

根据角平分线的尺规作⊥,实际上就是要作平角ACB图法就可以作出直线CM.)例2:如图,AD 是ABC ∆的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是,E F 。

连接EF ,交AD 于点G 。

说出AD 与EF 之间有什么位置关系?证明你的结论。

例3:如图,BE CF =,DF AC ⊥于F ,DE AB ⊥于E ,BF 和CE 交于点D 。

求证:AD 平分BAC ∠。

例4:如图,已知OD 平分∠AOB ,在OA 、OB 边上截取OA =OB ,PM ⊥BD ,PN ⊥AD.求证:PM =PN例5:如图,在△ABC 中,∠BAC =90°,AB =AC ,BE平分∠ABC,CE ⊥BE.求证:CE =12BD例6:如图,在ABC ∆中,90C ∠= ,AD 平分BAC ∠,DE AB ⊥于E ,F 在AC 上,BD DF =。

七下第5讲三角形内外角平分线夹角模型归纳与内外角和计算方法总结

七下第5讲三角形内外角平分线夹角模型归纳与内外角和计算方法总结

七下第5讲三⾓形内外⾓平分线夹⾓模型归纳与内外⾓和计算⽅法总结写在前⾯在前四讲中,我们对本章的重点内容作了归纳,剩下的知识点仅剩⼀个重要模型和内外⾓的相关题型变式,就以本讲作为本章的收尾,更多的难题,留⾄期中复习吧.⼀、三⾓形内外⾓平分线夹⾓模型模型呈现:如图,已知,在△ABC中,BD平分∠ABC,CD平分∠ACB,CH平分∠ACI,BG平分∠EBC,CG平分∠BCF.试探究∠BDC,∠BHC,∠BGC与∠A的关系.分析:这是本章的最后⼀个重要模型,要结合整体思想,外⾓定理综合运⽤.解答:补充结论:其实这个模型中,还能有许多发现,⽐如,∠GBD=90°,∠DCH=90°,理由是邻补⾓的⾓平分线互相垂直.∠BGC和∠BHC互余,∠BGC和∠BDC互补,在△DCH中,∠BDC作为外⾓,∠BDC=90°+∠BHC.例1:如图,O是三⾓形三条⾓平分线的交点,∠1=15°,则∠2=_____°.分析:本题的关键是,发现∠2的作⽤,∠2可以作为△AOB的外⾓,即∠OAB和∠OBA的和,⼜是∠AOB的邻补⾓,∠AOB是三⾓形两内⾓平分线的夹⾓,因此本题既可以⽤⼀步⼀步完成,也可⽤结论模型⼝算.解答:例2:如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=_______.分析:本题是⼀道将三个模型结合在⼀起的题⽬,我们要关注哪些⾓可以求,∠BDC是两内⾓平分线的夹⾓,则知道∠A即可求,∠E是两外⾓,∠MBC,∠NCB的⾓平分线的夹⾓,则知道∠BDC即可求,∠F是△EBC的内⾓∠EBC和外⾓∠ECQ的⾓平分线夹⾓,则知道∠E即可求.解答:例3:分析:解答:综上所述,结论正确的是①②③⑤共4个.⼆、多边形内外⾓计算例1:⼀个学⽣计算多边形的内⾓和,少算了⼀个内⾓,得到答案是1400°,求少算的内⾓的度数及多边形边数.分析:显然,根据多边形内⾓和公式(n-2)·180°,可知内⾓和⼀定是180度的倍数,我们可以⽤1400除以180,算出其余数,那么⾃然可得,少算的那个内⾓与余数的和⼀定是180度的倍数,⽽根据多边形每个内⾓必然⼩于180°,则这个内⾓度数就是⽤180°减去这个余数即可.解答:1400°÷180°=7······140°,180°–140°=40°,设多边形边数为n,(n–2)·180=1400+40,n=10答:少算的内⾓度数为40°,边数为10.例2:⼀个学⽣计算多边形的内⾓和,多算了⼀个外⾓,得到答案是1400°,求多算的外⾓的度数及多边形边数.分析:显然,本题是上⼀题的变式,⽅法还是⽤1400除以180,算出其余数,那么多算的外⾓度数,就是这个余数.解答:1400°÷180°=7······140°,设多边形边数为n,(n–2)·180=1400-140,n=9答:多算的外⾓度数为140°,边数为9.例3:⼀个多边形每个内⾓都等于150°,求这个多边形的边数.分析:本题不难,但我们要学会多种思路解题,可以从多边形内⾓和公式⼊⼿,也可以逆向思维,求出每个外⾓的度数,⽤外⾓和除以每个外⾓的度数.解答:法1:设多边形边数为n,(n–2)·180=150n,n=12法2:180°-150°=30°,360°÷30°=12答:多边形边数为12.三、作图探究例:在△ABC中,∠ACB=90°,BD是△ABC的⾓平分线,P是射线AC上任意⼀点(不与A、D、C三点重合),过点P作PQ⊥AB,垂⾜为Q,交直线BD于E.(1)探索∠PDE与∠PED的关系,画出图形并说明理由.(2)作∠CPQ的⾓平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.分析:本题中,点P的位置不确定,在射线AC上,就有多种可能,线段AD上,线段DC上,线段DC延长线上,在延长线上时,⼜要考虑垂⾜Q的位置,可能在线段AB上,也可能在线段AB的延长线上.因此,分四种情况讨论.碍于篇幅,我们将两⼩题的图汇总在⼀起.解答:①点P在线段AD上(1)∵PQ⊥AB,∴∠EQB=∠C=90°,∴∠PED+∠EBQ=90°,∠CBD+∠CDB=90°,∵∠PDE=∠CDB,∴∠CBD+∠PDE=90°,∵BD为∠ABC的平分线,∴∠CBD=∠EBQ,∴∠PDE=∠PED;(2)在四边形PQBC中,∠CPQ+∠CBA=360°-2×90°=180°∵PF平分∠CPQ,BD平分∠CBA∴∠1+∠2=90°∵∠1+∠3=90°∴∠2=∠3,PF∥BD②点P在线段DC上(1)∵PQ⊥AB,∴∠EQB=∠C=90°,∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°,∵∠PED=∠BEQ,∴∠PED +∠EBQ=90°,∵BD为∠ABC的平分线,∴∠CBD=∠EBQ,∴∠PDE=∠PED;(2)在四边形PQBC中,∠CPQ+∠CBA=360°-2×90°=180°∵PF平分∠CPQ,BD平分∠CBA∴∠1+∠2=90°∵∠1+∠3=90°∴∠2=∠3,PF∥BD③点P在线段DC延长线上,点Q在线段AB上(1)∵PQ⊥AB,∴∠EQB=∠ACB=90°,∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°,∵∠PED=∠BEQ,∴∠PED +∠EBQ=90°,∵BD为∠ABC的平分线,∴∠CBD=∠EBQ,∴∠PDE=∠PED;(2)∵∠CPQ+∠A=90°∠CBA+∠A=90°∴∠CPQ=∠CBA∵PF平分∠CPQ,BD平分∠CBA∴∠1=∠2∵∠1+∠3=90°∴∠2+∠3=90°,PF⊥BD④点P在线段DC延长线上,点Q在线段AB延长线上(1)∵PQ⊥AB,∴∠EQB=∠ACB=90°,∴∠PED+∠EBQ=90°,∠CBD+∠PDE=90°,∵∠ABD=∠EBQ,∴∠PED +∠ABD=90°,∵BD为∠ABC的平分线,∴∠CBD=∠ABD,∴∠PDE=∠PED;(2)∵∠CPQ+∠A=90°∠CBA+∠A=90°∴∠CPQ=∠CBA∵PF平分∠CPQ,BD平分∠CBA∴∠1=∠2∵∠1+∠3=90°∴∠2+∠3=90°,PF⊥BD上讲思考题答案。

角平分线的性质

角平分线的性质

推理的理由有三个, 必须写完全,不能
少了任何一个.
判一判:(1)∵ 如下左图,AD平分∠BAC(已知),
∴ BD = CD ,
× ( 在角的平分线上的点到这个角的两边的距离相等 )
B
B
A
D A
D
C
(2)∵ 如上右图, DC⊥AC,DB⊥AB (已知)C .
∴ BD = CD ,
× ( 在角的平分线上的点到这个角的两边的距离相等 )
SPDB

1 2
·AB·PD=28.
B
(3)求∆PDB的周长.
D
CPDB PD PB DB
P
PC PB DB
BC DB AD DB
A
C
AB 14
=
知识与方法
1.应用角平分线性质: 存在角平分线 条件 涉及距离问题
2.联系角平分线性质:
面积 利用角平分线的性
又∵PE∥AB,∴∠1=∠3. B E
(
A
34 P
12 DFC
同理,∠2=∠4.
∴∠3=∠4,∴AD平分∠BAC.
4.如图,已知∠CBD和∠BCE的平分线相交于点F,
求证:点F在∠DAE的平分线上. 证明:过点F作FG⊥AE于G,
ห้องสมุดไป่ตู้E G
FH⊥AD于H,FM⊥BC于M.
C
∵点F在∠BCE的平分线上, FG⊥AE, FM⊥BC.
3.经过分析,找出由已知推出要证的结论的途径, 写出证明过程.
知识要点
性质定理:角的平分线上的点到角的两边的距离相等.
应用所具备的条件:
(1)角的平分线;
(2)点在该平分线上;
(3)垂直距离.

角的平分线的性质

角的平分线的性质

角的平分线的性质教学目标1.掌握角的平分线的性质定理和它的逆定理的内容、证明及应用.2.理解原命题和逆命题的概念和关系,会找一个简单命题的逆命题.3.渗透角平分线是满足特定条件的点的集合的思想。

教学重点和难点角平分线的性质定理和逆定理的应用是重点.性质定理和判定定理的区别和灵活运用是难点.教学过程设计(一)复习提问口述“角的平分线”的定义及其几何语言表示。

角平分线的定义。

(略)定义的几何语言表示:∵OC平分∠AOB,∴OC是∠AOB的平分线。

(二)讲授新课1.按下列要求完成练习(1)画出∠AOB的平分线OC。

(2)在OC上任取一点P。

(3)过P作PD⊥OA,垂足为D;过P作PE⊥OB,垂足为E。

(4)度量PD、PE,并比较PD、PE的大小。

(5)试叙述练习的结论。

以上练习的前三步,可由师生共同完成,学生在练习本上做,教师在黑板上做。

练习的第五步,应注意纠正学生口述中的错误,同时指出:“PD⊥OA,垂足为D。

”即PD是点P到∠AOB的边OA的距离。

同理,PE是点P到∠AOB的边OB 的距离。

并引导学生能正确口述定理1。

2.引入定理回定理1:在角的平分线上的点到这个角的两边的距离相等。

根据图形,分析定理1的题设、结论,并写出已知、求证和证明。

(略)(对于文字命题的证明方法的步骤,不宜过分强调,避免干扰教学目的的实现。

这些内容教材将在3.12“等腰三角形的性质”这小节中出现。

本节课只给学生感性认识起渗透作用。

)3.巩固定理1(1)口述定理1。

(2)写出定理1的几何语言表达:如图,∵P在∠AOB的平分线上。

又PD⊥OA,PE⊥OB,垂足分别为D、E。

∴PD=PE。

4.引入定理2(1)交换定理1的题设和结论得到一个新命题,由学生口述新命题,并注意纠正学生口述中的错误,使口述完整、准确。

(2)命题:到一个角的两边距离相等的点,在这个角的平分线上。

(3)根据命题的题意画出图形,分析命题的题设和结论,写出已知、求证和证明。

角平分线三个定理-概述说明以及解释

角平分线三个定理-概述说明以及解释

角平分线三个定理-概述说明以及解释1.引言1.1 概述角平分线三个定理是解决与角度相关的几何问题时,非常重要且常用的定理。

它们分别应用于角的平分线问题,帮助我们更深入地理解角的性质与构造。

这三个定理不仅在数学学科中有广泛的应用,而且在实际生活中也具有重要的意义。

在解释这三个定理之前,我们先回顾一下角的基本概念。

在几何学中,角是由两条线段或射线共享一个公共端点而形成的图形。

以公共端点为中心,可以将角分为两个部分,分别称为角的两个腿。

角的大小通常用度或弧度来表示,这取决于所用的单位。

第一个定理是角的平分线定理,它指出:如果一条直线将一个角平分成两个相等的角,那么这条直线称为这个角的平分线。

换句话说,平分线将角分为两个相等的部分。

这个定理有广泛的应用,例如在三角形中,利用角平分线定理可以证明角的大小相等,从而推导出三角形的一些特殊性质。

第二个定理是外角平分线定理,它指出:如果一条直线通过一个三角形的外角的顶点,并将外角的两个邻角平分成两个相等的角,那么这条直线称为该三角形的外角平分线。

这个定理在解决外角问题时非常有用,它保证了外角平分线的存在性,并简化了我们分析与推导相关问题的步骤。

第三个定理是内角平分线定理,它指出:如果一条直线通过一个三角形的内角的顶点,并将内角的两个邻角平分成两个相等的角,那么这条直线称为该三角形的内角平分线。

这个定理与外角平分线定理类似,但是涉及的是三角形的内角。

利用内角平分线定理,我们可以简化三角形内角相关问题的分析过程。

角平分线三个定理在几何学中占据着重要的地位,是研究角度关系和解决几何问题的基础。

它们不仅具有理论意义,还具有广泛的应用价值。

通过深入理解和熟练运用这三个定理,我们能够提高问题解决的效率,并在实际生活中更好地应用几何知识。

1.2文章结构文章结构:本文主要介绍了角平分线的三个定理,分为引言、正文和结论三个部分。

引言部分首先概述了角平分线的意义和应用,以及本文的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲 角平分线的性质及判定综合
作已知角的角平分线
如图,作∠AOB 的平分线的步骤
(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N 。

(2)分别以点M 、N
为圆心,大于
2
1
MN 为半径画弧,两弧在∠AOB 内部交于点C 。

(3)连射线OC ,射线OC 即为所求。

角平分线的性质:角的平分线上的点到角的两边距离相等。

符号语言:
如图,已知OC 是∠AOB 的角平分线,点P 是OC 上一点,PD ⊥OA 于点D ,PE ⊥OB 于E ,则PD=PE 。

角的平分线的性质的推导:
已知,如上右图,OC 是∠AOB 的角平分线,点P 是OC 上一点,PD ⊥OA 于点D ,PE ⊥OB 于E ,求证:PD=PE 。

证明:∵PD ⊥OA ,PE ⊥OB (已知) ∴∠ODP=∠OEP=900(垂直的定义) 又∵OC 平分∠AOB (已知)
∴∠AOC=∠BOC (角的平分线定义) 在Rt △DOP 和Rt △EOP 中 ⎪⎩⎪
⎨⎧=∠=∠∠=∠OP OP OEP ODP BOC AOC
∴Rt △DOP ≌Rt △EOP (AAS )
∴PD=PE (全等三角形的对应边相等)
扩充:到三角形三边距离相等的点,是三条角平分线的交点。

练习:
1.如图,在△ABC 中,∠C=90°,AD 是角平分线,DE ⊥AB 于E ,且BC=8cm ,BE=4cm ,则△BDE 的周长为________cm 。

2.在△ABC 中,∠C=90°,AM 平分∠CAB ,BM=6.2cm ,点M 到AB 的距离为2cm ,BC=_____
3.在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=32,且BD ∶CD=9∶7,则D 到AB 的距离为 .
A B
C D
E
O
P
(第1题) (第2题) (第3题) 【例1--1】如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( ) A. PD =PE
B. B.OD =OE
C. ∠DPO =∠EPO
D.PD =OD
【例1--2】画图,如图是三条交叉公路,请你设计一个方案,要建一个购物中心,使它到三条公路的距离相等,这样的地址有几处?请你画出来。

【例1--3】如图,△ABC 中,∠C=90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,且BE=CF ,求证:(1)DE=DC (2)DF=BD .
【例1--4】如图,BN 是∠ABC 的平分线,P 在BN 上,D 、E 分别在AB 、BC 上,∠BDP+
∠BEP=180
°,且∠BDP 、∠BEP 都不是直角。

求证:PD=PE
21D A P
O E
B
O
A B
C
D E
【例1--5】如图,已知OE 平分∠AOB ,BC ⊥OA ,AD ⊥OB 。

求证:EA=EB
角平分线的判定:到角两边距离相等的点在角平分线上。

几何语言:如右图,
∵DC ⊥AC 于C ,DB ⊥AB 于B ,且DC=DB
∴点D 在∠CAB 的角平分线上(OD 平分∠CAB )
【例2--1】如图,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 相交于D ,则下列结论: ①△ABE ≌△ACF ; ②△BDF ≌△CDE ;
③点D 在∠BAC 的平分线上, 其中正确的是( ) A. 只有① B. 只有② C. 只有①和② D. ①②③
练习:如图,OP 是∠AOB 的平分线,点C 、D 分别在角的两边OA 、OB 上,添加下列条件不能判定△POC ≌△POD 的选项是( ) A. PC ⊥OA ,PD ⊥OB B. OC=OD
C.∠OPC=∠OPD
D. PC=PD
【例2--2】如图所示,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是点E ,F ,且BE=CF ,求证:AD 是△ABC 的角平分线。

【例2--3】如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC。

求证:AD是∠BAC的平分线。

【例2--4】如图,OD平分∠AOB,OA=OB,P是OD上一点,PM⊥BD于点M,PN⊥AD于点N.求证:PM=PN.
【例2--5】已知:如图所示,BE=CF,DF⊥AC于点F,DE⊥AB于点E,BF和CE相交于点D,求证:AD平分∠BAC.
【例2--6】如图,已知CD⊥AB于D,BE⊥AC于E,CD,BE相交于点O,OB=OC。

求证:∠1=∠2
A
12
D E
O
B C
全等三角形综合:(SSS、SAS、ASA、AAS、HL)
【例3--1】如图所示,四边形ABCD中AB=AD,CA平分∠BCD,AE⊥BC,AF⊥CD,图中有无和△ABE全等的三角形?请说明理由。

【例3--2】如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG,
(1)观察猜想BE与DG之间的大小关系,并证明你的结论。

(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程,若不存在,说明理由。

【例3--3】如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC (2)AB=AF+2EB.
【例3--4】AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E、F,连接EF,EF 与AD相交于点G。

AD与EF相交于点G,AD与EF垂直吗?
【例3--5】如图,在Rt△ABC中,∠CAB=90°,AB=AC,D为AC的中点,过点C作CF ⊥BD交BD的延长线于点F,过点作AE⊥AF于点.求证:△ABE≌△ACF;
【例3--6】如图,在四边形OACD中,CM⊥OA于M,现有:①∠1=∠2;②CA=CB;③
∠3+∠4=180°;④OA+OB=2OM,若把其中任两个作为条件,都可得出另两个结论。

任选一组证明。

作业:
1、如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是()
A、PD=PE
B、OD=OE
C、∠DPO=∠EPO
D、PD=OD
2、如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()
A、1处
B、2处
C、3处
D、4处
3、如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =6㎝,则△DEB的周长为()
A、4㎝
B、6㎝
C、10㎝
D、不能确定
第1题图第2题图第3题图
4、如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=_________.
5、如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3 cm,BD=5 cm,则BC=_____cm.
6、已知:如图,∠B=∠DEF,AB=DE,要说明△ABC≌△DEF,
(1)若以“ASA”为依据,还缺条件 .
(2)若以“AAS”为依据,还缺条件 .
(3)若以“SAS”为依据,还缺条件 .
7、已知BD=CD,BF⊥AC,CE⊥AB。

求证:D在∠BAC的平分线上.
8、已知在Rt△ABC中,∠C=90°,AC=BC,AD为∠BAC的平分线,DE⊥AB,垂足为C.求证:△DBE的周长等于AB.
2
1
D A
P
O
E
B
l2
l1
l3
D
C
A
E
B
第6题图
第4题第5题。

相关文档
最新文档