中考数学命题常考考点及易错点( 七)_考点解析
中考数学命题常考考点及易错点函数

2017年中考数学命题常考考点及易错点:函数
易错点1:各个待定系数表示的的意义。
易错点2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。
易错点3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。
易错点4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。
易错点5:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。
易错点6:与坐标轴交点坐标一定要会求。
面积值的求解方法,距离之和的最小值的求解方法,距离之差值的求解方法。
易错点7:数形结合思想方法的运用,还应注意结合图像性质解题。
函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。
易错点8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。
考点07 反比例函数及其应用-备战2022年中考数学一轮复习考点帮(浙江专用)(解析版)

考点07 反比例函数及其应用【命题趋势】反比例函数这个考点在浙江中考数学中,多注重考察反比例函数的图象与性质,常和一次函数的图象结合考察,题型以选择题为主;另外,在填空题中,对反比例函数点的坐标特征考察的比较多,而且难度逐渐增大,常结合其他规则几何图形的性质一起出题,多数题目的技巧性较强,复习中需要多加注意。
另外解答题中还会考察反比例函数的解析式的确定,也是常和一次函数结合,顺带也会考察其与不等式的关系。
【中考考查重点】一、反比例函数图象的性质 二、反比例函数与不等式间的关系 三、反比例函数点的坐标特征 四、反比例函数比例系数k 的几何意义 五、反比例函数的应用考向一:反比例函数图象的性质【易错警示】➢ 反比例函数增减性的描述,一定要有“在其每个象限内”这个前提;➢ 由图象去求k 值时,一定要注意其正负符号 【方法技巧】增减性的直接应用技巧:若点A (x 1,y 1),点B (x 2,y 2)在反比例函数的同一支上,则有 当k >0时,若x 1>x 2,则y 1<y 2; 当k <0时,若x 1>x 2,则y 1>y 2;【同步练习】解析式)为常数,且0(≠=k k xky 图象所在象限 第一、三象限(x 、y 同号) 第二、四象限(x 、y 异号) 增减性在其每个象限内,y 随x 的增大而减小在其每个象限内,y 随x 的增大而增大对称性 关于直线y=x ,y=-x 成轴对称;关于原点成中心对称1.对于反比例函数y=﹣,下列说法正确的是()A.图象分布在第一、三象限内B.图象经过点(1,2021)C.当x>0时,y随x的增大而增大D.若点A(x1、y1),B(x2,y2)都在该函数的图象上,且x1<x2,则y1>y2【分析】A:根据k的取值范围确定;B:根据k的值确定;C:根据k的取值范围确定;D:根据反比例函数的性质确定.【解答】解:A:k=﹣2021<0,图象分布在第二、四象限内,∴不符合题意;B:x=1时,y=﹣2021,∴不符合题意;C:∵k<0,图象分布在第二、四象限内,当x>0时,在第四象限,y随x的增大而增大,∴符合题意;D:当A,B在同一分支上时,x1<x2,则y1>y2成立,当不在同一分支不成立,∴不符合题意;故选:C.2.在下图中,反比例函数y=﹣(x>0)的图象大致是()A.B.C.D.【分析】根据反比例函数的性质判断即可.【解答】解:∵k=﹣5<0,∴反比例函数y=﹣(x>0)的图象位于第四象限.故选:C.3.反比例函数y=﹣与一次函数y=x﹣2在同一坐标系中的大致图象可能是()A.B.C.D.【分析】根据反比例函数的性质、一次函数的性质即可判断反比例函数的图象和一次函数的图象所处的象限,据此即可选C.【解答】解:由反比例函数y=﹣与一次函数y=x﹣2可知,反比例函数的图象在二、四象限,一次函数的图象通过一、三、四象限,故选:C.4.若反比例函数y=的图象在其所在的每一象限内,y随x的增大而减小,则k的取值范围是()A.k<﹣2B.k>﹣2C.k<2D.k>2【分析】先根据反比例函数的性质得出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例比例函数y=的图象在其每一象限内,y随x的增大而减小,∴k+2>0,解得k>﹣2.故选:B.5.如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:因为直线y=mx过原点,双曲线y=的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(3,4),另一个交点的坐标为(﹣3,﹣4).故答案是:(﹣3,﹣4).6.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=﹣的图象上,并且y1<y2<0<y3,则下列各式正确的是()A.x2<x1<x3B.x1<x2<x3C.x3<x1<x2D.x2<x3<x1【分析】根据反比例函数的图象,由y1<y2<0<y3,在图象上确定点A(x1,y1),B(x2,y2),C(x3,y3)的位置,进而得出答案.【解答】解:由图象法,由于y1<y2<0<y3,点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=﹣的图象上的位置大致如下:由图象可得,当y1<y2<0<y3时,x3<0<x1<x2,故选:C.考向二:反比例函数与不等式间的关系当反比例函数与一次函数的图象相交时,会产生如下两种图形,对应结论如下:1.如图①,若反比例函数与一次函数相交于反比例函数的两支于点A,B,则有若y1>y2,则自变量x的取值范围是:n<x<0或x>m若y1<y2,则自变量x的取值范围是:x<n或0<x<m①2.如图②,若反比例函数与一次函数相交于反比例函数的同一支于点A,B,则有若y1>y2,则自变量x的取值范围是:m<x<n或x<0若y1<y2,则自变量x的取值范围是:x>n或0<x<m②【方法技巧】反比例函数与不等式结合考察增减性时,答案的形式都是包含2部分的(即谁或谁),并且其中一部分肯定与0有关!(特定问题中已经说明应用范围的例外)【同步练习】1.如图,一次函数y=﹣2x+8与反比例函数y=(x>0)的图象交于A(1,6),B(3,2)两点.则使﹣2x+8<成立的x的取值范围是()A.x<1B.x>3C.1<x<3D.0<x<1或x>3【分析】观察函数图象得到当0<x<1或x>3,一次函数的图象在反比例函数图象下方.【解答】解:在第一象限内,一次函数值小于反比例函数值时自变量x的取值范围是0<x<1或x>3;故选:D.2.直线y=k1x+b与双曲线y=在同一平面直角坐标系中的图象如图所示,则关于x的不等式>k1x+b的解集为.【分析】先根据图象得出两函数的交点的横坐标,根据交点的横坐标结合图象即可得出答案.【解答】解:∵直线y=k1x+b与双曲线y=在同一平面直角坐标系中的图象的交点的横坐标是﹣2和3,∴关于x的不等式>k1x+b的解集是x<﹣2或0<x<3,故答案为:x<﹣2或0<x<3.3.如图,若反比例函数与一次函数y2=ax+b交于A、B两点,当y1<y2时,则x的取值范围是.【分析】写出反比例函数的图象在一次函数的图象下方的自变量的取值范围即可.【解答】解:观察图象可知,当y1<y2时,则x的取值范围是﹣1<x<0或x>2.故答案为:﹣1<x<0或x>2.4.如右图,一次函数y=kx+b的图象与反比例函数的图象交于点A(1,4)、B(4,n).(1)求这两个函数的表达式;(2)请结合图象直接写出不等式的解集;(3)连接OA,OB,求△OAB的面积.【分析】(1)将点A(1,4)代入可得m的值,求得反比例函数的解析式;根据反比例函数解析式求得点B坐标,再由A、B两点的坐标可得一次函数的解析式;(2)根据图象得出不等式的解集即可;(3)由直线解析式求得与x轴的交点,然后根据S△AOB=S△AOC﹣S△BOC求得即可.【解答】解:(1)把点A(1,4)代入,得:m=4,∴反比例函数的解析式为,∵B(4,n)在反比例函数图象上,∴,从而点B(4,1),把点A(1,4),点B(4,1)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+5;(2)观察图象,得:当0<x≤1或x≥4时,,∴不等式的解集为0<x≤1或x≥4;(3)如图,连结OA,OB,设直线y=﹣x+5与x轴交于点C,当y=0时,x=5,∴点C(5,0),∴OC=5,∴S△AOB=S△AOC﹣S△BOC=﹣=.考向三:反比例函数点的坐标特征1.所有反比例函数上的点的横纵坐标相乘=比例系数k2.如果一个点在反比例函数的图象上,则该点的坐标符合其解析式,可以根据其解析式设出对应的点的坐标3.当反比例函数与其他图形结合考察时,多注意与反比例函数结合的图形的性质应用【同步练习】1.在平面直角坐标系xOy中,下列函数的图象过点(﹣1,1)的是()A.y=x﹣1B.y=﹣x+1C.y=D.y=x2【分析】将点(﹣1,1)分别代入4个解析式进行验证即可得出答案.【解答】解:把x=﹣1代入y=x﹣1得:﹣1﹣1=﹣2≠1,∴选项A不符合题意;把x=﹣1代入y=﹣x+1得:1+1=2≠1,∴选项B不符合题意;把x=﹣1代入y=得:=﹣1≠1,∴选项C不符合题意;把x=﹣1代入y=x2得:(﹣1)2=1,∴选项D符合题意;故选:D.2.如果A(2,y1),B(3,y2)两点都在反比例函数y=的图象上,那么y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.无法确定【分析】将A,B两点坐标代入解析式计算y1,y2的值,进而可比较大小.【解答】解:将A(2,y1),B(3,y2)两点代入反比例函数y=中,y1=,y2=,∴y1>y2.故选:B.3.反比例函数y=(k≠0)的图象经过点A(﹣2,3),则此图象一定经过下列哪个点()A.(3,2)B.(﹣3,﹣2)C.(﹣3,2)D.(﹣2,﹣3)【分析】根据反比例函数图象上点的坐标特征即可求解.【解答】解:∵反比例函数y=(k≠0)的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,A.﹣3×2=6≠﹣6,图象不经过点(3,2);B.﹣3×(﹣2)=6≠﹣6,图象不经过点(﹣3,﹣2);C.﹣3×2=﹣6,图象经过点(﹣3,2);D.﹣2×(﹣3)=6≠﹣6,图象不经过点(﹣2,﹣3);∴C选项符合题意,故选:C.4.如图,函数y=﹣(x<0)的图象经过Rt△ABO斜边OB的中点C,连接AC.如果AC=3,那么△ABO的周长为()A.B.C.D.【分析】过点C作CD⊥OA于点D,由直角三角形的性质可得BO=6,由三角形中位线定理可得AB=2CD,AO=2OD,根据勾股定理可求得AB+AO,进而可得△ABO的周长.【解答】解:过点C作CD⊥OA于点D,∵点C是OB的中点,AC=3,∴AC=BC=OC=3,OB=6,∵△ABO是直角三角形,CD⊥OA∴AB∥CD,∴CD是△ABO的中位线,∴AB=2CD,AO=2OD,∵S△CDO=×CD×OD=×|﹣2|=1,∴CD×OD=2,∴AB×AO=2CD×2OD=8,∵AB2+AO2=OB2=36,∴(AB+AO)2﹣2×AB×AO=36,∴AB+AO=2,∴△ABO的周长=AO+BO+AB=6+2,故选:D.5.如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=(x>0)的图象上,则:(1)点B的坐标是;(2)点E的坐标是.【分析】(1)设正方形ADEF的边长是a,则B(a,a),把B的坐标代入y=即可得到B的坐标;(2)设点E的纵坐标为y,则点E的横坐标为(1+y),代入反比例函数的解析式即可求得y的值,从而求得E的坐标.【解答】解:(1)设正方形ADEF的边长是a,则B(a,a),∵点B在反比例函数y=(x>0)的图象上,∴a2=1,∴a=1,∴点B的坐标为(1,1).(2)设点E的纵坐标为y,∴点E的横坐标为(1+y),∴y×(1+y)=1,即y2+y﹣1=0,即y=,∵y>0,∴y=,∴点E的横坐标为1+=.∴E(,).故答案为(1,1),E(,).6.若点A(﹣3,1)、B(m,2)都在反比例函数y=(k≠0)的图象上,则m的值是.【分析】由点A的坐标利用反比例函数图象上点的坐标特征即可得出k值,再结合点B 在反比例函数图象上,由此即可得出关于m的一元一次方程,解方程即可得出结论.【解答】解:∵点A(﹣3,1)在反比例函数y=(k≠0)的图象上,∴k=﹣3×1=﹣3.∵点B(m,2)在反比例函数y=(k≠0)的图象上,∴k=﹣3=2m,解得:m=﹣.故答案为:﹣.7.如图,边长为3的正方形OABC的顶点A,C分别在x轴、y轴的正半轴上,若反比例函数y=的图象与正方形OABC的边有公共点,则k的取值范围是.【分析】由图象可知,当反比例数y=的图象经过B点时,k取最大值,又图象位于第一象限才可能与正方形OABC的边有公共点,进而求出k的取值范围.【解答】解:由题意,可得B(3,3),当反比例数y =的图象经过B点时,k取最大值,此时k=3×3=9,又k>0,所以k的取值范围是0<k≤9.故答案为:0<k≤9.8.如图,在直角坐标系中,已知点B(8,0),等边三角形OAB的顶点A在反比例函数y =的图象上:如果把△OAB向右平移a个单位长度,对应得到△O'A'B',当这个函数图象经过△O'A'B'一边的中点时,则a =.【分析】过点A作AC⊥OB于点C,根据等边三角形的性质得出点A坐标,用待定系数法求得反比例函数的解析式即可,分两种情况讨论:①反比例函数图象过AB的中点;②反比例函数图象过AO的中点.分别过中点作x轴的垂线,再根据30°角所对的直角边是斜边的一半得出中点的纵坐标,代入反比例函数的解析式得出中点坐标,再根据平移的法则得出a的值即可.【解答】解:如图1,过点A作AC⊥OB于点C,∵△OAB是等边三角形,∴∠AOB=60°,OC=OB,∵B(8,0),∴OB=OA=8,∴OC=4,AC=4.把点A(4,4)代入y=,得k=16.∴反比例函数的解析式为y=;分两种情况讨论:①如图2,点D是A′B′的中点,过点D作DE⊥x轴于点E.由题意得A′B′=8,∠A′B′E=60°,在Rt△DEB′中,B′D=4,DE=2,B′E=2.C 图1∴O′E=6,把y=2代入y=,得x=8,∴OE=8,∴a=OO′=8﹣6=2;②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.由题意得A′O′=8,∠A′O′B′=60°,在Rt△FO′H中,FH=2,O′H=2.把y=2代入y=,得x=8,∴OH=8,∴a=OO′=8﹣2=6,故答案为2或6.考向四:反比例函数k的几何意义反比例函数k与几何图形结合常见模型:【同步练习】1.如图,点P在反比例函数y=的图象上,P A⊥x轴于点A,若△P AO的面积为4,那么k的值为()A.2B.4C.8D.﹣4【分析】由△P AO的面积为4可得|k|=4,再结合图象经过的是第一、三象限,从而可以确定k值.【解答】解:∵S△P AO=4,∴|x•y|=4,即|k|=4,则|k|=8,∵图象经过第一、三象限,∴k>0,∴k=8,故选:C.2.反比例函数y=(x>0)的图象经过点A(2,m),过点A作y轴的垂线交y轴于点B.当点C在x轴正半轴上运动时△ABC的面积为()A.3B.6C.12D.先变大后减小【分析】将点A坐标代入函数解析式求出m,从而可得AB及BO的长,再由S△ABC=AB •OB求解.【解答】解:把x=2代入y=得y=3,∴A(2,3),∵AB⊥y轴,∴AB∥x轴,∴B(0,3),即OB=3,∴S△ABC=AB•OB=×2×3=3.故选:A.3.如图,点P,点Q都在反比例函数y=的图象上,过点P分别作x轴、y轴的垂线,两条垂线与两坐标轴围成的矩形面积为S1,过点Q作x轴的垂线,交x轴于点A,△OAQ 的面积为S2,若S1+S2=3,则k的值为()A.2B.1C.﹣1D.﹣2【分析】根据反比例函数k的几何意义得到S1=|k|,,如何代入解方程,再根据图象在二、四象限确定k的值.【解答】解:由题意得S1=|k|,,则,解得|k|=2,∵图象在二、四象,∴k<0,∴k=﹣2.故选:D.4.如图,反比例函数y=﹣与y=的图象上分别有一点A,B,且AB∥x轴,AD⊥x轴于D,BC⊥x轴于C,若矩形ABCD的面积为8,则a=()A.﹣2B.﹣6C.2D.6【分析】根据反比例函数y=(k≠0)系数k的几何意义得到S矩形ADOE=|﹣a|,S矩形BCOE =6,进而得到|b|+|a|=8.【解答】解:∵AB∥x轴,AD⊥x轴于D,BC⊥x轴于C,∴S矩形ADOE=|﹣a|,S矩形BCOE=6,∵矩形ABCD的面积为8,∴S矩形ADOE+S矩形BCOE=S矩形ABCD=8,∴|﹣a|+6=8,∵反比例函数y=﹣在第二象限,∴a>0,∴a=2,故选:C.5.如图,A,B是反比例函数的图象上关于原点对称的两点,BC∥x轴,AC∥y轴,若△ABC的面积为6,则k的值是.【分析】先根据反比例函数的图象在一、三象限判断出k的符号,由反比例函数系数k 的几何意义得出S△AOD=S△BOE=k,根据反比例函数及正比例函数的特点得出A、B两点关于原点对称,故可得出S矩形OECD=2S△AOD=k,再由△ABC的面积是6即可得出k的值.【解答】解:∵反比例函数的图象在一、三象限,∴k>0,∵BC∥x轴,AC∥y轴,∴S△AOD=S△BOE=k,∵反比例函数及正比例函数的图象关于原点对称,∴A、B两点关于原点对称,∴S矩形OECD=2S△AOD=k,∴S△ABC=S△AOD+S△BOE+S矩形OECD=2k=6,解得k=3.故答案为:3.6.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数y=﹣(x<0)和y=(x>0)的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为.【分析】连接OA,OB,利用同底等高的两三角形面积相等得到三角形AOB面积等于三角形ACB面积,再利用反比例函数k的几何意义求出三角形AOP面积与三角形BOP面积,即可得到结果.【解答】解:如图,连接OA,OB,∵△AOB与△ACB同底等高,∴S△AOB=S△ACB,∵AB∥x轴,∴AB⊥y轴,∵A、B分别在反比例函数y=﹣(x<0)和y=(x>0)的图象上,∴S△AOP=3,S△BOP=4,∴S△ABC=S△AOB=S△AOP+S△BOP=3+4=7.故答案为:7.7.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A、C、D在坐标轴上,BD⊥DC,▱ABCD的面积为8,则k=.【分析】由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.【解答】解:过点P作PE⊥y轴于点E,∵四边形ABCD为平行四边形,∴AB=CD,又∵BD⊥x轴,∴ABDO为矩形,∴AB=DO,∴S矩形ABDO=S▱ABCD=8,∵P为对角线交点,PE⊥y轴,∴四边形PDOE为矩形面积为4,∵反比例函数y=的图象经过▱ABCD对角线的交点P,∴|k|=S矩形PDOE=4,∵图象在第二象限,∴k<0,∴k=﹣4,故答案为﹣4.8.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=(x<0)的图象上,则k的值为.【分析】连接AC,交y轴于点D,由四边形ABCO为菱形,得到对角线垂直且互相平分,得到三角形CDO面积为菱形面积的四分之一,根据菱形面积求出三角形CDO面积,利用反比例函数k的几何意义确定出k的值即可.【解答】解:连接AC,交y轴于点D,∵四边形ABCO为菱形,∴AC⊥OB,且CD=AD,BD=OD,∵菱形OABC的面积为12,∴△CDO的面积为3,∴|k|=6,∵反比例函数图象位于第二象限,∴k<0,则k=﹣6.故答案为:﹣6.考向五:反比例函数的应用一.反比例函数的应用通常是先根据题意列出函数表达式,画出函数图象,再根据函数图象的性质解决相关问题,同时注意自变量的取值范围二.反比例函数与一次函数的结合问题应对策略:①确定解析式,由一次函数解析式确定反比例函数解析式,由反比例函数解析式确定一次函数解析式②求交点坐标,通常联立反比例函数解析式与一次函数解析式③利用函数图象求解对应的不等式,需要过交点坐标作x轴的垂线【同步练习】1.已知电压U、电流I、电阻R三者之间的关系为:U=IR.当其中一个量是常量时,另外两个变量之间的图象不可能是()A.B.C.D.【分析】①当I为常量时,可判断A;②当U为常量时,可判定B和C;③当R为常量时,其图象一条射线;综上即可得到结论.【解答】解:①当I为常量时,函数U=IR是正比例函数,其图象是A,故选项A不符合题意;②当U为常量时,函数U=IR化为I=或R=,是反比例函数,其图象是B或C,故选项B和C不符合题意;③当R为常量时,函数U=RI是反比例函数,其图象一条射线,图象不可能是D,故选项D符合题意;故选:D.2.某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地.当人和木板对湿地的压力一定时,人和木板对地面的压强P(Pa)是木板面积S(m2)的反比例函数,其图象如图,点A在反比例函数图象上,坐标是(8,30),当压强P(Pa)是4800Pa 时,木板面积为()m2.A.0.5B.2C.0.05D.20【分析】直接利用待定系数法求出反比例函数解析式,进而把P=4800代入得出答案.【解答】解:设P=,根据题已知可得图象经过(8,30),则k=P•S=8×30=240,故P=,当P=4800时,木板面积为:S==0.05(Pa).故选:C.3.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.当气体体积为2m3时,气压是kPa.【分析】设出反比例函数解析式,把点的坐标代入可得函数解析式,把V=2代入得到的函数解析式,可得P.【解答】解:设P=,由图象知100=,所以k=100,故P=,当V=2时,P==50;故答案为:50.4.我国自主研发多种新冠病毒有效用药已经用于临床救治.某新冠病毒研究团队测得成人注射一针某种药物后体内抗体浓度y(微克/ml)与注射时间x天之间的函数关系如图所示(当x≤20时,y与x是正比例函数关系;当x≥20时,y与x是反比例函数关系).(1)根据图象求当x≥20时,y与x之间的函数关系式;(2)当x≥20时,体内抗体浓度不高于140微克/ml时是从注射药物第多少天开始?【分析】(1)直接利用反比例函数解析式求法得出答案;(2)结合所求解析式,把y=140代入求出答案.【解答】解:(1)设当x≥20时,y与x之间的函数关系式是y=,图象过(20,280),则k=20×280=5600,解得:k=5600,y与x之间的函数关系式是y=;(2)当x≤20时,140=14x,解得:x=10.当x≥20时,140=,解得:x=40,答:体内抗体浓度不高于140微克/ml时是从注射药物第40天开始.5.工厂对某种新型材料进行加工,首先要将其加温,使这种材料保持在一定温度范围内方可加工,如图是在这种材料的加工过程中,该材料的温度y(℃)时间x(min)变化的函数图象,已知该材料,初始温度为15℃,在温度上升阶段,y与x成一次函数关系,在第5分钟温度达到60℃后停止加温,在温度下降阶段,y与x成反比例关系.(1)写出该材料温度上升和下降阶段,y与x的函数关系式:①上升阶段:当0≤x≤5时,y=;②下降阶段:当x>5时,y.(2)根据工艺要求,当材料的温度不低于30℃,可以进行产品加工,请问在图中所示的温度变化过程中,可以进行加工多长时间?【分析】(1)直接利用待定系数法求出一次函数以及反比例函数的解析式;(2)利用y=30代入结合函数增减性得出答案.【解答】解:(1)①上升阶段:当0≤x<5时,为一次函数,设一次函数表达式为y=kx+b,由于一次函数图象过点(0,15),(5,60),所以,解得:,所以y=9x+15,②下降阶段:当x≥5时,为反比例函数,设函数关系式为:y=,由于图象过点(5,60),所以m=300.则y=;故答案为:9x+15;=(2)当0≤x<5时,y=9x+15=30,得x=,因为y随x的增大而增大,所以x>,当x≥5时,y==30,得x=10,因为y随x的增大而减小,所以x<10,10﹣=,答:可加工min.1.(2021秋•亳州月考)下列函数图象是双曲线的是()A.y=x2+3B.y=﹣x﹣5C.y=﹣D.y=﹣【分析】根据反比例函数y=(k≠0)的图象是双曲线可得答案.【解答】解:A、y=x2+3是二次函数,图象是抛物线,故此选项不符合题意;B、y=﹣x﹣5是一次函数,图象是直线,故此选项不符合题意;C、y=﹣是正比例函数,图象是过原点的直线,故此选项不符合题意;D、y=﹣是反比例函数,图象是双曲线,故此选项符合题意;故选:D.2.(2019秋•港南区期末)正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)【分析】根据反比例函数的关于原点对称的性质知,正比例函数y=2x和反比例函数的另一个交点与点(1,2)关于原点对称.【解答】解:∵正比例函数y=2x和反比例函数的一个交点为(1,2),∴另一个交点与点(1,2)关于原点对称,∴另一个交点是(﹣1,﹣2).故选:A.3.(2021秋•顺德区期末)函数y=kx﹣k与y=在同一坐标系中的图象如图所示,下列结论正确的是()A.k<0B.m>0C.km>0D.<0【分析】根据正比例函数与反比例函数图象的特点与系数的关系解答即可.【解答】解:由图象可知双曲线过二、四象限,m<0;一次函数过一、三,四象限,所以k>0.故选:D.4.(2021秋•铁西区期末)如图,A是反比例函数y=的图象上一点,过点A作AB⊥y轴于点B,点C在x轴上,且S△ABC=2,则k的值为()A.4B.﹣4C.﹣2D.2【分析】先设A点坐标,再根据点A在第二象限,则x<0,y>0,然后由三角形面积公式求出xy即可.【解答】解:设点A的坐标为(x,y),∵点A在第二象限,∴x<0,y>0,∴S△ABC=AB•OB=|x|•|y|=﹣xy=2,∴xy=﹣4,∵A是反比例函数y=的图象上一点,∴k=xy=﹣4,故选:B.5.(2021秋•南开区期末)若反比例函数y=的图象在其所在的每一象限内,y随x的增大而减小,则k的取值范围是()A.k<﹣2B.k>﹣2C.k<2D.k>2【分析】先根据反比例函数的性质得出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例比例函数y=的图象在其每一象限内,y随x的增大而减小,∴k+2>0,解得k>﹣2.故选:B.6.(2021秋•朝阳区校级期末)如图,△AOB和△BCD均为等腰直角三角形,且顶点A、C 均在函数y=(x>0)的图象上,连结AD交BC于点E,连结OE.若S△OAE=4,则k 的值为()A.2B.2C.4D.4【分析】根据等腰直角三角形的性质得出OA=AB,∠AOB=∠CBD=45°,那么OA∥BC,S△OAB=S△OAE=4.过点A作AF⊥OB于F,根据等腰三角形的性质得出OF=BF,那么S△OAF=S△ABF=S△OAB=2,再利用反比例函数比例系数k的几何意义求出k=4.【解答】解:∵△AOB和△BCD均为等腰直角三角形,∴OA=AB,∠AOB=∠CBD=45°,∴OA∥BC,∴S△OAB=S△OAE=4.如图,过点A作AF⊥OB于F,则OF=BF,∴S△OAF=S△ABF=S△OAB=2,∵点A在函数y=(x>0)的图象上,∴k=2,解得k=4.故选:C.7.(2021秋•牡丹江期末)已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y =﹣的图象上,并且y1<y2<0<y3,则下列各式正确的是()A.x2<x1<x3B.x1<x2<x3C.x3<x1<x2D.x2<x3<x1【分析】根据反比例函数的图象,由y1<y2<0<y3,在图象上确定点A(x1,y1),B(x2,y2),C(x3,y3)的位置,进而得出答案.【解答】解:由图象法,由于y1<y2<0<y3,点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=﹣的图象上的位置大致如下:由图象可得,当y1<y2<0<y3时,x3<0<x1<x2,故选:C.8.(2021秋•莲池区期末)点A(a,b)在反比例函数y=的图象上,且a,b是关于x的一元二次方程x2﹣6x+m=0的两根,则点A坐标是()A.(1,9)B.(2,)C.(3,3)D.(﹣3,﹣3)【分析】根据一元二次方程根与系数的关系得出a+b=6①,再由点A(a,b)在反比例函数y=的图象上得出ab=9②,再用代入法解二元一次方程组即可.【解答】解:∵a,b是关于x的一元二次方程x2﹣6x+m=0的两根,∴a+b=6①,∵A(a,b)是反比例函数y=上的一点,∴ab=9②,把①变形为a=6﹣b代入②得:b(6﹣b)=9,整理得:b2﹣6b+9=0,解得:b=3,则a=6﹣3=3,∴点A坐标为(3,3),故选:C.9.(2021秋•泰山区期中)如果等腰三角形的面积为6,底边长为x,底边上的高为y,则y 与x的函数关系式为()A.y=B.y=C.y=D.y=【分析】利用三角形面积公式得出xy=6,进而得出答案.【解答】解:∵等腰三角形的面积为6,底边长为x,底边上的高为y,∴xy=6,∴y与x的函数关系式为:y =.故选:A.10.(2021春•衢州期末)某杠杆装置如图,杆的一端吊起一桶水,阻力臂保持不变,在使杠杆平衡的情况下,小康通过改变动力臂L,测量出相应的动力F数据如表.请根据表中数据规律探求,当动力臂L长度为2.0m时,所需动力最接近()动力臂L (m)动力F (N)0.56001.03021.52002.0a2.5120A.120N B.151N C.300N D.302N【分析】根据表中信息可知动力臂与动力成反比关系,选择利用反比例函数来解答.【解答】解:由表可知动力臂与动力成反比的关系,设方程为:L =,从表中取一个有序数对,不妨取(0.5,600)代入L =,解得:K=300,∴L =,把L=2代入上式,解得:F=150,故选:B.11.(2021•滨海县一模)如图,已知直线y=mx与双曲线y =的一个交点坐标为(3,4),则它们的另一个交点坐标是.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:因为直线y=mx过原点,双曲线y=的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(3,4),另一个交点的坐标为(﹣3,﹣4).故答案是:(﹣3,﹣4).12.(2021秋•铁西区期末)如图,若反比例函数与一次函数y2=ax+b交于A、B两点,当y1<y2时,则x的取值范围是.【分析】写出反比例函数的图象在一次函数的图象下方的自变量的取值范围即可.【解答】解:观察图象可知,当y1<y2时,则x的取值范围是﹣1<x<0或x>2.故答案为:﹣1<x<0或x>2.13.(2021秋•南岗区校级期末)如图,直线y=﹣x﹣2的图象与x、y轴交于B、A两点,与y=(x<0)的图象交于点C,过点C作CD⊥x轴于点D.如果S△BCD:S△AOB=1:4,则k的值为.【分析】由直线y=2x﹣4的图象与x,y轴交于B,A两点,可求得A与B的坐标,易得△AOB∽△CDB,然后由相似三角形面积比等于相似比的平方,求得CD与BD的长,继而求得点C的坐标,则可求得答案.【解答】解:∵直线y=﹣x﹣2的图象与x、y轴交于B、A两点,∴点A(0,﹣2),点B(﹣4,0),∴OA=2,OB=4,∵CD⊥x轴,∴CD∥OA,∴△AOB∽△CDB,∵S△BCD:S△AOB=1:4,∴==,∴CD=1,BD=2,∴OD=OB+BD=6,∴点C的坐标为:(﹣6,1),∵反比例函数y=(x<0)的图象过点C,∴k=﹣6×1=﹣6.故答案为:﹣6.14.(2021春•海州区期末)近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视镜片的焦距为0.2米,则眼镜度数y与镜片焦距x之间的函数关系式是.【分析】由于近视眼镜的度数y(度)与镜片焦距x(米)成反比例,可设y=,由于点(0.2,400)在此函数解析式上,故可先求得k的值.【解答】解:根据题意近视眼镜的度数y(度)与镜片焦距x(米)成反比例,设y=,由于点(0.2,400)在此函数解析式上,∴k=0.2×400=80,∴y=.故答案为:y=.15.(2020秋•渠县期末)心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,分钟时学生的注意力更集中.。
中考数学最易出错知识点

中考数学最易出错知识点中考数学最易出错知识点:方程(组)与不等式(组) 易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必需要留意不能为0 的状况,还要关注解方程与方程组的基本思想。
(消元降次)主要圈套是消弭了一个带X 公因式要回头检验!易错点3:运用不等式的性质3时,容易遗忘改不改动符号的方向而招致结果出错。
易错点4:关于一元二次方程的取值范围的标题易无视二次项系数不为0招致出错。
易错点5:关于一元一次不等式组有解无解的条件易无视相等的状况。
易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易遗忘根检验,招致运算结果出错。
易错点7:不等式(组)的解得效果要先确定解集,确定解集的方法运用数轴。
易错点8:应用函数图象求不等式的解集和方程的解。
中考数学最易出错知识点:函数易错点1:各个待定系数表示的的意义。
易错点2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。
易错点3:应用图像求不等式的解集和方程(组)的解,应用图像性质确定增减性。
易错点4:两个变量应用函数模型解实践效果,留意区别方程、函数、不等式模型处置不等范围的效果。
易错点5:应用函数图象停止分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。
易错点6:与坐标轴交点坐标一定要会求。
面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。
易错点7:数形结合思想方法的运用,还应留意结合图像性质解题。
函数图象与图形结合学会从复杂图形分解为复杂图形的方法,图形为图像提供数据或许图像为图形提供数据。
易错点8:自变量的取值范围有:二次根式的被开方数是非正数,分式的分母不为0,0指数底数不为0,其它都是全体实数。
中考数学最易出错知识点:三角形易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别。
易错点2:三角形三边之间的不等关系,留意其中的〝任何两边〞。
中考数学易考易错点总结

中考数学易考易错点总结在中考数学中,有一些易考易错点经常出现在题目中,对于考生来说,熟悉这些易错点是非常重要的。
下面我将总结一些中考数学易考易错的点,供考生参考。
1.平方与平方根:经常出现的问题是求解平方根的情况。
很多考生容易混淆平方和平方根的概念,导致答案错误。
在解题时,要注意区分平方和平方根的关系,避免混淆。
2.百分数与分数的转化:在百分数和分数的转化中,容易出现小数点位置错误的问题。
考生在计算过程中,要注意小数点的位置,避免转化时出现错误。
3.相似与全等:在几何题中,容易出现相似和全等的概念不清晰,导致解法错误。
要理解相似和全等的定义,并能够正确应用到具体题目中。
4.图形的性质:在图形题中,容易出现对图形性质的理解错误。
比如,对于平行四边形的性质、圆的性质等,考生容易混淆或记错,从而导致答案错误。
5.勾股定理:勾股定理是数学中一个重要的定理,但是在应用时经常出现错误。
考生在应用勾股定理时,要注意判断是否为直角三角形,是否符合勾股定理的条件。
6.平行线与角:在平行线与角的关系中,常常会出现角的概念理解错误。
考生要理解对应角、同位角、内错角等概念,能够正确应用到具体题目中。
7.比例与相似:在比例与相似的题目中,经常会出现比例计算错误的问题。
考生在进行比例计算时,要注意比例的次序和对应关系,避免出现计算错误。
8.平均数与中位数:在统计题中,常常会涉及平均数与中位数的计算。
考生容易混淆平均数和中位数的概念,从而导致错误的计算结果。
9.代数式的展开与因式分解:在代数式的展开和因式分解中,常常会出现计算错误的情况。
考生要注意符号的运算法则和因式分解的方法,避免出现错误。
10.排列与组合:在排列与组合的题目中,经常会出现计算错误的问题。
考生在进行排列与组合的计算时,要注意分类计数和互补计数的方法,避免计算错误。
总之,中考数学易考易错点主要集中在基本概念的理解和运算的准确性上。
考生在备考时,要加强对基本概念的掌握和理解,注重计算的准确性,避免因为概念理解错误或运算错误而导致答案错误。
中考数学最易出错的七大知识点

中考数学最易出错的七大知识点数与式易错点1:有理数、无理数以及实数的相关概念理解错误,相反数、倒数、绝对值的意义概念混淆。
以及绝对值与数的分类。
每年选择必考。
易错点2:实数的运算要掌握好与实数相关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
填空题必考。
易错点4:求分式值为零时学生易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。
填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:计算第一题必考。
五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。
精确度,有效数字。
这个上海还没有考过,知道就好!易错点9:代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是寻不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。
(消元落次)主要陷阱是消除了一个带X公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。
易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
函数易错点1:各个待定系数表示的的意义。
中考数学28个高频考点及60个易错点汇总

中考数学28个高频考点及60个易错点汇总中考数学必须掌握的28个考点及60个易错点1相似三角形(7个考点)考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小考核要求:理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3:相似三角形的概念考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5:三角形的重心考核要求:知道重心的定义并初步应用。
考点6:向量的有关概念考点7:向量的加法、减法、实数与向量相乘、向量的线性运算考核要求:掌握实数与向量相乘、向量的线性运算2锐角三角比(2个考点)考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点9:解直角三角形及其应用考核要求:(1 )理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
3二次函数(4个考点)考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;知道常值函数;知道函数的表示方法,知道符号的意义。
考点11:用待定系数法求二次函数的解析式考核要求:掌握求函数解析式的方法;在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点12:画二次函数的图像考核要求:知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像理解二次函数的图像,体会数形结合思想;会画二次函数的大致图像。
(易错题精选)初中数学命题与证明的知识点总复习含答案

(易错题精选)初中数学命题与证明的知识点总复习含答案一、选择题1.下列命题正确的是()A.矩形对角线互相垂直x=B.方程214=的解为14x xC.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等【答案】D【解析】【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6-2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【详解】A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选D.【点睛】本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.2.“两条直线相交只有一个交点”的题设是()A.两条直线 B.相交C.只有一个交点 D.两条直线相交【答案】D【解析】【分析】任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.【详解】“两条直线相交只有一个交点”的题设是两条直线相交.故选D.【点睛】本题考查的知识点是命题和定理,解题关键是理解题设和结论的关系.3.下列命题中逆命题是假命题的是()A.如果两个三角形的三条边都对应相等,那么这两个三角形全等B.如果a2=9,那么a=3C.对顶角相等D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等【答案】C【解析】【分析】首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.【详解】解:A、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;B、逆命题为:如果a=3,那么a2=9.是真命题;C、逆命题为:相等的角是对顶角.是假命题;D、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题.故选C.【点睛】此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.4.下列命题中,是假命题的是()A.对顶角相等B.同位角相等C.同角的余角相等D.全等三角形的面积相等【答案】B【解析】【分析】根据对顶角得性质、平行线得性质、余角得等于及全等三角形得性质逐一判断即可得答案.【详解】A.对顶角相等是真命题,故该选项不合题意,B.两直线平行,同位角相等,故该选项是假命题,符合题意,C.同角的余角相等是真命题,故该选项不合题意,D.全等三角形的面积相等是真命题,故该选项不合题意.故选:B.【点睛】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.下列命题是假命题的是()A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线垂直的四边形是菱形D .对角线垂直的平行四边形是菱形【答案】C【解析】试题分析:A .四个角相等的四边形是矩形,为真命题,故A 选项不符合题意; B .对角线相等的平行四边形是矩形,为真命题,故B 选项不符合题意;C .对角线垂直的平行四边形是菱形,为假命题,故C 选项符合题意;D .对角线垂直的平行四边形是菱形,为真命题,故D 选项不符合题意.故选C .考点:命题与定理.6.下列命题中是假命题的是( ).A .同旁内角互补,两直线平行B .直线a b ⊥r r,则a 与b 相交所成的角为直角C .如果两个角互补,那么这两个角是一个锐角,一个钝角D .若a b ∥,a c ⊥,那么b c ⊥【答案】C【解析】根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;根据垂直的定义,可知“直线a b ⊥,则a 与b 相交所成的角为直角”,是真命题; 根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;根据垂直的性质和平行线的性质,可知“若a b P ,a c ⊥,那么b c ⊥”,是真命题. 故选C.7.用三个不等式,0,a b ab a b >>>中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A .0B .1C .2D .3 【答案】A【解析】【分析】由题意得出三个命题,根据不等式的性质判断命题的真假.【详解】若,0a b ab >>,则a b >为假命题.反例:a=-1,b=-2 若,a b a b >>,则0ab >为假命题.反例:a=2,b=-1若0,ab a b >>,则a b >为假命题.反例:a=-2,b=-1故选:A【点睛】 本题考查了命题与不等式的性质,解题的关键在于根据题意得出命题,根据不等式的性质判断真假.8.下列命题的逆命题正确的是( )A .如果两个角是直角,那么它们相等B .全等三角形的面积相等C .同位角相等,两直线平行D .若a b =,则22a b =【答案】C【解析】【分析】交换原命题的题设与结论得到四个命题的逆命题,然后分别根据直角的定义、全等三角形的判定、平行线的性质和平方根的定义判定四个逆命题的真假.【详解】解:A 、逆命题为:如果两个角相等,那么它们都是直角,此逆命题为假命题; B 、逆命题为:面积相等的两三角形全等,此逆命题为假命题;C 、逆命题为:两直线平行,同位角相等,此逆命题为真命题;D 、逆命题为,若a 2=b 2,则a =b ,此逆命题为假命题.故选:C .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.9.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合; ③若ABC V 与'''A B C V 成轴对称,则ABC V 一定与'''A B C V 全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是( )A .2B .3C .4D .5【答案】A【解析】【分析】利用轴对称的性质、等腰三角形的性质、等边三角形的判定等知识分别判断后即可确定正确的选项.【详解】解:①等腰三角形底边的中点到两腰的距离相等;正确;②等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;不正确: ③若ABC V 与'''A B C V 成轴对称,则ABC V 一定与'''A B C V 全等;正确; ④有一个角是60度的等腰三角形是等边三角形;不正确;⑤等腰三角形的对称轴是顶角的平分线所在的直线,不正确.正确命题为:2①③,个;故选:A【点睛】本题考查了命题与定理的知识,解题的关键是了解轴对称的性质、等腰三角形的性质、等边三角形的判定等知识,属于基础知识,难度不大.10.下列命题中正确的有( )个①平分弦的直径垂直于弦;②经过半径的外端且与这条半径垂直的直线是圆的切线;③在同圆或等圆中,圆周角等于圆心角的一半;④平面内三点确定一个圆;⑤三角形的外心到三角形的各个顶点的距离相等.A .1B .2C .3D .4【答案】B【解析】【分析】根据垂径定理的推论对①进行判断;根据切线的判定定理对②进行判断;根据圆周角定理对③进行判断;根据确定圆的条件对④进行判断;根据三角形外心的性质对⑤进行判断.【详解】①平分弦(非直径)的直径垂直于弦,错误;②经过半径的外端且与这条半径垂直的直线是圆的切线,正确;③在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,错误;④平面内不共线的三点确定一个圆,错误;⑤三角形的外心到三角形的各个顶点的距离相等,正确;故正确的命题有2个故答案为:B .【点睛】本题考查了判断命题真假的问题,掌握垂径定理的推论、切线的判定定理、圆周角定理、确定圆的条件、三角形外心的性质是解题的关键.11.交换下列命题的题设和结论,得到的新命题是假命题的是( )A .两直线平行,内错角相等;B .相等的角是对顶角;C .所有的直角都是相等的;D .若a =b ,则a -1=b -1.【答案】C【解析】【分析】【详解】分析:写出原命题的逆命题,根据相关的性质、定义判断即可.详解:交换命题A的题设和结论,得到的新命题是内错角相等,两直线平行,是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等,是真命题;交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角,是假命题;交换命题D的题设和结论,得到的新命题是若a﹣1=b﹣1,则a=b,是真命题.故选C.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.下列命题中,是真命题的是()A.同位角相等B.若两直线被第三条直线所截,同旁内角互补C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行【答案】D【解析】【分析】根据平行线的判定、平行线的性质判断即可.【详解】A、两直线平行,同位角相等,是假命题;B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;C、同旁内角互补,两直线平行,是假命题;D、平行于同一直线的两条直线互相平行,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.13.下列命题中,假命题是()A.平行四边形的对角线互相垂直平分B.矩形的对角线相等C.菱形的面积等于两条对角线乘积的一半D.对角线相等的菱形是正方形【答案】A【解析】【分析】不正确的命题是假命题,根据定义依次判断即可.【详解】A. 平行四边形的对角线互相平分,故是假命题;B. 矩形的对角线相等,故是真命题;C. 菱形的面积等于两条对角线乘积的一半,故是真命题;D. 对角线相等的菱形是正方形,故是真命题,故选:A.【点睛】此题考查假命题的定义,正确理解平行四边形的性质是解题的关键.14.下列命题是假命题的是( )A .有一个角是60°的等腰三角形是等边三角形B .等边三角形有3条对称轴C .有两边和一角对应相等的两个三角形全等D .线段垂直平分线上的点到线段两端的距离相等【答案】C【解析】【分析】根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.【详解】A .正确;有一个角是60°的等腰三角形是等边三角形;B .正确.等边三角形有3条对称轴;C .错误,SSA 无法判断两个三角形全等;D .正确.线段垂直平分线上的点到线段两端的距离相等.故选:C .【点睛】本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.15.下列选项中,能说明命题“若22a b >,则a b >”是假命题的反例是( )A .1a =-,2b =B .2a =,1b =-C .1a =,2b =-D .2a =-,1b =【答案】D【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题,作答本题直接利用选项中数据代入求出答案.【详解】A. 当1a =-,2b =时,2a <2b ,a <b ,则此选项不是假命题的反例;B. 当2a =,1b =-时,2a >2b ,a >b ,则此选项不是假命题的反例;C. 当1a =,2b =-时,2a <2b ,a >b ,则此选项不是假命题的反例;D. 当2a =-,1b =时,2a >2b ,a <b ,则此选项是假命题的反例,故选:D .【点睛】本题考查真命题与假命题.要说明数学命题的错误,只需举出一个反例即可,反例就是符合已知条件但不满足结论的例子.16.对于命题“若a 2>b 2,则a >b ”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( )A .a =3,b =2B .a =﹣3,b =2C .a =3,b =﹣1D .a =﹣1,b =3【答案】B【解析】试题解析:在A 中,a 2=9,b 2=4,且3>2,满足“若a 2>b 2,则a >b”,故A 选项中a 、b 的值不能说明命题为假命题;在B 中,a 2=9,b 2=4,且﹣3<2,此时虽然满足a 2>b 2,但a >b 不成立,故B 选项中a 、b 的值可以说明命题为假命题;在C 中,a 2=9,b 2=1,且3>﹣1,满足“若a 2>b 2,则a >b”,故C 选项中a 、b 的值不能说明命题为假命题;在D 中,a 2=1,b 2=9,且﹣1<3,此时满足a 2<b 2,得出a <b ,即意味着命题“若a 2>b 2,则a >b”成立,故D 选项中a 、b 的值不能说明命题为假命题;故选B .考点:命题与定理.17.下列命题的逆命题是真命题的是( )A .直角都相等B .钝角都小于180°C .如果x 2+y 2=0,那么x=y=0D .对顶角相等【答案】C【解析】【分析】根据逆命题是否为真命题逐一进行判断即可.【详解】相等的角不都是直角,故A 选项不符合题意,小于180°的角不都是钝角,故B 选项不符合题意,如果x=y=0,那么x 2+y 2=0,正确,是真命题,符合题意,相等的角不一定都是对顶角,故D 选项不符合题意,故选C【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.18.下列正确说法的个数是( )①同位角相等;②等角的补角相等;③两直线平行,同旁内角相等;④在同一平面内,过一点有且只有一条直线与已知直线垂直A .1B .2C .3D .4【答案】B【解析】【分析】根据平行线的性质以及等角或同角的补角相等的知识,即可求得答案.【详解】解:∵两直线平行,同位角相等,故①错误;∵等角的补角相等,故②正确;∵两直线平行,同旁内角互补,故③错误;∵在同一平面内,过一点有且只有一条直线与已知直线垂直,故④正确.∴正确说法的有②④.故选B .【点睛】此题考查了平行线的性质与对顶角的性质,以及等角或同角的补角相等的知识.解题的关键是注意需熟记定理.19.下列命题的逆命题成立的有( )①勾股数是三个正整数 ②全等三角形的三条对应边分别相等③如果两个实数相等,那么它们的平方相等 ④平行四边形的两组对角分别相等 A .1个B .2个C .3个D .4个【答案】B【解析】【分析】先写出每个命题的逆命题,再分别根据勾股数的定义、三角形全等的判定、平方根的定义、平行四边形的判定逐个判断即可.【详解】①逆命题:如果三个数是正整数,那么它们是勾股数反例:正整数1,2,3,但222123+?,即它们不是勾股数,则此逆命题不成立 ②逆命题:三条对应边分别相等的两个三角形全等由SSS 定理可知,此逆命题成立③逆命题:如果两个实数的平方相等,那么这两个实数相等反例:222(2)4=-=,但22≠-,则此逆命题不成立④逆命题:两组对角分别相等的四边形是平行四边形由平行四边形的判定可知,此逆命题成立综上,逆命题成立的有2个故选:B .【点睛】本题考查了命题的相关概念、勾股数的定义、三角形全等的判定、平方根的定义、平行四边形的判定,正确写出各命题的逆命题是解题关键.20.下列命题为真命题的是()A.三角形的一个外角大于任何一个和它不相邻的内角B.两直线被第三条直线所截,同位角相等C.垂直于同一直线的两直线互相垂直D.三角形的外角和为180o【答案】A【解析】【分析】根据三角形的外角性质、平行线的性质、平行公理的推论、三角形外角和定理判断即可.【详解】三角形的一个外角大于任何一个和它不相邻的内角,A是真命题;两条平行线被第三条直线所截,同位角相等,B是假命题;在同一平面内,垂直于同一直线的两直线互相平行,C是假命题;三角形的外角和为360°,D是假命题;故选A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.。
中考数学常见易错知识点汇总(方程组与不等式组)

中考数学常见易错知识点汇总(方程组与不
等式组)
方程(组)与不等式(组)
易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0 的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带X 公因式要回头检验!
易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。
易错点6:解分式方程时首要步骤去分母,分数相相当于括
号,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。