多项式回归分析

合集下载

回归分析公式深入研究回归分析的数学公式

回归分析公式深入研究回归分析的数学公式

回归分析公式深入研究回归分析的数学公式回归分析是一种统计方法,用于研究变量之间的相互关系。

在回归分析中,数学公式是非常重要的,它们描述了变量之间的关系,并提供了预测和解释的基础。

本文将深入研究回归分析的数学公式,帮助读者更好地理解和应用这一方法。

一、简单线性回归分析公式简单线性回归分析是回归分析中最基本的形式,用于研究一个自变量和一个因变量之间的线性关系。

其数学公式可以表示为:Y = α + βX + ε其中,Y代表因变量,X代表自变量,α代表截距,β代表斜率,ε代表误差项。

在简单线性回归分析中,我们的目标是通过最小二乘法估计α和β的值,使得拟合线尽可能地接近实际观测值。

通过求导等数学方法,我们可以得到最小二乘估计公式:β = Σ((X-Ȳ)(Y-Ȳ))/(Σ(X-Ȳ)²)α = Ȳ - βXȲ其中,Ȳ代表因变量Y的平均值,XȲ代表自变量X与因变量Y的平均值的乘积。

二、多元线性回归分析公式当我们研究的问题涉及到多个自变量时,可以使用多元线性回归分析。

其数学公式可以表示为:Y = α + β₁X₁ + β₂X₂ + ... + βₚXₚ + ε其中,p代表自变量的个数。

在多元线性回归分析中,我们的目标是通过最小二乘法估计α和β的值,使得拟合线尽可能地接近实际观测值。

通过求导等数学方法,我们可以得到最小二乘估计公式:β = (X'X)⁻¹X'Yα = Ȳ - β₁X₁Ȳ - β₂X₂Ȳ - ... - βₚXₚȲ其中,X代表自变量矩阵,X'代表X的转置,Y代表因变量向量,(X'X)⁻¹代表X'X的逆矩阵。

三、多项式回归分析公式简单线性回归和多元线性回归都是基于线性关系的回归分析方法。

然而,有时候变量之间的关系并不是线性的,而是呈现出曲线的趋势。

这时我们可以使用多项式回归分析来建模。

多项式回归分析的数学公式可以表示为:Y = α + β₁X + β₂X² + ... + βₚXᵩ+ ε其中,ᵩ代表多项式的阶数。

多项式回归分析的例子

多项式回归分析的例子

多项式回归分析的例子例如, 不能用变量代换的方法将其转换为可按线性模型方式分析的模型, 需要使用多项式回归分析方法, 令, , , 则模型变换为, 即可按线性模型方式进行分析。

若回归方程是下面这样拟合的非线性方程:, (1)其中所有的都是自变量的已知函数而不包括任何未知参数, 若令,,…………………,则式(1)可写成,从而可按多元线性回归方式进行分析处理。

多项式回归在回归问题中占特殊的地位, 因为任何函数至少在一个比较小的邻域内可用多项式任意逼近, 因此通常在比较复杂的实际问题中, 可以不问与诸因素的确切关系如何, 而用多项式回归(当然首先应试用最简单的一次多项式即线性回归)进行分析和计算。

例在某化合物的合成试验中, 为了提高产量, 选取了原料配比()、溶剂量()和反应时间()三个因素, 试验结果如表1所示, 请用多项式回归模型拟合试验数据(显著性水平等于0.05)。

表1(若收率()与原料配比()、溶剂量()和反应时间()三个因素之间的函数关系近似满足二次回归模型: , (其中溶剂用量对作用很小, 建模时可以不考虑), 按表2数据进行数据输入:表2)^2()本软件给出的回归分析有关的结果如下(与回归分析无关的内容未列出):指标名称: 收率单位: ?因素1名称: 时间单位: ?因素2名称: 时间^2 单位: ?因素3名称: 配比×时间单位: ?------------------- 多元回归分析 -------------------回归分析采用全回归法, 显著性水平α=0.05拟建立回归方程:y = b(0) + b(1)*X(1) + b(2)*X(2) + b(3)*X(3)回归系数 b(i):b(0)= 5.79e-2b(1)= 0.252b(2)=-6.48e-2b(3)= 2.83e-2标准回归系数 B(i):B(1)= 2.62B(2)=-2.76B(3)= 1.02复相关系数R=0.9838决定系数R^2=0.9679修正的决定系数R^2a=0.9518回归方程显著性检验:变量分析表样本容量N=7, 显著性水平α=0.05, 检验值Ft=30.14, 临界值F(0.05,3,3)=9.277, Ft>F(0.05,3,3), 回归方程显著。

多项式回归分析

多项式回归分析

多项式回归分析多项式回归分析是一种有效的统计学方法,它能够根据试验数据拟合一个函数,以从该函数中推断和预测未知变量的取值。

它可以用来预测定量和定性的变量,可以处理更复杂的数据集,并且可以在时间序列中进行预测,使数据处理更加自动化和高效。

在讨论多项式回归分析之前,有必要了解其开发背景。

一般来说,多项式回归分析是基于一些统计学和数学概念开发而来的,其主要目的是尝试根据观察到的数据拟合一个有意义的函数,以便更好的研究和推断数据之间的关系。

多项式回归分析的主要思想是建立一个函数,使得函数的参数能够拟合数据,并且预测未知变量的变化。

多项式回归分析通常使用多项式函数,将不同的维度拟合成一个函数,使得函数能够代表多维度数据之间的关系,从而进行变量预测和分析。

多项式回归分析可以分为多种类型,主要有简单多项式、季节性和冬季多项式回归分析。

在简单多项式回归分析中,数据由定性变量和定量变量组成,函数的参数可以通过拟合方法计算出来,从而使多项式回归分析在简单的数据集上更加有效。

季节性多项式回归分析和冬季多项式回归分析是在简单多项式回归分析的基础上进行改进,以及增加时间序列参量,从而使得它更能拟合复杂的数据集。

多项式回归分析的应用广泛,可以用来分析股票价格数据,预测某种商品的需求,估算某一条线路的交通流量,分析气象参数数据等等。

它的有效性和高效性使其在实践中得到了广泛的应用。

拟合有效的多项式函数有助于研究和推断数据之间的关系,而多项式回归分析就是一种有效的方法。

它可以处理时间序列数据,多维度数据、定性和定量变量,并且能够有效地预测未知变量,使得实际应用更加方便。

多项式回归分析不仅拥有多种应用,而且能够发现数据之间的有趣关系,实现更好的预测效果,这也使它在实践中受到越来越多的重视。

12个变量的多项式回归

12个变量的多项式回归

12个变量的多项式回归12个变量的多项式回归是一种常见的统计分析方法,可以用来建立变量之间的非线性关系模型。

在实际应用中,多项式回归可以用于预测和分析各种现象,如经济增长、气候变化、市场需求等。

本文将介绍多项式回归的基本概念、建模方法和实际应用。

多项式回归是回归分析的一种扩展形式,它可以考虑更多的自变量和非线性关系。

一般来说,多项式回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + β12X1^2 + β22X2^2 + ... + βn2Xn^2 + ε其中,Y是因变量,X1、X2、...、Xn是自变量,β0、β1、β2、...、βn、β12、β22、...、βn2是模型的参数,ε是随机误差。

多项式回归的建模方法和线性回归类似,可以使用最小二乘法来估计参数的值。

通过最小化观测值与模型预测值之间的差异,可以得到最佳拟合的多项式回归模型。

在实际应用中,多项式回归可以用来分析各种现象和问题。

例如,在经济学中,可以使用多项式回归来研究经济增长和收入分配的关系。

通过将GDP作为因变量,人均收入、教育水平和就业率等作为自变量,可以建立一个多项式回归模型,来预测经济增长的趋势和影响因素。

在气候学中,多项式回归可以用来分析气温和降雨量的关系。

通过将气温作为因变量,降雨量和季节等作为自变量,可以建立一个多项式回归模型,来研究气候变化的规律和影响因素。

在市场营销中,多项式回归可以用来分析市场需求和销售额的关系。

通过将销售额作为因变量,广告投入、产品价格和竞争对手数量等作为自变量,可以建立一个多项式回归模型,来预测市场需求的变化和优化营销策略。

多项式回归是一种强大的统计分析方法,可以用来建立变量之间的非线性关系模型。

通过多项式回归,可以更好地理解和预测各种现象和问题。

无论是经济增长、气候变化还是市场需求,多项式回归都可以提供有价值的分析和预测结果,帮助我们做出更准确的决策。

数据分析技术中常用的多元回归分析方法简介

数据分析技术中常用的多元回归分析方法简介

数据分析技术中常用的多元回归分析方法简介多元回归分析是一种常用的数据分析技术,用于建立解释一个或多个自变量与一个或多个因变量之间关系的数学模型。

在实际应用中,多元回归分析可以帮助我们理解和预测因变量的变化情况,同时揭示自变量对因变量的影响程度和方向。

在多元回归分析中,我们通常会考虑多个自变量对一个因变量的影响。

这些自变量可以是连续变量,也可以是分类变量。

为了进行多元回归分析,我们需要收集包含自变量和因变量数据的样本,并建立一个数学模型来描述它们之间的关系。

常用的多元回归分析方法有以下几种:1. 线性回归分析:线性回归是最基本的多元回归分析方法之一。

它假设自变量和因变量之间的关系是线性的,即可以通过一条直线来描述。

线性回归可以用于预测新的因变量值或者探究自变量对因变量的影响程度和方向。

2. 多项式回归分析:多项式回归是线性回归的扩展形式,它允许通过非线性方程来描述自变量和因变量之间的关系。

多项式回归可以用于处理具有非线性关系的数据,通过增加自变量的幂次项,可以更好地拟合数据。

3. 逐步回归分析:逐步回归是一种渐进式的回归分析方法,它通过不断添加或删除自变量来选择最优的模型。

逐步回归可以帮助我们识别对因变量影响最显著的自变量,并且去除对模型没有贡献的自变量,以减少复杂度和提高预测准确性。

4. 岭回归分析:岭回归是一种用于处理共线性问题的回归方法。

共线性指的是自变量之间存在高度相关性,这会导致模型参数估计不稳定。

岭回归通过添加一个正则化项来缩小模型参数的值,从而减少共线性的影响。

5. 主成分回归分析:主成分回归结合了主成分分析和回归分析的方法,用于处理多重共线性问题。

主成分分析通过将自变量转换为一组无关的主成分来降维,然后进行回归分析。

这样可以减少自变量之间的相关性,并提高模型的解释力。

6. 逻辑回归分析:逻辑回归是一种广义线性回归,常用于处理二分类问题。

它通过对因变量进行逻辑变换,将线性回归的结果映射到一个[0, 1]的区间,表示某事件发生的概率。

回归分析方法总结全面

回归分析方法总结全面

回归分析方法总结全面回归分析是一种常用的统计分析方法,用于建立一个或多个自变量与因变量之间的关系模型,并进行预测和解释。

在许多研究领域和实际应用中,回归分析被广泛使用。

下面是对回归分析方法的全面总结。

1.简单线性回归分析:简单线性回归分析是最基本的回归分析方法之一,用于建立一个自变量和一个因变量之间的线性关系模型。

它的方程为Y=a+bX,其中Y是因变量,X是自变量,a是截距,b是斜率。

通过最小二乘法估计参数a和b,可以用于预测因变量的值。

2. 多元线性回归分析:多元线性回归分析是在简单线性回归的基础上扩展的方法,用于建立多个自变量和一个因变量之间的线性关系模型。

它的方程为Y = a + b1X1 + b2X2 + ... + bnXn,其中n是自变量的个数。

通过最小二乘法估计参数a和bi,可以用于预测因变量的值。

3.对数线性回归分析:对数线性回归分析是在简单线性回归或多元线性回归的基础上,将自变量或因变量取对数后建立的模型。

这种方法适用于因变量和自变量之间呈现指数关系的情况。

对数线性回归分析可以通过最小二乘法进行参数估计,并用于预测因变量的对数。

4.多项式回归分析:多项式回归分析是在多元线性回归的基础上,将自变量进行多项式变换后建立的模型。

它可以用于捕捉自变量和因变量之间的非线性关系。

多项式回归分析可以通过最小二乘法估计参数,并进行预测。

5.非线性回归分析:非线性回归分析是一种更一般的回归分析方法,用于建立自变量和因变量之间的非线性关系模型。

这种方法可以适用于任意形式的非线性关系。

非线性回归分析可以通过最小二乘法或其他拟合方法进行参数估计,用于预测因变量的值。

6.逐步回归分析:逐步回归分析是一种变量选择方法,用于确定最重要的自变量对因变量的解释程度。

它可以帮助选择最佳的自变量组合,建立最合适的回归模型。

逐步回归分析可以根据其中一种准则(如逐步回归F检验、最大似然比等)逐步添加或删除自变量,直到最佳模型被找到为止。

回归分析方法及其应用中的例子

回归分析方法及其应用中的例子

回归分析方法及其应用中的例子回归分析是一种统计分析方法,用于研究自变量与因变量之间的关系。

它可以通过建立一个数学模型来描述自变量与因变量之间的函数关系,并根据已有的数据对模型进行估计、预测和推断。

回归分析可以帮助我们了解变量之间的相关性、预测未来的结果以及找出主要影响因素等。

在实际应用中,回归分析有许多种方法和技术,下面将介绍其中的几种常见方法及其应用的例子。

1.简单线性回归:简单线性回归是一种最基本的回归分析方法,用于研究两个变量之间的关系。

它的数学模型可以表示为y=β0+β1x,其中y是因变量,x是自变量,β0和β1是常数。

简单线性回归可以用于预测一个变量对另一个变量的影响,例如预测销售额对广告投入的影响。

2.多元线性回归:多元线性回归是在简单线性回归的基础上引入多个自变量的模型。

它可以用于分析多个因素对一个因变量的影响,并以此预测因变量的取值。

例如,可以使用多元线性回归分析房屋价格与大小、位置、年龄等因素之间的关系。

3.逻辑回归:逻辑回归是一种用于预测二元结果的回归方法。

它可以将自变量与因变量之间的关系转化为一个概率模型,用于预测一些事件发生的概率。

逻辑回归常常应用于生物医学研究中,如预测疾病的发生概率或患者的生存率等。

4.多项式回归:多项式回归是一种使用多项式函数来拟合数据的方法。

它可以用于解决非线性关系的回归问题,例如拟合二次曲线或曲线拟合。

多项式回归可以应用于多个领域,如工程学中的曲线拟合、经济学中的生产函数拟合等。

5.线性混合效应模型:线性混合效应模型是一种用于分析包含随机效应的回归模型。

它可以同时考虑个体之间和个体内的变异,并在模型中引入随机效应来解释这种变异。

线性混合效应模型常被用于分析面板数据、重复测量数据等,例如研究不同学生在不同学校的学习成绩。

以上只是回归分析的一些常见方法及其应用的例子,实际上回归分析方法和应用还有很多其他的变种和扩展,可以根据具体问题和数据的特点选择适合的回归模型。

多项式回归

多项式回归

多项式回归研究一个因变量与一个或多个自变量间多项式的回归分析方法,称为多项式回归(Polynomial Regression )。

如果自变量只有一个时,称为一元多项式回归;如果自变量有多个时,称为多元多项式回归。

一元m 次多项式回归方程为:2012ˆ m m yb b x b x b x =++++ 二元二次多项式回归方程为:22011223142512ˆ yb b x b x b x b x b x x =+++++ 在一元回归分析中,如果依变量y 与自变量x 的关系为非线性的,但是又找不到适当的函数曲线来拟合,则可以采用一元多项式回归。

多项式回归的最大优点就是可以通过增加x 的高次项对实测点进行逼近,直至满意为止。

事实上,多项式回归可以处理相当一类非线性问题,它在回归分析中占有重要的地位,因为任一函数都可以分段用多项式来逼近。

因此,在通常的实际问题中,不论依变量与其他自变量的关系如何,我们总可以用多项式回归来进行分析。

§9.5.1多项式回归分析的一般方法多项式回归问题可以通过变量转换化为多元线性回归问题来解决。

对于一元m 次多项式回归方程,令212,,,m m x x x x x x === ,则该一元m 次多项式就转化为m 元线性回归方程01122ˆm m yb b x b x b x =++++因此用多元线性函数的回归方法就可解决多项式回归问题。

需要指出的是,在多项式回归分析中,检验回归系数i b 是否显著,实质上就是判断自变量x 的i 次方项i x 对依变量y 的影响是否显著。

对于二元二次多项式回归方程,令2211223142512,,,,z x z x z x z x z x x =====则该二元二次多项式函数就转化为五元线性回归方程01122334455ˆyb b z b z b z b z b z =+++++ 但随着自变量个数的增加,多元多项式回归分析的计算量急剧增加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m wi f ( xi ) g( xi ) i 1 则易证( f, g ) 是内积, ( f , g ) b ( x ) f ( x ) g( x )dx 而 || f || ( f , f ) 是范数。 a
a
n
最小。
i 1
内积与范数
离散型 连续型
广义 L-S 问题可叙述为:求广义多项式P(x)使得 ( P y, P y) || P y ||2 最小。
polynomial */
定义 权函数:

离散型 /*discrete type */
根据一系列离散点 ( xi , yi ) (i 1, ... , n) 拟合时,在每一误
差前乘一正数wi ,即 误差函数 wi [P( xi ) yi ]2 ,这个wi 就称作权/* weight*/,反映该点的重要程度。
n(x), … },其有限项的线性组合 P ( x ) j j ( x ) 称为广义
多项式 /* generalized polynomial */. 常见多项式:
j 0 n
{ j(x) = x j } 对应代数多项式 /* algebraic polynomial */
{ j(x) = cos jx }、{ j(x) = sin jx } { j(x), j(x) }对应三 角多项式 /* trigonometric polynomial */ { j(x) = e kj x , ki kj } 对应指数多项式 /* exponential
i 1 i 1 4 i 1
( 2 , y ) 622
3 49 1 a0 , a1 , a 2 2 10 2
4 10 30 a0 58 10 30 100 a1 182 30 100 354 a 622 2
29 37 5 1 1 + ( x ) + ( x 2 5 x + 5) 注:手算时也可 2 5 2 2 1 49 3 用待定系数法确 x2 + x 与前例结果一致。 定函数族。 2 10 2

i 1 n
连续型 /*continuous type */ 在[a, b]上用广义多项式 P(x) 拟合连续函数 y(x) 时, 定义权 b 函数 (x) C[a, b],即误差函数 = ( x )[ P ( x ) y( x )]2 dx 。 a 权函数必须(x)满足:非负、可积,且在[a, b]的任何子区 间上(x) 0。
即:B = 0
……
例:用 y a0 + a1 x + a2 x 来拟合
2
x y
1 4
2 10
3 18
4 26 ,w
1
解: 0(x) = 1, 1(x) = x, 2(x) = x2
( 0 , 0 ) 1 1 4
i 1 4 i 1 4 4
( 1 , 2 ) x i x i2 100
定义 广义 L-S 拟合:

离散型 /*discrete type */ 在点集{ x1 … xm } 上测得{ y1 … ym },在一组权系数{ w1 …
wm }下求广义多项式 P(x) 使得误差函数 wi [P( xi ) yi ]2
( f, g )=0 表示 f 与 g ② 连续型 /*continuous 带权正交。 type */ 已知 y(x) C[a, b] 以及权函数 (x),求广义多项式 P(x) 使 b 得误差函数 = ( x)[ P( x) y( x)]2 dx 最小。
例:用 y c0 + c1 x + c2 x 来拟合
2
x y
1 4
2 10
3 18
4 26 ,w
1
解:通过正交多项式 0(x), 1(x), 2(x) 求解 设 y a 0 0 ( x ) + a 1 1 ( x ) + a 2 2 ( x ) ( 0 , y ) 29 0( x) 1 a0 ( 0 , 0 ) 2 ( x 0 , 0 ) 5 5 1 1 ( x ) ( x 1 ) 0 ( x ) x ( 0 , 0 ) 2 2 2 ( x 1 , 1 ) 5 1 ( 1, 1 ) 5 ( 1 , 1 ) 2 ( 0 , 0 ) 4
linearly independent */ 函 数 族 {
0(x),
1(x), … , n(x), … } 满足条件:其中任意函数的线性组合
a00(x)+a11(x)+… +ann(x)=0 对任意 x[a, b]成立 当且仅当 a0= a1=… =an=0。
定义 考 虑 一 般 的 线 性 无 关 函 数 族 ={ 0(x), 1(x), … ,
0 ( x) 1, 1 ( x) ( x 1 )0 ( x) 有递推 k +1 ( x) ( x k +1 ) k ( x) k k 1 ( x) ( x k , k ) ( k , k ) 关系式: , k 其中 k +1 ( , ) ( k 1 , k 1 ) k k
i 1 4 i 1 4
4
( 0 , 1 ) 1 x i 10 ( 1 , 1 ) xi2 30 ( 0 , 2 ) 1 x i2 30 ( 2 , 2 ) x i4 354 ( 0 , y ) 1 yi 58 ( 1 , y ) 182
正交多项式与最 ym, 求一个简单易算的近 m 似函数 P(x) f(x) 使得 | P ( xi ) yi |2 最小。
i 1
已知 [a, b]上定义的 f(x),求一个简单易算的 b 2 [ P ( x ) f ( x )] dx 最小。 近似函数 P(x) 使得 a 定义 线 性 无 关 /*
n
定理 Ba = c 存在唯一解 0(x), 1(x), … , n(x) 线性无关。
证明:若存在一组系数 {i } 使得 0 0 + 1 1 + ... + n n 0 则等式两边分别与0, 1, … , n作内积,得到:
0 ( 0 , 0 ) + 1 ( 1 , 0 ) + ... + n ( n , 0 ) 0 ( , ) + ( , ) + ... + ( , ) 0 1 1 1 n n 1 0 0 1 . . . ( , ) + ( , ) + ... + ( , ) 0 1 1 n n n n 0 0 n
设 P ( x ) a 0 0 ( x ) + a 1 1 ( x ) + ... + a n n ( x )
( k , j )a j ( k , y ) , k 0, ... , n 0 则完全类似地有: j 0 ak a0 ( 0 , y ) 即: b ( , ) 法方程组 = c ij i j /*normal equations */ an ( n , y )
5 5 2 ( x ) ( x ) 1 ( x ) 0 ( x ) x 2 5 x + 5 2 4
y
( k , y ) ak ( k , k )
( 1 , y ) 37 a1 (1 , 1 ) 5
( 2 , y ) 1 a2 ( 2 , 2 ) 2
1 2 49 3 y P( x) x + x 2 10 2
j 例:连续型拟合中,取 j ( x) x , ( x) 1, y( x) C[0, 1]
i j 则 ( i , j ) 0 x x dx 1
1 i + j +1
Hilbert阵!
若能取函数族={ 0(x), 1(x), … , n(x), … }, 使得任意一对i(x)和j(x)两两(带权)正交, 改进: 则 B 就化为对角阵! ( k , y ) 这时直接可算出ak = ( k , k ) 正交多项式的构造: 将正交函数族中的k 取为k 阶多项式,为简单起见,可取 k 的首项系数为 1 。
相关文档
最新文档