多项式回归、非线性回归模型
数据分析技术中常用的多元回归分析方法简介

数据分析技术中常用的多元回归分析方法简介多元回归分析是一种常用的数据分析技术,用于建立解释一个或多个自变量与一个或多个因变量之间关系的数学模型。
在实际应用中,多元回归分析可以帮助我们理解和预测因变量的变化情况,同时揭示自变量对因变量的影响程度和方向。
在多元回归分析中,我们通常会考虑多个自变量对一个因变量的影响。
这些自变量可以是连续变量,也可以是分类变量。
为了进行多元回归分析,我们需要收集包含自变量和因变量数据的样本,并建立一个数学模型来描述它们之间的关系。
常用的多元回归分析方法有以下几种:1. 线性回归分析:线性回归是最基本的多元回归分析方法之一。
它假设自变量和因变量之间的关系是线性的,即可以通过一条直线来描述。
线性回归可以用于预测新的因变量值或者探究自变量对因变量的影响程度和方向。
2. 多项式回归分析:多项式回归是线性回归的扩展形式,它允许通过非线性方程来描述自变量和因变量之间的关系。
多项式回归可以用于处理具有非线性关系的数据,通过增加自变量的幂次项,可以更好地拟合数据。
3. 逐步回归分析:逐步回归是一种渐进式的回归分析方法,它通过不断添加或删除自变量来选择最优的模型。
逐步回归可以帮助我们识别对因变量影响最显著的自变量,并且去除对模型没有贡献的自变量,以减少复杂度和提高预测准确性。
4. 岭回归分析:岭回归是一种用于处理共线性问题的回归方法。
共线性指的是自变量之间存在高度相关性,这会导致模型参数估计不稳定。
岭回归通过添加一个正则化项来缩小模型参数的值,从而减少共线性的影响。
5. 主成分回归分析:主成分回归结合了主成分分析和回归分析的方法,用于处理多重共线性问题。
主成分分析通过将自变量转换为一组无关的主成分来降维,然后进行回归分析。
这样可以减少自变量之间的相关性,并提高模型的解释力。
6. 逻辑回归分析:逻辑回归是一种广义线性回归,常用于处理二分类问题。
它通过对因变量进行逻辑变换,将线性回归的结果映射到一个[0, 1]的区间,表示某事件发生的概率。
回归模型的函数形式

回归模型的函数形式回归模型是一种描述自变量和因变量之间关系的数学模型。
它可以用来预测因变量的值,基于给定的自变量值。
回归模型可以是线性的或非线性的,具体选择哪种形式取决于数据的特点和研究的目标。
以下是一些常见的回归模型的函数形式:1.线性回归模型:线性回归模型假设因变量与自变量之间存在线性关系。
最简单的线性回归模型称为简单线性回归模型,可以使用一条直线来描述自变量和因变量之间的关系:Y=β0+β1X+ε其中,Y表示因变量,X表示自变量,β0表示Y截距,β1表示X的系数,ε表示误差项。
2.多元线性回归模型:多元线性回归模型用于描述多个自变量与因变量之间的线性关系。
它的函数形式为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y表示因变量,Xi表示第i个自变量,βi表示Xi的系数,ε表示误差项。
3.多项式回归模型:多项式回归模型用于描述自变量和因变量之间的非线性关系。
它可以通过引入自变量的幂次项来逼近非线性函数:Y=β0+β1X+β2X^2+...+βnX^n+ε4.对数回归模型:对数回归模型适用于自变量与因变量之间存在指数关系的情况。
它可以将自变量或因变量取对数,将非线性关系转化为线性关系:ln(Y) = β0 + β1X + ε5. Logistic回归模型:Logistic回归模型用于描述分类变量的概率。
它的函数形式是Sigmoid函数,将自变量的线性组合映射到0和1之间的概率值:P(Y=1,X)=1/(1+e^(-β0-β1X))以上是几种常见的回归模型的函数形式。
回归模型的选择取决于数据的特征和研究的目标,需要考虑线性或非线性关系、自变量的数量、相关性等因素。
根据实际情况,可以选择合适的模型进行建模和预测。
几类常用非线性回归分析中最优模型的构建与SAS智能化实现

几类常用非线性回归分析中最优模型的构建与SAS智能化实现几类常用非线性回归分析中最优模型的构建与SAS智能化实现引言非线性回归分析是一种常见的统计方法,用于建立与数据相适应的非线性模型。
在实际应用中,不同类型的非线性回归模型适用于不同的数据集,因此构建最优模型变得至关重要。
本文旨在介绍几类常用的非线性回归模型,并讨论如何使用SAS软件进行智能化实现,以帮助研究人员更好地分析、建模和预测数据。
一、广义线性模型(Generalized Linear Models, GLM)广义线性模型是一种非线性回归模型,它可以扩展传统的线性模型来处理非正态响应变量和非线性关系。
在SAS中,可以使用PROC GENMOD来构建广义线性模型。
首先,我们需要选择适当的链接函数,以反映响应变量与自变量之间的关系。
然后,我们可以使用该函数对数据进行拟合,并选择合适的模型来最小化残差平方和。
通过使用SAS的智能化实现,我们可以自动选择最佳链接函数和模型,从而构建一个最优的非线性回归模型。
二、多项式回归模型(Polynomial Regression Models)多项式回归模型是一种基于多项式函数的非线性回归模型,可以用于描述自变量和响应变量之间的曲线关系。
SAS提供了PROC REG和PROC NLIN等过程进行多项式回归分析。
在构建多项式模型时,我们需要选择适当的多项式阶数,并使用SAS 的智能化算法来拟合模型。
通过对多项式的阶数进行调整,我们可以找到最佳的模型,以最小化残差平方和。
三、非参数回归模型(Nonparametric Regression Models)非参数回归模型是一种不依赖于特定函数形式的非线性回归模型,它可以更灵活地适应数据的特点。
SAS的PROC LOESS和PROC GAM过程可以用于构建非参数回归模型。
在使用这些过程时,我们不需要事先指定函数形式,而是通过本地回归和平滑技术来拟合数据。
通过调整平滑参数,我们可以获得一个更接近于真实数据的模型。
各种线性回归模型原理

各种线性回归模型原理线性回归是一种广泛应用于统计学和机器学习领域的方法,用于建立自变量和因变量之间线性关系的模型。
在这里,我将介绍一些常见的线性回归模型及其原理。
1. 简单线性回归模型(Simple Linear Regression)简单线性回归模型是最简单的线性回归模型,用来描述一个自变量和一个因变量之间的线性关系。
模型方程为:Y=α+βX+ε其中,Y是因变量,X是自变量,α是截距,β是斜率,ε是误差。
模型的目标是找到最优的α和β,使得模型的残差平方和最小。
这可以通过最小二乘法来实现,即求解最小化残差平方和的估计值。
2. 多元线性回归模型(Multiple Linear Regression)多元线性回归模型是简单线性回归模型的扩展,用来描述多个自变量和一个因变量之间的线性关系。
模型方程为:Y=α+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,X1,X2,...,Xn是自变量,α是截距,β1,β2,...,βn是自变量的系数,ε是误差。
多元线性回归模型的参数估计同样可以通过最小二乘法来实现,找到使残差平方和最小的系数估计值。
3. 岭回归(Ridge Regression)岭回归是一种用于处理多重共线性问题的线性回归方法。
在多元线性回归中,如果自变量之间存在高度相关性,会导致参数估计不稳定性。
岭回归加入一个正则化项,通过调节正则化参数λ来调整模型的复杂度,从而降低模型的过拟合风险。
模型方程为:Y=α+β1X1+β2X2+...+βnXn+ε+λ∑βi^2其中,λ是正则化参数,∑βi^2是所有参数的平方和。
岭回归通过最小化残差平方和和正则化项之和来估计参数。
当λ=0时,岭回归变为多元线性回归,当λ→∞时,参数估计值将趋近于0。
4. Lasso回归(Lasso Regression)Lasso回归是另一种用于处理多重共线性问题的线性回归方法,与岭回归不同的是,Lasso回归使用L1正则化,可以使得一些参数估计为0,从而实现特征选择。
非线性回归 方法

非线性回归方法非线性回归是机器学习中的一种重要方法,用于建立输入和输出之间的非线性关系模型。
线性回归假设输入和输出之间存在线性关系,而非线性回归则允许更复杂的模型形式,可以更好地适应现实世界中的复杂数据。
下面将介绍几种常见的非线性回归方法,并说明它们的原理、应用场景和优缺点。
1. 多项式回归多项式回归通过引入高次多项式来拟合数据。
例如,在一元情况下,一阶多项式即为线性回归,二阶多项式即为二次曲线拟合,三阶多项式即为三次曲线拟合,依此类推。
多项式回归在数据不规则变化的情况下能够提供相对灵活的拟合能力,但随着多项式次数的增加,模型的复杂度也会增加,容易出现过拟合问题。
2. 非参数回归非参数回归方法直接从数据中学习模型的形式,并不对模型的形式做出先验假设。
常见的非参数回归方法包括局部加权回归(LWLR)、核回归(Kernel Regression)等。
局部加权回归通过给予离目标点较近的样本更大的权重来进行回归,从而更注重对于特定区域的拟合能力。
核回归使用核函数对每个样本进行加权,相当于在每个样本周围放置一个核函数,并将它们叠加起来作为最终的拟合函数。
非参数回归方法的优点是具有较强的灵活性,可以适应各种不同形状的数据分布,但计算复杂度较高。
3. 支持向量回归(SVR)支持向量回归是一种基于支持向量机的非线性回归方法。
它通过寻找一个超平面,使得样本点离该超平面的距离最小,并且在一定的松弛度下允许一些样本点离超平面的距离在一定范围内。
SVR通过引入核函数,能够有效地处理高维特征空间和非线性关系。
SVR的优点是对异常点的鲁棒性较好,并且可以很好地处理小样本问题,但在处理大规模数据集时计算开销较大。
4. 决策树回归决策树回归使用决策树来进行回归问题的建模。
决策树将输入空间划分为多个子空间,并在每个子空间上拟合一个线性模型。
决策树能够处理离散特征和连续特征,并且对异常点相对较鲁棒。
决策树回归的缺点是容易过拟合,因此需要采取剪枝等策略进行降低模型复杂度。
计量经济学_詹姆斯斯托克_第8章_非线性的回归模型

Ln(TestScore) = 6.336 + 0.0554 ln(Incomei) (0.006) (0.0021)
假设 Income 从$10,000 增加到$11,000(或者 10%)。
则 TestScore 增加大约 0.0554 10% = 0.554%。
如果 TestScore = 650, 意味着测试成绩预计会增加
非线性的回归模型
非线性的回归函数
“非线性”的含义:
(1)非线性的函数 自变量与解释变量之间的非线性
函 数形式。
(2)非线性的回归 参数与随机项的非线性形式。
非线性的回归函数
一、多项式回归 二、对数回归 三、自变量的交互作用 四、其他非线性形式的回归 五*、非线性回归(参数非线性)
一、多项式回归
1、指数函数曲线
指数函数方程有两种形式:
yˆ aebx yˆ abx
y a>0,b>0
a>0,b<0
x
图11.1方yˆ 程 aebx 的图象
二、对数函数曲线
对数函数方程的一般表达式为:
yˆ a b ln x
y
b>0
b<0
x
图11.2 方程yˆ =a+blnx 的图象
(2)根据拟合程度的好坏来确定(如,利用spss 的相关功能) 在社会科学领域里,阶数不会太高!
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
(2)多项式的本质 泰勒展开
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
Y——收入; D1——性别(1——男;0——女) D2——学历(1——大学学历;0——没有)
非线性回归分析与曲线拟合方法

非线性回归分析与曲线拟合方法回归分析是一种常见的统计分析方法,用于研究自变量与因变量之间的关系。
在实际应用中,很多数据并不符合线性关系,而是呈现出曲线形式。
这时,我们就需要使用非线性回归分析和曲线拟合方法来更好地描述数据的规律。
一、非线性回归分析的基本原理非线性回归分析是一种通过拟合非线性方程来描述自变量与因变量之间关系的方法。
与线性回归不同,非线性回归可以更准确地反映数据的特点。
在非线性回归分析中,我们需要选择适当的非线性模型,并利用最小二乘法来估计模型的参数。
二、常见的非线性回归模型1. 多项式回归模型:多项式回归是一种常见的非线性回归模型,它通过多项式方程来拟合数据。
多项式回归模型可以描述数据的曲线特征,但容易出现过拟合问题。
2. 指数回归模型:指数回归模型适用于自变量与因变量呈指数关系的情况。
指数回归模型可以描述数据的增长或衰减趋势,常用于描述生物学、物理学等领域的数据。
3. 对数回归模型:对数回归模型适用于自变量与因变量呈对数关系的情况。
对数回归模型可以描述数据的增长速度,常用于描述经济学、金融学等领域的数据。
4. S形曲线模型:S形曲线模型适用于自变量与因变量呈S形关系的情况。
S形曲线模型可以描述数据的增长或衰减过程,常用于描述市场营销、人口增长等领域的数据。
三、曲线拟合方法曲线拟合是一种通过选择合适的曲线形状来拟合数据的方法。
在曲线拟合过程中,我们需要根据数据的特点选择适当的拟合方法。
1. 最小二乘法:最小二乘法是一种常用的曲线拟合方法,通过最小化观测值与拟合值之间的残差平方和来确定拟合曲线的参数。
2. 非线性最小二乘法:非线性最小二乘法是一种用于拟合非线性模型的方法,它通过最小化观测值与拟合值之间的残差平方和来确定模型的参数。
3. 曲线拟合软件:除了手动选择拟合方法,我们还可以使用曲线拟合软件来自动拟合数据。
常见的曲线拟合软件包括MATLAB、Python的SciPy库等。
四、应用实例非线性回归分析和曲线拟合方法在实际应用中有着广泛的应用。
机器学习中的五种回归模型及其优缺点

机器学习中的五种回归模型及其优缺点1.线性回归模型:线性回归模型是最简单和最常用的回归模型之一、它通过利用已知的自变量和因变量之间的线性关系来预测未知数据的值。
线性回归模型旨在找到自变量与因变量之间的最佳拟合直线。
优点是简单易于实现和理解,计算效率高。
缺点是假设自变量和因变量之间为线性关系,对于非线性关系拟合效果较差。
2.多项式回归模型:多项式回归模型通过添加自变量的多项式项来拟合非线性关系。
这意味着模型不再只考虑自变量和因变量之间的线性关系。
优点是可以更好地拟合非线性数据,适用于复杂问题。
缺点是容易过度拟合,需要选择合适的多项式次数。
3.支持向量回归模型:支持向量回归模型是一种非常强大的回归模型,它通过在数据空间中构造一个最优曲线来拟合数据。
支持向量回归模型着眼于找到一条曲线,使得在该曲线上离数据点最远的距离最小。
优点是可以很好地处理高维数据和非线性关系,对离群值不敏感。
缺点是模型复杂度高,计算成本也较高。
4.决策树回归模型:决策树回归模型将数据集划分为多个小的决策单元,并在每个决策单元中给出对应的回归值。
决策树由一系列节点和边组成,每个节点表示一个特征和一个分割点,边表示根据特征和分割点将数据集分配到下一个节点的规则。
优点是容易理解和解释,可处理离散和连续特征。
缺点是容易过度拟合,对噪声和离群值敏感。
5.随机森林回归模型:随机森林回归模型是一种集成学习模型,它基于多个决策树模型的预测结果进行回归。
随机森林通过对训练数据进行有放回的随机抽样来构建多个决策树,并利用每个决策树的预测结果进行最终的回归预测。
优点是可以处理高维数据和非线性关系,对噪声和离群值不敏感。
缺点是模型较为复杂,训练时间较长。
总之,每种回归模型都有其独特的优点和缺点。
选择适当的模型取决于数据的特点、问题的要求和计算资源的可用性。
在实际应用中,研究人员需要根据具体情况进行选择,并对模型进行评估和调整,以获得最佳的回归结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多项式回归、非线性回归模型
关键词:回归方程的统计检验、拟合优度检验、回归方程的显著性检验、F 检验、回归系数的显著性检验、残差分析、一元多项式回归模型、一元非线性回归模型
一、回归方程的统计检验 1. 拟合优度检验
1. 概念介绍
SST 总离差平方和total SSR 回归平方和regression SSE 剩余平方和error
∑∑∑∑====--=
---
=n
i i i
n
i i i
n
i i i
n
i i i
y y
y y y y
y
y R 1
2
1
2
12
12
2)()ˆ()()ˆ(1
2. 例题1
存在四点(-2,-3)、(-1,-1)、(1,2)、(4,3)求拟合直线与决定系数。
2. 回归方程的显著性检验
)
2/()2/()ˆ()ˆ(1
212
-=
---=
∑∑==n SSE SSA
n y
y
y y
F n
i i i n
i i i
例6(F 检验)
在合金钢强度的例1中,我们已求出了回归方程,这里考虑关于回归方程的显著性检验,经计算有:
表5 X 射线照射次数与残留细菌数的方差分析表
这里值很小,因此,在显著性水平0.01下回归方程是显著的。
3. 回归系数的显著性检验 4. 残差分析
二、一元多项式回归模型
模型如以下形式的称为一元多项式回归模型:
0111a x a x a x a y n n n n ++++=--
例1(多项式回归模型)
为了分析X 射线的杀菌作用,用200千伏的X 射线来照射细菌,每次照射6分钟,用平板计数法估计尚存活的细菌数。
照射次数记为t ,照射后的细菌数为y 见表1。
试求:
(1)给出y 与t 的二次回归模型。
(2)在同一坐标系内作出原始数据与拟合结果的散点图。
(3)预测16=t 时残留的细菌数。
(4)根据问题的实际意义,你认为选择多项式函数是否合适?
表1 X 射线照射次数与残留细菌数
程序1 t=1:15;
y=[352 211 197 160 142 106 104 60 56 38 36 32 21 19 15]; p=polyfit(t,y,2)%作二次多项式回归 y1=polyval(p,t);%模型估计与作图
plot(t,y,'-*',t,y1,'-o');%在同一坐标系中做出两个图形 legend('原始数据','二次函数') xlabel('t(照射次数)')%横坐标名 ylabel('y(残留细菌数)')%纵坐标名 t0=16;
yc1=polyconf(p,t0)%预测t0=16时残留的细菌数,方法1 yc2=polyval(p,t0)%预测t0=16时残留的细菌数,方法2 即二次回归模型为:
8967.3471394.519897.121+-=t t y
图1 原始数据与拟合效果的散点图
原始数据与拟合结果的散点图如图所示,从图形可知拟合效果较好。
照射16次后,用二次函数计算出细菌残留数为39.0396,显然与实际不符。
由实际问题的意义可知,尽管二次多项式拟合效果较好,但是用于预测并不理想。
因此如何根据原始数据散点图的规律,选择适当的回归曲线是非常重要的,这样就有必要给出非线性回归模型。
三、一元非线性回归模型
为了便于正确选择合适的函数进行回归分析建模,我们给出通常选择的6类曲线: (1)双曲线
x
b
a y +=1(如图所示) (2)幂函数曲线b
ax y =,其中0>x ,(如图所示) (3)指数曲线,其中参数(如图所示) (4)倒指数曲线,其中(如图所示)
(5)对数曲线(如图所示) (6)S 型曲线x
be
a y -+=
1
,其中(如图所示) 非线性回归建模通常有两种方法:一是通过适当的变换转化为线性回归模型,例如双曲线模型
(如图1所示),如果作变换y y 1
=',则有x b a y '+=',此时就是线性回归模型。
如果无法实现线性化,可以利用最小二乘法直接建立非线性回归模型,求解最佳参数。
例2(非线性回归模型、置信区间)
炼钢厂出钢时所用盛钢水的钢包,由于钢水对耐火材料的侵蚀,容积不断增大,我们希望找出使用次数与增大容积之间的函数关系。
实验数据见表2。
t(照射次数)
y (残留细菌数)
0>a bx
ae y =0>a x b ae
y /=0>a x b a y ln +=0>ab x b a y +=1x
x 1='
(1)建立非线性回归模型
x
b a y +=1; (2)预测钢包使用170=x 次后增大的容积0y ; (3)计算回归模型参数的置信度为95%的置信区间。
表2 钢包使用次数与增大容积
解:(1)建立非线性回归模型: 程序2 x=[2:16];
y= [6.42 8.2 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.6 10.8 10.6 10.9 10.76]; %建立非线性双曲线回归模型 b0=[0.084,0.1436];%回归系数初值
fun=inline('x./(b(1)*x+b(2))','b','x');%建立函数
[beta,r,J]=nlinfit(x,y,fun,b0);%非线性拟合命令;其中,beta 表示最佳回归系数的估计值,r 是残差,J 是雅可比矩阵
beta%输出最佳参数
y1=x./(0.0845*x+0.1152);%拟合曲线 plot(x,y,'*',x,y1,'-or')
legend('原始数据','拟合曲线')%legend 为图例命令
初始值要先计算后才能得到上面程序中的b0,选择已知程序中的点(2,6.42)和点(16,10.76),可选择手工方法解方程,也可利用以下MATLAB 程序求解。
程序3
[a,b]=solve('1/6.42=a+b/2','1/10.76=a+b/16')%解方程
注:当所求解的方程过于复杂时,MATLAB 运行会出现错误,此时需将方程尽量化简后再进行求解,如以下形式:
[a,b]=solve('6.42*(2*a+b)=2','10.76*(16*a+b)=16')
运行程序3可得到最佳参数为、,求解得到钢包使用次数与增大容积的非线性拟合图,如图2所示。
0845.0=a 1152.0=b
图2 钢包使用次数与增大容积的非线性拟合图
(2)预测钢包使用17次后增大的容积: 程序4
ypred=nlpredci(fun,17,beta,r,J)%预测钢包使用17次后增大的容积 (3)置信区间: 程序5
ci=nlparci(beta,r,J)%置信区间 运行后得到 ci =
0.0814 0.0876 0.0934 0.1370
即回归模型中参数的置信度为的置信区间分别为[0.0814,0.0876]与[0.0934,0.1370]。
我们求出的最佳参数分别为和,均属于上述置信区间。
调用多项式回归的GUI 界面,可显示出钢包使用次数与增大容积的拟合交互图,见图3。
程序6 polytool(x,y,2)
0845.0=a 1152.0=b
图3 钢包使用次数与增大容积的拟合交互图
图中的星号代表实验的原始数据点,绿色实线是回归模型曲线,两条红色虚线为95%上下置信区间的曲线,纵向的虚线表示自变量为9时,横向虚线对应的预测值为10.4118。