自激振荡产生的原因

合集下载

自激振荡的产生和消除

自激振荡的产生和消除

运放震荡自激原因及解决办法分类:信号完整性运放2011-07-10 21:10 10663人阅读评论(0) 收藏举报360工作测试网络闭环增益G=A/(1+FA)。

其中A为开环增益,F为反馈系数,AF为环路增益A(开环增益) = Xo/XiF(反馈系数)=Xf/Xo运放震荡自激的原因:1、环路增益大于1 (|AF|》1)2、反馈前后信号的相位差在360度以上,也就是能够形成正反馈。

参考《自控原理》和《基于运算放大器和模拟集成电路的电路设计》在负反馈电路时,反馈系数F越小越可能不产生自激震荡。

换句话说,F越大(即反馈量越大),产生自激震荡的可能性越大。

对于电阻反馈网络,F的最大值是1。

如果一个放大电路在F=1时没有产生自激振荡,那么对于其他的电阻反馈电路也不会产生自激振荡。

F=1的典型电路就是电压跟随电路。

所以在工作中,常常将运放接成跟随器的形式进行测试,若无自激再接入实际电路中自激振荡的引起,主要是因为集成运算放大器内部是由多级直流放大器所组成,由于每级放大器的输出及后一级放大器的输入都存在输出阻抗和输入阻抗及分布电容,这样在级间都存在R-C相移网络,当信号每通过一级R-C网络后,就要产生一个附加相移.此外,在运放的外部偏置电阻和运放输入电容,运放输出电阻和容性负载反馈电容,以及多级运放通过电源的公共内阻,甚至电源线上的分布电感,接地不良等耦合,都可形成附加相移.结果,运放输出的信号,通过负反馈回路再叠加增到180度的附加相移,且若反馈量足够大,终将使负反馈转变成正反馈,从而引起振荡.重要的概念相位裕度---如下图所示,显然我们比较关心当20lg|AF|=0时,相位偏移是否超过180运放震荡原因:1. 可能运放是分布电容和电感引起的 ----------------可通过反馈端并联电容,抵消影响。

2. 运放驱动容性负载导致。

---------------------------可在运放输出端先接入一个电阻,再接负载。

液压系统的自激振荡解释

液压系统的自激振荡解释

液压系统中自激振荡的解释
1、解释:是指在液压泵吸油和压油循环中,会产生周期性的压力和流量变化而形成流量和压力脉动。

在出口没有设置蓄能器和消声器,致使压力脉动未能减弱而引起液压振动并向整个液压系统传播的现象。

2、产生原因:液压泵在工作的过程中,当其轴向、径向等间隙由于磨损而增大后,压油腔周期的向吸油腔泄露,产生油液和压力的突变产生噪声。

此时,液压回路的管道和阀类会将液压泵的脉动油压反射,在回路中产生波动而是液压泵产生共振,以致重新使回路收到激振。

从而液压泵的流量和压力脉动就引起液压系统的谐振,发出强烈的噪声。

自激振荡的条件

自激振荡的条件

自激振荡的条件自激振荡是指在没有外部刺激的情况下,系统出现自发的振荡现象。

在物理学、工程学、生物学等领域都有自激振荡的研究。

本文将以自激振荡的条件为标题,探讨自激振荡的原理、条件和应用。

一、自激振荡的原理自激振荡是由于系统内部的正反馈机制而产生的。

正反馈是指系统的输出会增强自身的输入,从而加强系统内部的振荡。

当系统中的正反馈机制达到一定条件时,就会出现自激振荡的现象。

1. 正反馈回路:自激振荡必须存在正反馈回路,即系统的输出会增强自身的输入。

在这个回路中,输出信号会被放大并反馈到系统的输入端,从而引起振荡。

2. 阻尼系数小于临界值:在自激振荡的条件下,阻尼系数必须小于临界值。

阻尼系数是指系统的阻尼程度,当阻尼系数小于临界值时,系统才能产生持续的振荡。

3. 能量输入:自激振荡需要有能量输入,以维持系统的振荡。

能量输入可以来自外部环境或系统内部的能量转化。

三、自激振荡的应用1. 电子学领域:自激振荡在电子学中有广泛的应用,如放大器、振荡器和锁相环等。

其中,振荡器是一种常见的自激振荡设备,用于产生稳定的电信号。

2. 生物学领域:自激振荡在生物钟的研究中具有重要意义。

生物钟是一种生物体内部具有自激振荡机制的生物节律系统,能够调节生物体的行为和代谢。

3. 机械工程领域:自激振荡在机械工程中也有应用,如自激振荡阀门。

自激振荡阀门利用流体的自激振荡现象,实现流体的稳定控制。

四、自激振荡的研究和发展自激振荡的研究始于20世纪初,随着科学技术的不断进步,对自激振荡的研究也越来越深入。

目前,自激振荡已经在多个领域得到应用,并取得了一系列的研究成果。

自激振荡的研究不仅有助于我们对振荡现象的理解,还为技术创新和应用提供了新的思路。

通过研究自激振荡的机制和条件,可以设计和优化更加稳定和高效的振荡装置,推动科学技术的发展。

总结:自激振荡是由于系统内部的正反馈机制而产生的自发振荡现象。

它需要满足正反馈回路、阻尼系数小于临界值和能量输入等条件。

10-1反馈放大电路的自激振荡

10-1反馈放大电路的自激振荡
主要内容
§ 10-1 反馈放大电路的自激振荡
重点
难点北京邮电大学电子工程学院
2012.6
退出 开始
• 交流负反馈可以改善放大电路多方面的性能, 而且反馈愈深,性能改善得愈好。
• 但是,如果电路反馈满足某种条件,在输入量 为零时,输出却会产生一定频率和一定幅值的 信号,这时称电路产生了自激振荡。开关置于
条件,电路才会产生自激振荡。在起振过
程中, Xo 有一个从小到大的过程,故起 振条件为

AF 1
退出
荡。
退出
自激振荡产生的原因
负反馈放大电路的一般表达式为
Af
A 1 AF
退出
自激振荡产生的原因
一、自激振荡产生的原因
• 在中频段,由于 AF 0 , 中频段相移为 零。因此净输入量 、输入量 和反馈量 之 间的关系为
X
' i
Xi
Xf
退出
自激振荡产生的原因
在低频段,AF 将产生超前相移,在低 频段,AF 将产生滞后相移,当某一频率
f0 的信号使附加相移与中频段相比超 前或滞后180度时,使净输入量变为
X
' i
Xi
Xf
使电路由负反馈变为正反馈。
退出
自激振荡产生的原因
+ Xi 0 +
Xi'
-
A
Xf
F
Xo
Xf
Xo Xi
X o
退出
自激振荡产生的原因
• 由于半导体器件的非线性特性,如果电路 能最终达到动态平衡,即反馈信号(也就 是净输入信号)维持着输出信号,而输出 信号又维持着反馈信号,电路就产生了自 激振荡。
退出

放大器自激振荡的原因

放大器自激振荡的原因

放大器自激振荡的原因放大器自激振荡是指在一些特定的条件下,放大器的输出信号被反馈到输入端,进而导致放大器产生不稳定的振荡现象。

自激振荡是电子电路中一个非常普遍且有时也是非常令人困扰的问题。

本文将探讨放大器自激振荡的原因并提供一些可能的解决方案。

放大器自激振荡的原因可以归结为两种情况:正馈和负馈。

正馈是指放大器输出信号的一部分被反馈回到输入端,增强了输入信号,从而产生振荡。

而负馈则是指放大器输出信号的一部分被反馈回到输入端,并与输入信号相减,抑制了输入信号,从而产生振荡。

在电路中,可能导致放大器自激振荡的因素有很多,下面将介绍其中一些常见的情况:1. 错误连接或接地不良:在电路中的错误连接或接地不良可能导致信号回路不正常地工作,导致自激振荡。

例如,信号源错误地连接到输出端口,或者接地线和信号线没有良好的接触。

2. 高增益:当放大器具有很高的增益时,即使很小的反馈信号也足以导致振荡。

这是因为放大器的增益过大,反馈信号会在电路中不断放大,最终导致振荡。

3. 回路导通:如果放大器的输入和输出端之间存在低阻抗的回路,那么信号可能会直接从输出到输入端,导致振荡。

这种情况通常是由于电路布线错误或元器件失效导致的。

4. 导线或元器件的电感:导线或元器件的电感会导致信号在电路中反复振荡,从而引起自激振荡。

这种情况通常在高频电路中更为常见。

5. 电源波动:当电源电压发生波动时,可能会产生与电源频率相同的振荡信号。

这是因为波动的电源会影响放大器的工作点,进而导致振荡。

解决放大器自激振荡的问题可以采取以下方法:1. 确认电路连接正确:确保所有的电路连接正确,并检查接地线和信号线的连接状态。

如果有问题,及时修复。

2. 降低放大器增益:通过减小放大器的增益,可以降低反馈信号的大小,从而减少振荡的可能性。

3. 确保回路不导通:对于可能导致回路直通的元器件或导线进行排查,确保电路中不存在不必要的低阻抗回路。

4. 使用低电感元器件:通过选择低电感的导线和元器件,可以减少信号的振荡。

放大电路将产生自激振荡

放大电路将产生自激振荡

fc fc
一般要求 Φm ≥ 45
f /Hz fo Gm fo
f /Hz
m
6. 负反馈放大电路的稳定性及相位补偿方法
6.4负反馈放大电路自激振荡的消除方法
为保证放大电路稳定工作,对于三级或三级以上的负反馈放大电路,需 采取适当措施破坏自激振荡的幅度条件和相位条件。
最简单的方法是减小反馈系数或反馈深度,使得在满足相位条件时不 满足幅度条件。
应当指出,理解消除自激振荡的基本思路以及不同方法的特点,要比具 体计算补偿元件的参数重要得多;这是因为在很多情况下,需要在正确思路 的指导下,通过实验来获得理想的补偿效果。
6. 负反馈放大电路的稳定性及相位补偿方法
例16: 已知放大电路幅频特性近似如图所示。引入负反馈时,反 馈网络为纯电阻网络,且其参数的变化对基本放大电路的影响可 忽略不计。回答下列问题:
6. 负反馈放大电路的稳定性及相位补偿方法
2.RC滞后补偿
除了电容校正以外,还可以利用电阻、电容元件串联组成的 RC 校正
网络来消除自激振荡。
(见教材P298—P300)
利用 RC 校正网络代替电容校正网络,将使通频带变窄的程度有所改善。
6. 负反馈放大电路的稳定性及相位补偿方法
3.密勒效应补偿
例14:已知某负反馈放大电路的 AF波特图,是判断该电路是否
稳定。
解:由波特图中的相频特性可见,
20lg AF/ dB 60
当 f = f0 时,相位移 AF = -180º,
40
满足相位条件;
20
此频率对应的对数幅频特性位
于横坐标轴之上,即:
0 AF
AF 1
0
结论:当f = f0 时,电路同时满足自激振荡

6第五节 负反馈放大电路的自激振荡

6第五节 负反馈放大电路的自激振荡
稳定的负反馈放大电路, 0o -90o 其 m 应为正值,
-180o -270o
O
fc f0 f
m
f
一般的负反馈放大电路要求 m≥ 450
6
上页
下页
首页
第五节
负反馈放大电路的自激振荡
二、常用的校正措施
1. 电容校正(又称为主极点校正)
Rc1
VT1
C
Rc2
+VCC + A1
C
VT2
A2
uo
Re2
而产生自激振荡。
2
上页
下页
首页
第五节
负反馈放大电路的自激振荡
|Au | Aum
0.707Aum
BW
O
单级负反馈放大电路 两级负反馈放大电路 都是稳定的,
fH f
fL

+90o

0o -90o f
三级负反馈放大电路 有可能自激振荡, 对三级以上放大电路 深度负反馈条件下必 须消除自激条件,使 电路稳定工作。
-
降低放大电路的主极点频率,来破坏自激振荡的条件 此方法简单方便,但通频带将严重变窄。
7
上页
下页
首页
第五节
负反馈放大电路的自激振荡
2. RC校正
Rc1
VT1
Rc2
+VCC + A1 R
C
VT2
R
C
A2
uo
Re2
-
将使通频带变窄的程度有所改善,即改善了高频响应。
校正网络应加在极点频率最低的放大级(时间常数最大)。 通常可接在前级输出电阻和 后级输入电阻都较高的地方
第五节
负反馈放大电路的自激振荡

负反馈放大电路自激振荡产生原因及消除方法探讨

负反馈放大电路自激振荡产生原因及消除方法探讨

负反馈放大电路自激振荡产生原因及消除方法探讨
负反馈放大电路自激振荡产生的原因
1. 相位延迟:负反馈放大器中使用的反馈网络可能引入相位延迟,这会导致反馈信号与输入信号之间的相位差超过180度,从而产生自激振荡。

2. 反馈网络频率响应:反馈网络可能引入不稳定的频率响应,使得放大电路在某些频率上产生正反馈,导致自激振荡。

3. 线路耦合:放大电路中的不完全隔离的耦合元件(例如电感、电容等)可能引入正反馈,从而导致自激振荡。

负反馈放大电路自激振荡的消除方法
1. 增大带宽:在设计负反馈放大电路时,可以选择高带宽的放大器和反馈网络,以减小相位延迟和频率响应的影响。

2. 调整相位:通过调整反馈网络的相位延迟,使反馈信号与输入信号的相位差稳定在180度以下,从而防止自激振荡的产生。

3. 添加稳定器:在放大电路中添加稳定器,可以减小放大器的正反馈增益,在一定范围内保持负反馈,以防止自激振荡。

4. 良好的布线和接地:合理设计和布线可以减小线路耦合的影响,从而降低自激振荡的可能性。

5. 使用抗激励装置:在放大电路中添加抗激励装置,通过主动抑制自激振荡的产生,例如在放大器输入端加入一个抗激励电路。

需要注意的是,负反馈放大电路自激振荡的具体原因和消除方法可能因具体的电路结构和元件选择而有所不同,因此在实际应用中,需要根据具体情况进行分析和处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自激振荡产生的原因
自激振荡产生的原因
自激振荡的引起,主要是因为集成运算放大器内部是由多级直流放大器所组成,由于每级放大器的输出及后一级放大器的输入都存在输出阻抗和输入阻抗及分布电容,这样在级间都存在R—C相移网络,当信号每通过一级R—C网络后,就要产生一个附加相移。

此外,在运放的外部偏置电阻和运放输入电容,运放输出电阻和容性负载反馈电容,以及多级运放通过电源的公共内阻,甚至电源线上的分布电感,接地不良等耦合,都可形成附加相移。

结果,运放输出的信号,通过负反馈回路再叠加增到180度的附加相移,且若反馈量足够大,终将使负反馈转变成正反馈,从而引起振荡。

自激振荡产生条件
产生自激振荡必须同时满足两个条件:
1、幅度平衡条件|AF|=1。

相关文档
最新文档