曲柄连杆机构设计

曲柄连杆机构设计
曲柄连杆机构设计

课程设计说明书

题目:曲柄连杆机构设计

姓名:

班级:

学号:

指导老师:

完成时间:

目录

第1章绪论 (4)

1.1题目分析 (4)

1.2设计研究的主要内容 (4)

第2章连杆组的设计 (15)

2.1连杆的工作情况、设计要求和材料选用 (15)

2.2连杆长度的确定 (16)

2.3连杆小头的设计 (16)

2.4连杆杆身的设计 (17)

2.5连杆大头的设计 (17)

2.6连杆强度计算 (18)

2.7连杆螺栓设计 (25)

2.8本章小结 (27)

第3章活塞组的设计 (5)

3.1活塞的工作条件和设计要求 (5)

3.2活塞的材料 (6)

3.3活塞的主要尺寸 (7)

3.4活塞的头部设计 (9)

3.5活塞的销座设计 (9)

3.6活塞的裙部设计 (10)

3.7活塞强度计算 (11)

3.8活塞销的设计 (12)

3.9活塞环的设计 (13)

3.10本章小结 (15)

第4章曲轴组的设计 (27)

4.1曲轴的结构型式和材料的选择 (27)

4.2曲轴的主要尺寸确定 (28)

4.3曲轴油孔位置 (30)

4.4曲轴端部结构 (30)

4.5曲轴平衡块 (31)

4.6曲轴的轴向定位 (31)

4.7曲轴疲劳强度计算 (32)

4.8飞轮的设计 (41)

4.9本章小结 (42)

总结 (43)

参考文献 (44)

致谢 (45)

第1章绪论

1.1 题目分析

曲柄连杆机构是发动机的传递运动和动力的机构,通过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。因此,曲柄连杆机构是发动机中主要的受力部件,其工作可靠性就决定了发动机工作的可靠性。随着发动机强化指标的不断提高,机构的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证机构具有足够的疲劳强度和刚度及良好的动静态力学特性成为曲柄连杆机构设计的关键性问题。

通过设计,确定发动机曲柄连杆机构的总体结构和零部件结构,包括必要的结构尺寸确定、运动学和动力学分析、材料的选取等,以满足实际生产的需要。

在传统的设计模式中,为了满足设计的需要须进行大量的数值计算,同时为了满足产品的使用性能,须进行强度、刚度、稳定性及可靠性等方面的设计和校核计算,同时要满足校核计算,还需要对曲柄连杆机构进行动力学分析。

为了真实全面地了解机构在实际运行工况下的力学特性,本文采用了多体动力学仿真技术,针对机构进行了实时的,高精度的动力学响应分析与计算,因此本研究所采用的高效、实时分析技术对提高分析精度,提高设计水平具有重要意义,而且可以更直观清晰地了解曲柄连杆机构在运行过程中的受力状态,便于进行精确计算,对进一步研究发动机的平衡与振动、发动机增压的改造等均有较为实用的应用价值。

本次设计柴油机型号为4105型柴油机,基本参数为:

2

z kgf/cm 70p rpn

1500n mm

120105====最高爆发压力转速行程缸径S mm

D

1.2 设计研究的主要内容

对内燃机运行过程中曲柄连杆机构受力分析进行深入研究,其主要的研究内容有:

(1)对曲柄连杆机构进行运动学和动力学分析,分析曲柄连杆机构中各种力的作用情况,并根据这些力对曲柄连杆机构的主要零部件进行强度、刚度等方面的计算和校核,以便达到设计要求;

(2)分析曲柄连杆机构中主要零部件如活塞,曲轴,连杆等的工作条件和设计要求,进行合理选材,确定出主要的结构尺寸,并进行相应的尺寸检验校核,以符合零件实际加工的要求。

第2章连杆组的设计

2.1连杆的工作情况、设计要求和材料选用

1、工作情况

连杆小头与活塞销相连接,与活塞一起做往复运动,连杆大头与曲柄销相连和曲轴一起做旋转运动。因此,连杆体除有上下运动外,还左右摆动,做复杂的平面运动。

2、设计要求

(1)结构简单,尺寸紧凑,可靠耐用。

(2)在保证具有足够强度和刚度的前提下,尽可能减轻重量,以降低惯性力。(3)尽量缩短长度,以降低发动机的总体尺寸和总重量。

(4)大小头轴承工作可靠,耐磨性好。

(5)连杆螺栓疲劳强度高,连接可靠。

(6)易于制造,成本低。

连杆主要承受气体压力和往复惯性力所产生的交变载荷,因此,在设计时应首先保证连杆具有在足够的疲劳强度和结构钢度。如果强度不足,就会发生连杆螺栓、大头盖或杆身的断裂,造成严重事故,同样,如果连杆组刚度不足,也会对曲柄连杆机构的工作带来不好的影响。

所以设计连杆的一个主要要求是在尽可能轻巧的结构下保证足够的刚度和强度。为此,必须选用高强度的材料;合理的结构形状和尺寸。

3、材料的选择

为了保证连杆在结构轻巧的条件下有足够的刚度和强度,采用精选含碳量的优质中碳结构钢45模锻,表面喷丸强化处理,提高强度。

2.2连杆长度的确定

近代中小型告诉柴油机,为使发动机结构紧凑,最适合的连杆长度应该是,在保证连杆及相关机件在运动不与其他机件相碰的情况下,选取最小的连杆长度。

连杆长度l 与结构参数l

R =λ(R 为曲柄半径)有关,此次设计选取286.0=λ。 mm S R l 210286

.021202=?===λλ

2.3连杆小头的设计

小头主要尺寸为连杆衬套内径d 和小头宽度1b 。

1.连杆衬套内径d

mm D d 3810536.036.0=?==

2.衬套厚度δ

mm d 5.238066.0066.0=?==δ

3.小头内径1d

mm d d 435.223821=?+=+=δ

4.小头宽度1b

mm d b 403805.105.11=?==

5.小头外径2d

mm d d 524321.121.112=?==

2.4连杆杆身的设计

连杆杆身从弯曲刚度和锻造工艺性考虑,采用工字形截面。

1.杆身截面高度H

mm D H 3410532.032.0=?==

2.杆身截面宽度B

mm H B 223465.065.0=?==

3.杆身截面中间宽度t

mm H t 53415.015.0=?==

为使连杆从小头到大头传力比较均匀,在杆身到小头和大头的过渡处用足够大的圆角半径。

2.5连杆大头的设计

本次大头采用斜切口大头的结构形式,切口角?=45ψ

1.大头孔直径1D

mm D D 7610572.072.01=?==

2.大头宽度2b

mm D b 457659.059.012=?==

3.连杆轴瓦厚度'δ

mm 3'=δ

4.连杆螺栓直径M d

mm D d M 1410513.013.0=?==

5.连杆螺栓孔中心距1l

mm D l 927621.121.11=?==

螺栓孔外侧壁厚不小于2毫米,取3毫米,螺栓头支承面到杆身或大头盖的过渡采用尽可能大的圆角。

6.大头高度2

1,H H

11)24.0~19.0(D H = 取0.21 mm D H 1621.011== 12)58.0~41.0(D H = 取0.50 mm D H 385.012==

7.定位方式

定位方式采用锯齿定位,齿形角为?60,齿距为mm 4

2.6连杆强度计算

1.连杆小头计算

(1)由衬套过盈配合和受热膨胀产生的应力

衬套最大装配过盈量

mm 0304.0381084=??=?-

衬套温度过盈量

mm td t 041.04312010)0.18.1()(51'=???-=?-=?-αα

式中α为连杆材料线膨胀系数,对于钢C ??=-1100.15α 'α为衬套材料线膨胀系数,对于青铜C ??=-1108.15'α 由总过盈量产生的径向均布压力

2

6222

262222'2

212

21212221221/2.179]10

15.13.08.33.48.33.4102.23.03.42.53.42.5[3.40041.0003.0][cm kgf E

d d d d E d d d d d p t

=?--++?+-+?+=--+++-+?+?=μμ 式中E 为连杆材料的弹性模量,对于钢26/102.2cm kgf E ?= 'E 为衬套材料的弹性模量,对于青铜26'/1015.1cm kgf E ?= μ为泊桑比,3.0=μ

小头外表面由p 引起的应力

matlab(四连杆优化设计)

机械优化设计在matlab中的应用 东南大学机械工程学院** 一优化设计目的: 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 二优化设计步骤: 1.机械优化设计的全过程一般可以分为如下几个步骤: 1)建立优化设计的数学模型; ' 2)选择适当的优化方法; 3)编写计算机程序; 4)准备必要的初始数据并伤及计算; 5)对计算机求得的结果进行必要的分析。 其中建立优化设计数学模型是首要的和关键的一步,它是取得正确结果的前提。优化方法的选取取决于数学模型的特点,例如优化问题规模的大小,目标函数和约束函数的性态以及计算精度等。在比较各种可供选用的优化方法时,需要考虑的一个重要因素是计算机执行这些程序所花费的时间和费用,也即计算效率。 2.建立数学模型的基本原则与步骤 ①设计变量的确定; 设计变量是指在优化设计的过程中,不断进行修改,调整,一直处于变化的参数称为设计变量。设计变量的全体实际上是一组变量,可用一个列向量表示: - x=。 ②目标函数的建立; 选择目标函数是整个优化设计过程中最重要的决策之一。当对某以设计性能有特定的要求,而这个要求有很难满足时,则针对这一性能进行优化会得到满意的效果。目标函数是设计变量的函数,是一项设计所追求的指标的数学反映,因此它能够用来评价设计的优劣。 目标函数的一般表达式为: f(x)=,要根据实际的设计要求来设计目标函数。 ③约束条件的确定。 一个可行性设计必须满足某些设计限制条件,这些限制条件称为约束条件,简称约束。 由若干个约束条件构成目标函数的可行域,而可行域内的所有设计点都是满足设计要求的,一般情况下,其设计可行域可表示为 …

汽车曲柄连杆机构毕业设计

本科毕业设计(论文)通过答辩 优秀论文设计,答辩无忧,值得下载!摘要 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 首先,以运动学和动力学的理论知识为依据,对曲柄连杆机构的运动规律以及在运动中的受力等问题进行详尽的分析,并得到了精确的分析结果。其次分别对活塞组、连杆组以及曲轴进行详细的结构设计,并进行了结构强度和刚度的校核。再次,应用三维CAD软件:Pro/Engineer建立了曲柄连杆机构各零部件的几何模型,在此工作的基础上,利用Pro/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件、连杆组件和曲轴组件,然后利用Pro/E软件的机构分析模块(Pro/Mechanism),建立曲柄连杆机构的多刚体动力学模型,进行运动学分析和动力学分析模拟,研究了在不考虑外力作用并使曲轴保持匀速转动的情况下,活塞和连杆的运动规律以及曲柄连杆机构的运动包络。仿真结果的分析表明,仿真结果与发动机的实际工作状况基本一致,文章介绍的仿真方法为曲柄连杆机构的选型、优化设计提供了一种新思路。 关键词:发动机;曲柄连杆机构;受力分析;仿真建模;运动分析;Pro/E

本科毕业设计(论文)通过答辩 优秀论文设计,答辩无忧,值得下载!ABSTRACT This article refers to by the Jeeta EA113 gasoline engine’s related parameter achievement, it has carried on the structural design compution for main parts of the crank link mechanism in the gasoline engine with four cylinders, and has carried on theoretical analysis and simulation analysis in computer in kinematics and dynamics for the crank link mechanism. First, motion laws and stress in movement about the crank link mechanism are analyzed in detail and the precise analysis results are obtained. Next separately to the piston group, the linkage as well as the crank carries on the detailed structural design, and has carried on the structural strength and the rigidity examination. Once more, applys three-dimensional CAD software Pro/Engineer establishing the geometry models of all kinds of parts in the crank link mechanism, then useing the Pro/E software assembling function assembles the components of crank link into the piston module, the connecting rod module and the crank module, then using Pro/E software mechanism analysis module (Pro/Mechanism), establishes the multi-rigid dynamics model of the crank link, and carries on the kinematics analysis and the dynamics analysis simulation, and it studies the piston and the connecting rod movement rule as well as crank link motion gear movement envelopment. The analysis of simulation results shows that those simulation results are meet to true working state of engine. It also shows that the simulation method introduced here can offer a new efficient and convenient way for the mechanism choosing and optimized design of crank-connecting rod mechanism in engine. Key words: Engine;Crankshaft-Connecting Rod Mechanism;Analysis of Force;Modeling of Simulation;Movement Analysis;Pro/E

平面连杆机构优化设计

平面连杆机构优化设计 一、问题描述 平面连杆机构是由所有构件均由低副连接而成的机构,四杆机构是最常用的平面连杆机构。一般情况下,四杆机构只能近似实现给定的运动规律或运动轨迹,精确设计较为复杂。在四杆机构中,若两连架杆中的一个是曲柄,另一个是摇杆,则该机构为曲柄摇杆机构。曲柄摇杆机构可将曲柄的连续转动转变为摇杆的往复摆动。 设计一曲柄摇杆机构(如图1所示)。已知曲柄长度l 1=100mm ,机架长度l 4=500mm 。摇杆处于右极限位置时,曲柄与机架的夹角为φ0,摇杆与机架的夹角为ψ0。在曲柄转角φ从φ0匀速增至φ0+90°的过程中,要求摇杆转角()200π 32 ??ψψ-+ =。为防止从动件卡死,连杆与摇杆的夹角γ只允许在45°~135°范围内变化。 图1 机构运动简图 二、基本思路

四杆机构的设计要求可归纳为三类,即满足预定的连杆位置要求、满足预定的运动规律要求、满足预定的轨迹要求。本案例中,要求曲柄作等速转动时,摇杆的转角满足预定运动规律()00E π 32 ??ψψ-+ =。优化设计时,通常无精确解,一般采用数值方法得到近似解。本案例将机构预定的运动规律与实际运动规律观测量之间的偏差最小设为目标,由此建立优化设计数学模型,并运用MATLAB 优化工具箱的相关函数进行求解。 三、要点分析 优化设计数学模型的三要素包括设计变量、目标函数和约束条件。依次确定三要素后,编写程序进行计算。 1.设计变量的确定 通常将机构中的各杆长度,以及摇杆按预定运动规律运动时,曲柄所处的初始位置角φ0列为设计变量,即 T 04321T 54321)()(?l l l l x x x x x ==X (1) 考虑到机构各杆长按比例变化时,不会改变其运动规律,因此在计算可取l 1为单位长度,而其他杆长则按比例取为l 1的倍数。若曲柄的初始位置对应摇杆的右极限位置,则φ0及ψ0均为杆长的函数,即 4 212 32 42210)(2)(cos arc l l l l l l l +-++=?(2)

平面连杆机构及其设计答案

第八章平面连杆机构及其设计 一、填空题: 1.平面连杆机构是由一些刚性构件用转动副和移动副连接组成的。 2.在铰链四杆机构中,运动副全部是低副。 3.在铰链四杆机构中,能作整周连续回转的连架杆称为曲柄。 4.在铰链四杆机构中,只能摆动的连架杆称为摇杆。 5.在铰链四杆机构中,与连架杆相连的构件称为连杆。 6.某些平面连杆机构具有急回特性。从动件的急回性质一般用行程速度变化系数表示。 7.对心曲柄滑块机构无急回特性。 8.平行四边形机构的极位夹角θ=00,行程速比系数K= 1 。 9.对于原动件作匀速定轴转动,从动件相对机架作往复直线运动的连杆机构,是否有急回 特性,取决于机构的极位夹角是否为零。 10.机构处于死点时,其传动角等于0?。 11.在摆动导杆机构中,若以曲柄为原动件,该机构的压力角α=00。 12.曲柄滑块机构,当以滑块为原动件时,可能存在死点。 13.组成平面连杆机构至少需要 4 个构件。 二、判断题: 14.平面连杆机构中,至少有一个连杆。(√) 15.在曲柄滑块机构中,只要以滑块为原动件,机构必然存在死点。(√) 16.平面连杆机构中,极位夹角θ越大,K值越大,急回运动的性质也越显著。(√) 17.有死点的机构不能产生运动。(×) 18.曲柄摇杆机构中,曲柄为最短杆。(√) 19.双曲柄机构中,曲柄一定是最短杆。(×) 20.平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。(√) 21.在摆动导杆机构中,若以曲柄为原动件,则机构的极位夹角与导杆的最大摆角相等。 (√) 22.机构运转时,压力角是变化的。(√) 三、选择题:

23.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和 A 其他两杆之和。 A ≤ B ≥ C > 24.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和小于或等于其他两杆之和,而 充分条件是取 A 为机架。 A 最短杆或最短杆相邻边 B 最长杆 C 最短杆的对边。 25.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 B 为机架时, 有两个曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 26.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 A 为机架时, 有一个曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 27.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 C 为机架时, 无曲柄。 A 最短杆相邻边 B 最短杆 C 最短杆对边。 28.铰链四杆机构中,若最短杆与最长杆长度之和 B 其余两杆长度之和,就一定是双摇杆 机构。 A < B > C = 29.对曲柄摇杆机构,若曲柄与连杆处于共线位置,当 C 为原动件时,此时机构处在死点位 置。 A 曲柄 B 连杆 C 摇杆 30.对曲柄摇杆机构,若曲柄与连杆处于共线位置,当 A 为原动件时,此时为机构的极限 位置。 A 曲柄 B 连杆 C 摇杆 31.对曲柄摇杆机构,当以曲柄为原动件且极位夹角θ B 时,机构就具有急回特性。 A <0 B >0 C =0 32.对曲柄摇杆机构,当以曲柄为原动件且行程速度变化系数K B 时,机构就具有急 回特性。 A <1 B >1 C =1 33.在死点位置时,机构的压力角α= C 。 A 0 o B 45o C 90o 34.若以 B 为目的,死点位置是一个缺陷,应设法通过。 A 夹紧和增力B传动 35.若以 A 为目的,则机构的死点位置可以加以利用。 A 夹紧和增力;B传动。

平面连杆机构的优化设计教案

平面连杆机构的优化设计 【教学目标】 1.了解连杆机构优化设计的一般步骤 2.掌握连杆机构优化设计的方法 【教学重点】 1.掌握连杆机构优化设计的方法 【教学难点】 1.掌握连杆机构优化设计的方法 【教学准备】 多媒体课件、直尺、圆规。 【教学过程】 一、以工程实际案例引入课题 实例1:飞机起落架(结合最近美国波音飞机频繁失事的新闻) 实例2:汽车雨刮器 说明:平面连杆机构的实用在生产生活中随处可见,是机械设计当中常见的一种机构。 二、定义回顾 【提问】平面四杆机构的基本形式有哪些? 【预设】机械原理是本科第四学期的课程,学生可能记不全,要引导性地带大家回忆。 【答案】曲柄摇杆机构、双曲柄机构、双摇杆机构 三、回顾以前所学习的连杆机构设计方法,对比引入优化设计。 新课教授 一、曲柄摇杆机构再现已知运动规律的优化设计

1.设计变量的确定 决定机构尺寸的各杆长度,以及当摇杆按已知运动规律开始运动时,曲柄所处的位置角φ0 为设计变量。 [][] 1234512340T T x x x x x x l l l l ?== 考虑到机构的杆长按比例变化时,不会改变其运动规律,因此在计算时常l 1=1 , 而其他杆长按比例取为l 1 的倍数。 ()()22212430124arccos 2l l l l l l l ???++-=??+???? ()221243034arccos 2l l l l l l ψ??+--=?????? 经分析后,只有三个变量为独立的: [][] 123234T T x x x x l l l == 2.目标函数的建立 目标函数可根据已知的运动规律与机构实际运动规律之间的偏差最小为指标来建立,即

汽车曲柄连杆机构设计

摘要 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 首先,以运动学和动力学的理论知识为依据,对曲柄连杆机构的运动规律以及在运动中的受力等问题进行详尽的分析,并得到了精确的分析结果。其次分别对活塞组、连杆组以及曲轴进行详细的结构设计,并进行了结构强度和刚度的校核。再次,应用三维CAD软件:Pro/Engineer建立了曲柄连杆机构各零部件的几何模型,在此工作的基础上,利用Pro/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件、连杆组件和曲轴组件,然后利用Pro/E软件的机构分析模块(Pro/Mechanism),建立曲柄连杆机构的多刚体动力学模型,进行运动学分析和动力学分析模拟,研究了在不考虑外力作用并使曲轴保持匀速转动的情况下,活塞和连杆的运动规律以及曲柄连杆机构的运动包络。仿真结果的分析表明,仿真结果与发动机的实际工作状况基本一致,文章介绍的仿真方法为曲柄连杆机构的选型、优化设计提供了一种新思路。 关键词:发动机;曲柄连杆机构;受力分析;仿真建模;运动分析;Pro/E

ABSTRACT This article refers to by the Jeeta EA113 gasoline engine’s related parameter achievement, it has carried on the structural design compution for main parts of the crank link mechanism in the gasoline engine with four cylinders, and has carried on theoretical analysis and simulation analysis in computer in kinematics and dynamics for the crank link mechanism. First, motion laws and stress in movement about the crank link mechanism are analyzed in detail and the precise analysis results are obtained. Next separately to the piston group, the linkage as well as the crank carries on the detailed structural design, and has carried on the structural strength and the rigidity examination. Once more, applys three-dimensional CAD software Pro/Engineer establishing the geometry models of all kinds of parts in the crank link mechanism, then useing the Pro/E software assembling function assembles the components of crank link into the piston module, the connecting rod module and the crank module, then using Pro/E software mechanism analysis module (Pro/Mechanism), establishes the multi-rigid dynamics model of the crank link, and carries on the kinematics analysis and the dynamics analysis simulation, and it studies the piston and the connecting rod movement rule as well as crank link motion gear movement envelopment. The analysis of simulation results shows that those simulation results are meet to true working state of engine. It also shows that the simulation method introduced here can offer a new efficient and convenient way for the mechanism choosing and optimized design of crank-connecting rod mechanism in engine. Key words: Engine;Crankshaft-Connecting Rod Mechanism;Analysis of Force; Modeling of Simulation;Movement Analysis;Pro/E

平面连杆机构及其设计(参考答案)

一、填空题: 1.平面连杆机构是由一些刚性构件用低副连接组成的。 2.由四个构件通过低副联接而成的机构成为四杆机构。 3.在铰链四杆机构中,运动副全部是转动副。 4.在铰链四杆机构中,能作整周连续回转的连架杆称为曲柄。 5.在铰链四杆机构中,只能摆动的连架杆称为摇杆。 6.在铰链四杆机构中,与连架杆相连的构件称为连杆。 7.某些平面连杆机构具有急回特性。从动件的急回性质一般用行程速度变化系数表示。 8.对心曲柄滑快机构无急回特性。9.偏置曲柄滑快机构有急回特性。 10.对于原动件作匀速定轴转动,从动件相对机架作往复运动的连杆机构,是否有急回特性,取决于机构的极位夹角是否大于零。 11.机构处于死点时,其传动角等于0。12.机构的压力角越小对传动越有利。 13.曲柄滑快机构,当取滑块为原动件时,可能有死点。 14.机构处在死点时,其压力角等于90o。 15.平面连杆机构,至少需要4个构件。 二、判断题: 1.平面连杆机构中,至少有一个连杆。(√) 2.平面连杆机构中,最少需要三个构件。(×) 3.平面连杆机构可利用急回特性,缩短非生产时间,提高生产率。(√) 4.平面连杆机构中,极位夹角θ越大,K值越大,急回运动的性质也越显著。(√) 5.有死点的机构不能产生运动。(×) 6.机构的压力角越大,传力越费劲,传动效率越低。(√) 7.曲柄摇杆机构中,曲柄为最短杆。(√) 8.双曲柄机构中,曲柄一定是最短杆。(×) 9.平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。(√) 10.平面连杆机构中,压力角的余角称为传动角。(√) 11.机构运转时,压力角是变化的。(√) 三、选择题: 1.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和 A 其他两杆之和。 A <=; B >=; C > 。 2.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和小于或等于其他两杆之和,而充分条件是取 A 为机架。 A 最短杆或最短杆相邻边; B 最长杆; C 最短杆的对边。3.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 B 为机架时,有两

连杆机构设计word版

第2章连杆组的设计 2.1连杆的工作情况、设计要求和材料选用 1、工作情况 连杆小头与活塞销相连接,与活塞一起做往复运动,连杆大头与曲柄销相连和曲轴一起做旋转运动。因此,连杆体除有上下运动外,还左右摆动,做复杂的平面运动。 2、设计要求 (1)结构简单,尺寸紧凑,可靠耐用。 (2)在保证具有足够强度和刚度的前提下,尽可能减轻重量,以降低惯性力。(3)尽量缩短长度,以降低发动机的总体尺寸和总重量。 (4)大小头轴承工作可靠,耐磨性好。 (5)连杆螺栓疲劳强度高,连接可靠。 (6)易于制造,成本低。 连杆主要承受气体压力和往复惯性力所产生的交变载荷,因此,在设计时应首先保证连杆具有在足够的疲劳强度和结构钢度。如果强度不足,就会发生连杆螺栓、大头盖或杆身的断裂,造成严重事故,同样,如果连杆组刚度不足,也会对曲柄连杆机构的工作带来不好的影响。 所以设计连杆的一个主要要求是在尽可能轻巧的结构下保证足够的刚度和强度。为此,必须选用高强度的材料;合理的结构形状和尺寸。 3、材料的选择 为了保证连杆在结构轻巧的条件下有足够的刚度和强度,采用精选含碳量的优质中碳结构钢45模锻,表面喷丸强化处理,提高强度。 2.2连杆长度的确定 近代中小型告诉柴油机,为使发动机结构紧凑,最适合的连杆长度应该是,在保证连杆及相关机件在运动不与其他机件相碰的情况下,选取最小的连杆长度。

连杆长度l 与结构参数l R =λ(R 为曲柄半径)有关,此次设计选取286.0=λ。 mm S R l 210286 .021202=?===λλ 2.3连杆小头的设计 小头主要尺寸为连杆衬套内径d 和小头宽度1b 。 1.连杆衬套内径d mm D d 3810536.036.0=?== 2.衬套厚度δ mm d 5.238066.0066.0=?==δ 3.小头内径1d mm d d 435.223821=?+=+=δ 4.小头宽度1b mm d b 403805.105.11=?== 5.小头外径2d mm d d 524321.121.112=?== 2.4连杆杆身的设计 连杆杆身从弯曲刚度和锻造工艺性考虑,采用工字形截面。 1.杆身截面高度H mm D H 3410532.032.0=?== 2.杆身截面宽度B mm H B 223465.065.0=?== 3.杆身截面中间宽度t mm H t 53415.015.0=?==

曲柄连杆机构的拆装

曲柄连杆机构得拆装 实训步骤及操作方法: 1、曲柄连杆机构得拆卸 拆卸曲柄连杆机构机件时,应先将发动机外部机件拆卸,如分电器,发电机及V带、水泵、化油器、汽油泵、起动机与机油滤清器等。对于AFE电控汽油喷射发动机应拆卸节气门体、怠速稳定阀及燃油分配器等。 然后分解正时齿形带机构.先拆下齿形带护罩,转动曲轴使第一缸活塞处于压缩行程上止点,检查正时记号,凸轮轴正时齿形皮带轮上标记须与气门罩盖平面对齐,最后拆下张紧装置,拆下齿形带。 (1)拆下气缸盖 ①旋出气门罩盖得螺栓取下气门罩盖与档油罩; ②松下张紧轮螺母,取下张紧轮; ③拆下进、排气歧管; ④按要求顺序旋松气缸盖螺栓,并取下气缸盖与气缸盖衬垫;

⑤拆下火花塞 (2)拆下并分解曲轴连杆机构 ①拆下油底壳、机油滤网、浮子与机油泵; ②拆下曲轴带轮; ③拧下曲轴正时齿带轮固定螺栓,取下曲轴正时齿带轮; ④拧下中间轴齿带轮得固定螺栓,取下中间齿带轮;拆卸密封凸缘,取出中间轴; ⑤拆卸前油封与前油封凸缘; ⑥拆卸离合器压盘总成及飞轮总成,为保证其动平衡,应在飞轮与离合器壳上作装配记号; ⑦拆下活塞连杆组件: 拆下活塞连杆组件前,应检查连杆大端得轴向间隙,该车极限间隙值为0、37mm,大于此值应更换连杆。拆下连杆轴承盖,将活塞连杆组从气缸中抽出. 拆下活塞连杆组后,注意连杆与连杆大头盖与活塞上得记号应与气缸得序号一致,如无记号,则应重新打印. ⑧检查曲轴轴向间隙,极限轴向间隙为0、25mm,超过此值,应更换止推垫圈; ⑨按规定顺序松开主轴承盖螺栓,拆下主轴承盖,取下曲轴; ⑩分解活塞连杆组件。 2、曲柄连杆机构得装配 曲柄连杆机构得装配质量直接关系到发动机得工作性能,因此,装合时须注意下列事项。 ①各零部件应彻底清洗,压缩空气吹干,油道孔保持畅通; ②对于一些配合工作面(如气缸壁、活塞、活塞环、轴颈与轴承、挺杆等),装合前要涂以润滑油; ③对于有位置、方向与平衡要求得机件,必须注意装配记号与平衡记号,确保安装关系正确与动平衡要求,如正时链条、链轮、活塞、飞轮与离合器总成等。 ④螺栓、螺母必须按规定得力矩分次按序拧紧。螺栓、螺母、垫片等应齐全,以满足其完整性与完好性; ⑤使用专用工具。 安装顺序一般与拆卸顺序相反. (1)活塞连杆组得装合 ①将同一缸号得活塞与连杆放在一起,如连杆无缸号标记,应在连杆杆身上打所属缸号标记; ②将活塞顶部得朝前“箭头”标记与连杆杆身上得朝前“浇铸”标记对准; ③将涂有机油得活塞销,用大拇指压入活塞销孔与连杆铜套中,如压不进去,可用热装合法装配; ④活塞销装上后,要保证其与铜套得配合间隙为0、003~0、008mm ,经验检验法就是用手晃动活塞销与销孔铜套无间隙感,活塞销垂直向下时又不会从销孔或铜套中滑出。(注意铜套与连杆油孔对正); ⑤安装活塞销卡环; ⑥用活塞环专用工具安装活塞环,先装油环,再装第二道环,最后装第一道环,环得上下面不能装错,标记“TOP”朝活塞顶; ⑦检查活塞环得侧隙、端隙。

哈工大机械原理考研-第2章 连杆机构分析与设计(理论部分)

第2章连杆机构分析和设计 2.1内容要求 1.掌握平面四杆机构的基本型式、特点及其演化方法。 2.熟练掌握和推导铰链四杆机构曲柄存在条件,并灵活运用来判断铰链四杆机构的类型; 掌握曲柄滑块机构及导杆机构等其他四杆机构的曲柄存在条件的推导过程。 3.掌握平面四杆机构的压力角、传动角、急回运动、极位夹角、行程速比系数、等基本概 念;掌握连杆机构最小传动角出现的位置及计算方法;掌握极位夹角与行程速比系数的关系式;掌握掌握死点在什么情况下出现及死点位置在机构中的应用。 4.掌握速度瞬心的概念及如何确定机构中速度瞬心的数目;掌握“三心定理”并应用“三 心定理”确定机构中速度瞬心的位置及对机构进行速度分析。 5.了解建立Ⅰ级机构、RRR杆组、RRP杆组、RPR杆组、PRP杆组、RPP杆组的运动分 析数学模型;掌握相对运动图解法及杆组法机构运动分析的方法。 6.掌握移动副、转动副中摩擦力的计算和自锁问题的讨论;掌握计及摩擦时平面连杆机构 受力分析的方法;掌握计算机械效率的几种方法;掌握从机械效率的观点研究机械自锁条件的方法和思想。 7.掌握平面四杆机构的运动特征及其设计的基本问题;了解“函数机构”、“轨迹机构”、 “导引机构”的设计思想、方法;掌握按给定行程速比系数设计四杆机构的方法。 2.2内容提要 一、本章重点 本章重点是铰链四杆机构曲柄存在条件,并灵活运用来判断铰链四杆机构的类型;连杆机构最小传动角出现的位置及计算方法;速度瞬心法对机构进行速度分析;计及摩擦时平面连杆机构受力分析的方法;按给定行程速比系数设计四杆机构的方法。 1.平面四杆机构的基本型式及其演化型式 平面四杆机构的基本型式是平面铰链四杆机构。在此机构中,与机架相联的构件称为连架杆;能作整周回转的连架杆称为曲柄,而不能作整周回转的连架杆称为摇杆;与机架不相连的中间构件称为连杆。能使两构件作整周相对转动的转动副称为周转副;而不能作整周相对转动的转动副称为摆转副。平面铰链四杆机构又根据两连架杆运动形式不同分为曲柄摇杆机构、双曲柄机构及双摇杆机构。 平面四杆机构的演化型式是在平面铰链四杆机构的基础上,通过一些演化方法演化而成其他型式的四杆机构。平面四杆机构的演化方法有: (1)改变构件的形状及运动尺寸; (2)改变运动副尺寸; (3)取不同构件为机架。

基于matlab的连杆机构设计

目录 1平面连杆机构的运动分析 (1) 1.2 机构的工作原理 (1) 1.3 机构的数学模型的建立 (1) 1.3.1建立机构的闭环矢量位置方程 (1) 1.3.2求解方法................................................................... ..2 2 基于MATLAB程序设计 (4) 2.1 程序流程图 (4) 2.2 M文件编写 (6) 2.3 程序运行结果输出 (7) 3 基于MATLAB图形界面设计 (11) 3.1界面设计 (11) 3.2代码设计 (12)

4 小结 (17) 参考文献 (18) 1平面连杆机构的运动分析 1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。

03平面连杆机构优化设计

案例3 平面连杆机构优化设计 一、问题描述 平面连杆机构是由所有构件均由低副连接而成的机构,四杆机构是最常用的平面连杆机构。一般情况下,四杆机构只能近似实现给定的运动规律或运动轨迹,精确设计较为复杂。在四杆机构中,若两连架杆中的一个是曲柄,另一个是摇杆,则该机构为曲柄摇杆机构。曲柄摇杆机构可将曲柄的连续转动转变为摇杆的往复摆动。 设计一曲柄摇杆机构(如图1所示)。已知曲柄长度l 1=100mm ,机架长度l 4=500mm 。摇杆处于右极限位置时,曲柄与机架的夹角为φ0,摇杆与机架的夹角为ψ0。在曲柄转角φ从φ0匀速增至φ0+90°的过程中,要求摇杆转角()200π 32 ??ψψ-+ =。为防止从动件卡死,连杆与摇杆的夹角γ只允许在45°~135°范围内变化。 图1 机构运动简图 二、基本思路 四杆机构的设计要求可归纳为三类,即满足预定的连杆位置要求、满足预定的运动规律要求、满足预定的轨迹要求。本案例中,要求曲柄作等速转动时,摇杆的转角满足预定运动规律()00E π 32 ??ψψ-+ =。优化设计时,通常无精确解,一般采用数值方法得到近似解。本案例将机构预定的运动规律与实际运动规律观测量之间的偏差最小设为目标,由此建立优化设计数学模型,并运用MA TLAB 优化工具箱的相关函数进行求解。 三、要点分析 优化设计数学模型的三要素包括设计变量、目标函数和约束条件。依次确定三要素后,编写程序进行计算。

1.设计变量的确定 通常将机构中的各杆长度,以及摇杆按预定运动规律运动时,曲柄所处的初始位置角φ0列为设计变量,即 T 04321T 54321)()(?l l l l x x x x x ==X (1) 考虑到机构各杆长按比例变化时,不会改变其运动规律,因此在计算可取l 1为单位长度,而其他杆长则按比例取为l 1的倍数。若曲柄的初始位置对应摇杆的右极限位置,则φ0及ψ0均为杆长的函数,即 4 212 32 42210)(2)(cos arc l l l l l l l +-++=? (2) 4 32 32 422102)(cos arc l l l l l l --+=ψ (3) 因此,设计变量缩减为3个独立变量,即 T 432T 321)()(l l l x x x ==X (4) 2.目标函数的建立 以机构预定的运动规律观测量ψE i 与实际运动规律观测量ψi 之间的偏差平方和最小为指标来建立目标函数,即 min )()(1 2E →-=∑=m i i i f ψψX (5) 式中,m 为输入角的等分数;ψE i 为预期输出角,ψE i=ψE (φi );ψi 为实际输出角。由图2可知: ? ? ?<≤+-<≤--=)π2π(π) π0(πi i i i i i i ?βα?βαψ (6) 32 22322arccos l l l i i i ρρα-+= (7) 42 12422arccos l l l i i i ρρβ-+= (8) i i l l l l ?ρcos 2412421-+= (9)

汽车技术构造教程——曲柄连杆机构

曲柄连杆机构 一、曲柄连杆机构的功用及组成 曲柄连杆机构是发动机的主要运动机构。其功用是将活塞的往复运动转变为曲轴的旋转运动,同时将作用于活塞上的力转变为曲轴对外输出的转矩,以驱动汽车车轮转动。曲柄连杆机构由活塞组、连杆组和曲轴飞轮组的零件组成。 二、活塞组 (一)活塞 1.活塞的功用及工作条件 活塞的主要功用是承受燃烧气体压力,并将此力通过活塞销传给连杆以推动曲轴旋转。此外活塞顶部与气缸盖、气缸壁共同组成燃烧室。 活塞是发动机中工作条件最严酷的零件。作用在活塞上的有气体力和往复惯性力。活塞顶与高温燃气直接接触,使活塞顶的温度很高。活塞在侧压力的作用下沿气缸壁面高速滑动,由于润滑条件差,因此摩擦损失大,磨损严重。 2.活塞材料

现代汽车发动机不论是汽油机还是柴油机广泛采用铝合金活塞,只在极少数汽车发动机上采用铸铁或耐热钢活塞。 3.活塞构造 活塞可视为由顶部、头部和裙部等3部分构成。 1)活塞顶部。汽油机活塞顶部的形状与燃烧室形状和压缩比大小有关。大多数汽油机采用平顶活塞,其优点是受热面积小,加工简单。采用凹顶活塞,可以通过改变活塞顶上凹坑的尺寸来调节发动机的压缩比。 柴油机活塞顶部形状取决于混合气形成方式和燃烧室形状。在分隔式燃烧室 柴油机的活塞顶部设有形状不同的浅凹坑,以便在主燃烧室内形成二次涡流,增进混合气形成与燃烧。 柴油机还有另一类燃烧室,称为直喷式燃烧室。其全部容积都集中在气缸内,且在活塞顶部设有深浅不一、形状各异的燃烧室凹坑。在直喷式燃烧室的柴油机

中,喷油器将燃油直接喷入燃烧室凹坑内,使其与运动气流相混合,形成可燃混合气并燃烧。 2)活塞头部。由活塞顶至油环槽下端面之间的部分称为活塞头部。在活塞头部加工有用来安装气环和油环的气环槽和油环槽。在油环槽底部还加工有回油孔或横向切槽,油环从气缸壁上刮下来的多余机油,经回油孔或横向切槽流回油底壳。 活塞头部应该足够厚,从活塞顶到环槽区的断面变化要尽可能圆滑,过渡圆角R应足够大,以减小热流阻力,便于热量从活塞顶经活塞环传给气缸壁,使活塞顶部的温度不致过高。 在第一道气环槽上方设置一道较窄的隔热槽的作用是隔断由活塞顶传向第一道活塞环的热流,使部分热量由第二、三道活塞环传出,从而可以减轻第一道活塞环的热负荷,改善其工作条件,防止活塞环粘结。

平面连杆机构及其设计

第4章平面连杆机构及其设计 教学目标: 平面连杆机构是由一些简称“杆”的构件通过平面低副相互连接而成,故又称平面低副机构。平面连杆机构被广泛地应用,近年来,随着电子计算机应用的普及,设计方法的不断改进,平面连杆机构的应用范围还在进一步扩大。本章的教学将使读者了解平面连杆机构的基本形式及其演化过程;对平面四杆机构的一些基本知识(包括曲柄存在的条件、急回运动及行程速比系数、传动角及死点、运动的连续性等)有明确的概念;能按已知连杆三位置、两连架杆三对应位置、行程速比系数等要求设计平面四杆机构。 教学重点和难点: ●平面四杆机构的一些基本知识; ●按已知连杆三位置、两连架杆三对应位置、行程速比系数等要求设计平面四杆 机构。 案例导入: 我们知道,用三根木条钉成的木框是稳定的,即使把钉子换成转动副(铰链),三角形也不会运动。而用四根木条钉成的木框是不稳固的,如果把钉子换成铰链,四边形即可以运动了。依此类推,五边形等也都是可以运动的(图4-1)。因此我们说:三角形是不能运动的最基本图形,而四边形是能运动的最基本图形。把四边形各顶点装上铰链,把一边作为机架,即构成平面四杆机构。因此,四杆机构是最基本的连杆机构。复杂的多杆机构(多边形)也可由其组成。通过本章的学习,读者将了解这种最基本机构的特性,认识这类机构千变万化的应用并掌握其设计方法。 图4-1 三角形和四杆机构 4.1铰链四杆机构的基本形式及应用 连杆机构的优点是运动副为面接触,压强较小、磨损较轻、便于润滑,故可承受较大载荷;低副几何形状简单,加工方便;能实现轨迹较复杂的运动,因此,平面连杆机构在各种机器及仪器中得到广泛应用。其缺点是运动副的制造误差会使误差累积较大,致使惯

连杆机构设计__轨迹生成机构的运动设计

连杆机构设计:轨迹生成机构的运动设计 1 图谱法 这种方法是利用编纂汇集的连杆曲线图册来设计平面连杆机构。现举一例说明如下:例如生产上需要设计带停歇运动的机构(这种机构常用于打包机等一些机器中),首先查阅连杆曲线图册,找到连杆曲线上有一段接近圆弧的铰链四杆机构如图所示,图中连杆曲线的每一段短线的大小相当于曲柄AB转过50时连杆上点M所描绘的距离。整个连杆曲线由72段短线所组成。将曲柄的长度作为基准并取为1,其他构件的长度对曲柄的长度成比例,因此按图册上表示的杆长成比例地放大或缩小机构时,并不改变连杆曲线的特性。由图上可找出连杆曲线上的点P至点Q部分接近于圆弧,其曲率半径f=。这段圆弧由十八段短线组成,因此当点M运动经过这段圆弧时,曲柄转过900,而其曲率中心G保持不动。再将另一构件MF的一端与连杆上的点M铰接,另一端F与滑块在点G处铰接,该构件的长度即等于曲率半径的大小(G处的输出件可以是滑块也可以是摇杆,视实际需要而定)。这样在图示机构中,当点M自点P运动至点Q时,滑块F静止不动;点M至点Q运动至点R时,滑块F向下运动;点M至点R运动至点P时,滑块F作返回运动。滑块F的行程H=,调整滑块导路倾角b的大小,就能改变滑块行程H的大小和往返行程的时间比。但需注意机构的最小传动角不得小于许用值。 由上述可知,使用图谱法可从连杆曲线图册中查到与所要求实现的轨迹非常接近的连杆曲线,从而确定了该机构的参数,使设计过程大大简化。 2 解析法

对于图示铰链四杆机构,以A点为原点、机架AD为x'轴建立直角坐标系Ax'y'。若连杆上一点M在该坐标系中的位置坐标为x'、y',则有 或: 由式和消去f,得: 由式和消去y,得: 再由式和消去b,则得在坐标系Ax'y'中表示的M点曲线方程: 式中: 式是关于x'、y'的一个六次代数方程。 在用铰链四杆机构的连杆点M再现给定轨迹时,给定轨迹通常在另一坐标系Oxy中表示。如图所示,若设A在Oxy中的位置坐标为xA、yA,x轴正向至x'轴正向沿逆时针方向的夹角为f0,M点在Oxy中的坐标为x、y,则有

曲柄连杆机构的拆装

曲柄连杆机构的拆装 实训步骤及操作方法: 1、曲柄连杆机构的拆卸 拆卸曲柄连杆机构机件时,应先将发动机外部机件拆卸,如分电器,发电机

及V带、水泵、化油器、汽油泵、起动机和机油滤清器等。对于AFE电控汽油喷射发动机应拆卸节气门体、怠速稳定阀及燃油分配器等。 然后分解正时齿形带机构。先拆下齿形带护罩,转动曲轴使第一缸活塞处于压缩行程上止点,检查正时记号,凸轮轴正时齿形皮带轮上标记须与气门罩盖平面对齐,最后拆下张紧装置,拆下齿形带。 (1)拆下气缸盖 ①旋出气门罩盖的螺栓取下气门罩盖和档油罩; ②松下张紧轮螺母,取下张紧轮; ③拆下进、排气歧管; ④按要求顺序旋松气缸盖螺栓,并取下气缸盖和气缸盖衬垫; ⑤拆下火花塞 (2)拆下并分解曲轴连杆机构 ①拆下油底壳、机油滤网、浮子和机油泵; ②拆下曲轴带轮; ③拧下曲轴正时齿带轮固定螺栓,取下曲轴正时齿带轮; ④拧下中间轴齿带轮的固定螺栓,取下中间齿带轮;拆卸密封凸缘,取出中间轴; ⑤拆卸前油封和前油封凸缘; ⑥拆卸离合器压盘总成及飞轮总成,为保证其动平衡,应在飞轮与离合器壳上作装配记号; ⑦拆下活塞连杆组件: 拆下活塞连杆组件前,应检查连杆大端的轴向间隙,该车极限间隙值为0.37mm,大于此值应更换连杆。拆下连杆轴承盖,将活塞连杆组从气缸中抽出。 拆下活塞连杆组后,注意连杆与连杆大头盖和活塞上的记号应与气缸的序号一致,如无记号,则应重新打印。 ⑧检查曲轴轴向间隙,极限轴向间隙为0.25mm,超过此值,应更换止推垫圈; ⑨按规定顺序松开主轴承盖螺栓,拆下主轴承盖,取下曲轴; ⑩分解活塞连杆组件。 2、曲柄连杆机构的装配 曲柄连杆机构的装配质量直接关系到发动机的工作性能,因此,装合时须注意下列事项。 ①各零部件应彻底清洗,压缩空气吹干,油道孔保持畅通; ②对于一些配合工作面(如气缸壁、活塞、活塞环、轴颈和轴承、挺杆等),装合前要涂以润滑油; ③对于有位置、方向和平衡要求的机件,必须注意装配记号和平衡记号,确保安装关系正确和动平衡要求,如正时链条、链轮、活塞、飞轮和离合器总成等。 ④螺栓、螺母必须按规定的力矩分次按序拧紧。螺栓、螺母、垫片等应齐全,以满足其完整性和完好性; ⑤使用专用工具。 安装顺序一般和拆卸顺序相反。 (1)活塞连杆组的装合 ①将同一缸号的活塞和连杆放在一起,如连杆无缸号标记,应在连杆杆身上

相关文档
最新文档