高斯求和问题奥数
小学奥数题讲解: 高斯求和(等差数列)

小学奥数题讲解:高斯求和(等差数列)德国数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好能够分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9, (99)(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
三年级奥数高斯求和

高斯求和一、知识要点被人称为“数学王子”的高斯在年仅8岁时,就以一种非常巧妙的方法又快又好地算出了1+2+3+4+……+99+100的结果。
小高斯是用什么办法算得这么快呢?原来,他用了一种简便的方法:先配对再求和。
数列的第一个数(第一项)叫首项,最后一个数(最后一项)叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。
计算等差数列的和,可以用以下关系式:等差数列的和=(首项+末项)×项数÷2末项=首项+公差×(项数-1)项数=(末项-首项)÷公差+1二、精讲精练【例题1】你有好办法算一算吗?1+2+3+4+5+6+7+8+9+10=()练习1:速算。
(1) 1+2+3+4+5+……+20 (2) 1+2+3+4+……+99+100(3) 21+22+23+24+……+100【例题2】计算。
(1) 21+23+25+27+29+31 (2) 312+315+318+321+324练习2:计算。
(1) 48+50+52+54+56+58+60+62 (2) 108+128+148+168+188【例题3】有一堆木材叠堆在一起,一共是10层,第1层有16根,第2层有17根,……下面每层比上层多一根,这堆木材共有多少根?练习3:(1)体育馆的东区共有30排座位,呈梯形,第1排有10个座位,第2排有11个座位,……这个体育馆东区共有多少个座位?(2)有一串数,第1个数是10,以后每个数比前一个数大4,最后一个数是90,这串数连加的和是多少?(3)有一个钟,一点钟敲1下,两点钟敲2下,……十二点钟敲12下,分钟指向6敲1下,这个钟一昼夜敲多少下?【例题4】计算992+993+994+995+996+997+998+999。
练习4:计算。
(1) 95+96+97+98+99 (2) 2006+2007+2008+2009(3) 9997+9998+9999 (4) 100-1-3-5-7-9-11-13-15-17-19【例题5】计算1000-11-89-12-88-13-87-14-86-15-85-16-84-17-83-18-82-19-81练习5:计算。
四年级奥数《高斯求和》答案及解析

高斯求和德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
]例1 1+2+3+ (1999)分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+ (31)分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
三年级奥数高斯求和

断题目中的各个加数是否构成等差数列。
大家好
5
例2: 1+2+3+4+5+……+99 =? 分析与解:这串加数1,2,3,…,99是
等差数列,首项是1,末项是99,共有99个 数。由等差数列求和公式可得
1+2+3+4+5+……+99 =(1+99)×99÷2
=4950
大家好
6
例3: 1+3+5+7+9+11+13+15+17 =? 分析与解:这串加数1,3,5,7,9 , 11,
(1)1,2,3,4,5,…,100; (2)1,3,5,7,9,…,99; (3)8,15,22,29,36,…,71。
(1)是首项为1,末项为100,公差为1的等差数列; (2)是首项为1,末项为99,公差为2的等差数列;(3) 是首项为8,末项为71,公差为7的等差数列。
大家好
3
• 由高斯的巧算方法,得到等差数列的 求和公式:
50+58+66+74+82+90+98 =(50+98)×7÷2 =148 ×7÷2
=518
大家好
9
结束
大家好
10
相等。于是,小高斯把这道题巧算为
(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单 快捷,并且广泛地适用于“等差数列”的求和问题。
大家好
2
若干个数排成一列称为数列,数列中的每一个数称 为一项,其中第一项称为首项,最后一项称为末项。后 项与前项之差都相等的数列称为等差数列,后项与前项 之差称为公差。 例如:
四年级奥数高斯求和

第3讲高斯求和德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
项数=(末项-首项)÷公差+1。
末项=首项+公差×(项数-1)。
对于任意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项和末项和的一半;或者换句话说,各项和等于中间项乘以项数。
即为中项定理【例题讲解及思维拓展训练】例1 1+2+3+ (1999)分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
四年级奥数《高斯求和》答案及解析教学内容

高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
]例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
第4讲 小升初奥数高斯求和、新定义
高斯求和、新定义一、高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?和=(首项+末项)×项数÷2;(项数=(末项-首项)÷公差+1)例1、1+2+3+...+1999=11+12+13+...+31=3+7+11+ (99)例2、在下图中,每个最小的等边三角形的面积是12平方厘米,边长是1根火柴棍。
问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?举一反三、数一数图中各有多少个三角形。
例3、求100以内除以3余2的所有数的和。
举一反三、在所有的两位数中,十位数比个位数大的数共有多少个?例4、盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。
这时盒子里共有多少只乒乓球?举一反三、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。
问:时钟一昼夜敲打多少次?【巩固练习】1、计算下图中,共有多少个长方形。
2、奥数6班开学第一天每两位同学互相握手一次,全班10人,共握手多少次?二、定义新运算我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。
除此之外,还会有什么别的运算吗?定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
例1、对于任意数a ,b ,定义运算“*”:a*b=a×b-a-b 。
求12*4的值。
举一反三、假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
四年级奥数《高斯求和》答案及解析
高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
]例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
小学奥数题_高斯求和
《小学奥数教程:高斯求和》专项突破(附答案详解)奥校小学数学竞赛教研中心一、单选题1.在关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不为零,则审核完这些课题最多需要()A. 7天B. 8天C. 9天D. 10天2.现在有100个苹果要分给学生,保证每个学生最少分得一个苹果,并且每个学生分得的苹果数都不相同,则最多可以分给()个同学。
A. 11B. 12C. 13D. 143.小猫咪咪第一天逮了1只老鼠,以后每天逮的老鼠都比前一天多1只,咪咪10天一共逮了()只老鼠.A. 45B. 50C. 55D. 604.你一定知道“少年高斯”速算的故事吧!那么1+2+3+4+…+999的结果是()A. 100000B. 499000C. 499500D. 5000005.用100个盒子装杯子,每盒装的个数都不相同,并且盒盒不空,那么至少要用()杯子.A. 100B. 500C. 1000D. 5050二、判断题6.1+2+3+…+2006的和是奇数..三、填空题7.小明在计算器上从1开始,按自然数的顺序做连加练习.当他加到某一数时,结果是1991,后来发现中间漏加了一个数,那么,漏加的那个数是________.8.1+3+5+7+9+11+13+15=________²9.一本书,小红第一天读了3页,以后每天都比前一天多读1页,5天后,小红一共读了________页。
10.一堆钢管的最上层有3根,最下层有13根,每相邻两层相差1根,这堆钢管一共有________根。
11.91+92+93+94+95=93×________=________12.1+2+3+4+5+6+7+8+9……+99=________。
13.学校有一只大钟,一时敲1下,2时敲2下……12时敲12下.你知道它一昼夜一共敲________下14.填上合适的数981+982+983+984+985+986+987=984×________=________15.雅雅家住平安街,礼礼向她打听:“雅雅,你家门牌是几号?”“我住的那条街的各家门牌号从1开始,除我家外,其余各家门牌号加起来恰好等于10000.”雅雅回答说.那么雅雅家住________ 号.16.1+3+5+7+…+97+99=________ =________ 2.17.1+2+3+4+5+6+7+…+99=________.18.计算:9+17+25+…+177=________.19.100以内的偶数和是________ .20.已知2+4+6+8+…+100=2550,那么1+3+5+7+9+…+101=________.21.1﹣64的自然数中去掉其中两个数,剩下62个数的和是2012,去掉的那两个数共有________ 种可能.22.有40块糖,把它分成4份,且后一份比前一份依次多2块,那么最少一份有________ 块.23.9个连续自然数的和是2007,其中最小的自然数是________ .24.1+2+3+4+5…+2007+2008的和是________ (奇数或偶数).25.已知:则:1+2+3+…+99+100+99+98+…+3+2+1=________.26.自然数1、2、3…14、15的和是120,这15个自然数的平均数是________ .27.把自然数1,2,3,…99分成三组,如果每一组的平均数恰好都相等,那么这三个平均数的乘积是________ .28.1+3+5+…+99=________.29.用100个盒子装杯子,每个盒子装的个数都不相同,并且盒子不空,那么至少有________ 个杯子.30.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是________ .31.27个连续自然数的和是1998,其中最小的自然数是________ .四、计算题32.33.想一想,算一算。
三年级奥数-高斯求和
例1: 1+2+3+4+5+6+7+8+9+10 =?
分析与解:这串加数1,2,3,…,10是 等差数列,首项是1,末项是10,共有10个 数。由等差数列求和公式可得
1+2+3+4+5+6+7+8+9+10
=(1+10)×10÷2 =55
注意:利用等差数列求和公式之前,一定要判 断题目中的各个加数是否构成等差数列。
德国著名数学家高斯幼ຫໍສະໝຸດ 时代聪明过人,上学时, 有一天老师出了一道题让同学们计算:
1+2+3+4+…+99+100=?
老师出完题后,全班同学都在埋头计算,小高斯却 很快算出答案等于5050。高斯为什么算得又快又准呢? 原来小高斯通过细心观察发现:
1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都
相等。于是,小高斯把这道题巧算为
(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单 快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称 为一项,其中第一项称为首项,最后一项称为末项。后 项与前项之差都相等的数列称为等差数列,后项与前项 之差称为公差。 例如:
50+58+66+74+82+90+98 =(50+98)×7÷2 =148 ×7÷2
=518
知识回顾 Knowledge Review
祝您成功!
13,15,17是等差数列,首项是1,末项是 17,共有9个数。由等差数列求和公式可得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、计算下图中,共有多少个长方形。
六年级高斯求和问题
1、板书:1+2+3+4+…+99+100=?
2、围绕这一道数学题目,一直流传着这样一个故事。故事的主人翁是高斯,高斯是德国乃至世界著名的数学家,有着“数学王子”的美誉。高斯8岁时聪明过人,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?
现在请同学们计算一下这道题目。
3、讲解
方法一:配对求和
方法二:倒序相加
方法三:公式法
介绍等差数列:小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如:
5.有一串数,共有16个,第1个数是5,以后每个数比前一个数大5,最后一个数是90。这串数连加,和是多少?
6、计算下图中,共有多少个长方形。
7、奥数6班开学第一天每两位同学互相握手一次,全班10人,共握手次。
(1)1,2,3,4,5,…,100;(2)1,3,5,7,9;
其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为9,公差为2的等差数列。由高斯的巧算方法,得到等差数列的求和公式:
和=(首项+末项)×项数÷2。
例1:计算:1+2+3+4+…+29+30
分析与解:这串加数1,2,3,…,30是等差数列,首项是1,末项是30,共有30个数。由等差数列求和公式可得原式=(1+30)×30÷2=465。
例2:1+3+5+7+…+97+99
例3.一堆圆木共15层,第1层有8根,下面每层比上层多1根。这堆圆共多少根?
例4:数一数图中各有多少个三角形。
练习:
1.计算:1+2+3+4+…+18+19
2.计算:2+4+6+8+…+98+100
3.计算11+12+13+…+31=
4.(1+3+5+7+……+97+99)÷25
(1)1,2,3,4,5,…,100;(2)1,3,5,7,9;
其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为9,公差为2的等差数列。由高斯的巧算方法,得到等差数列的求和公式:
和=(首项+末项)×项数÷2。
例1:计算:1+2+3+4+…+29+30
分析与解:这串加数1,2,3,…,30是等差数列,首项是1,末项是30,共有30个数。由等差数列求和公式可得原式=(1+30)×30÷2=465。
例2:计算:1+2+3+4+…+29+30
例3:1+3+5+7+…+97+99
练;3+4+…+18+19
2.计算:2+4+6+8+…+98+100
3.计算11+12+13+…+31=
4.有一串数,共有16个,第1个数是5,以后每个数比前一个数大5,最后一个数是90。这串数连加,和是多少?
四年级高斯求和问题
1、板书:1+2+3+4+…+99+100=?
2、围绕这一道数学题目,一直流传着这样一个故事。故事的主人翁是高斯,高斯是德国乃至世界著名的数学家,有着“数学王子”的美誉。高斯8岁时聪明过人,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?
老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案。
例2:1+3+5+7+…+97+99
例3.一堆圆木共15层,第1层有8根,下面每层比上层多1根。这堆圆共多少根?
例4:数一数图中各有多少个三角形。
练习:
1.计算:1+2+3+4+…+18+19
2.计算:2+4+6+8+…+98+100
3.计算11+12+13+…+31=
4.(1+3+5+7+……+97+99)÷25
老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案。
现在请同学们计算一下这道题目。
3、讲解
方法一:配对求和
方法二:倒序相加
方法三:公式法
介绍等差数列:小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如:
5.一堆圆木共15层,第1层有8根,下面每层比上层多1根。这堆圆共多少根?
五年级高斯求和问题
1、板书:1+2+3+4+…+99+100=?
2、围绕这一道数学题目,一直流传着这样一个故事。故事的主人翁是高斯,高斯是德国乃至世界著名的数学家,有着“数学王子”的美誉。高斯8岁时聪明过人,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?
(1)1,2,3,4,5,…,100;(2)1,3,5,7,9;
其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为9,公差为2的等差数列。由高斯的巧算方法,得到等差数列的求和公式:
和=(首项+末项)×项数÷2。
例1:1+2+3+4+5+6+7+8+9+10
分析与解:这串加数1,2,3,…,10是等差数列,首项是1,末项是10,共有10个数。由等差数列求和公式可得原式=(1+10)×10÷2=55。
老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案。
现在请同学们计算一下这道题目。
3、讲解
方法一:配对求和
方法二:倒序相加
方法三:公式法
介绍等差数列:小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: