模糊聚类法

合集下载

模糊聚类分析方法

模糊聚类分析方法

模糊聚类分析方法聚类分析是将事物根据一定的特征,并按某种特定要求或规律分类的方法。

由于聚类分析的对象必定是尚未分类的群体,而且现实的分类问题往往带有模糊性,对带有模糊特征的事物进行聚类分析,分类过程中不是仅仅考虑事物之间有无关系,而是考虑事物之间关系的深浅程度,显然用模糊数学的方法处理更为自然,因此称为模糊聚类分析。

一、模糊聚类分析的一般步骤1、第一步:数据标准化[9](1) 数据矩阵设论域12{,,,}n U x x x = 为被分类对象,每个对象又有m 个指标表示其性状,即12{,,,}i i i im x x x x = (1,2,,i n = , 于是,得到原始数据矩阵为111212122212m m n n nm x x xx x x x x x ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭。

其中nm x 表示第n 个分类对象的第m 个指标的原始数据。

(2) 数据标准化在实际问题中,不同的数据一般有不同的量纲,为了使不同的量纲也能进行比较,通常需要对数据做适当的变换。

但是,即使这样,得到的数据也不一定在区间[0,1]上。

因此,这里说的数据标准化,就是要根据模糊矩阵的要求,将数据压缩到区间[0,1]上。

通常有以下几种变换: ① 平移·标准差变换i k kikk x x x s -'= (1,2,,;1,2,i n k m ==其中 11nk i k i x x n==∑,k s =经过变换后,每个变量的均值为0,标准差为1,且消除了量纲的影响。

但是,再用得到的ikx '还不一定在区间[0,1]上。

② 平移·极差变换111m i n {}m a x {}m i n {}i k i ki nikikiki ni nx x x x x ≤≤≤≤≤≤''-''=''-,(1,2,,)k m =显然有01ikx ''≤≤,而且也消除了量纲的影响。

模糊聚类方法

模糊聚类方法

模糊聚类方法1. 引言模糊聚类是一种将相似的数据点分组的无监督学习技术。

与传统的硬聚类方法相比,模糊聚类通过为每个数据点分配属于不同簇的隶属度来提供更灵活的聚类结果。

本文将介绍模糊聚类方法的基本原理、常用算法以及在实际应用中的一些注意事项。

2. 模糊聚类的基本原理模糊聚类方法的核心思想是将每个数据点划分为多个簇的一部分,而不是将其硬性地分配到某个具体的簇中。

每个数据点属于不同簇的隶属度之和为1,隶属度越大表示该数据点属于该簇的可能性越高。

通过使用模糊聚类方法,我们可以更好地处理数据的不确定性和噪音,同时提供更丰富的聚类结果。

相比硬聚类方法,模糊聚类能够提供更多的信息,适用于更广泛的应用。

3. 常用的模糊聚类算法3.1 模糊C均值聚类算法(FCM)模糊C均值聚类算法是最常用的模糊聚类算法之一。

它在每次迭代中通过计算数据点到簇中心的欧氏距离来更新隶属度,并通过最小化目标函数来调整簇中心的位置。

FCM算法的优点在于对于噪音和离群值的处理能力较强,且具有较好的收敛性。

然而,它对于初始聚类中心的选择较为敏感,且对于大数据集的计算效率较低。

3.2 模糊子空间聚类算法(FSCM)模糊子空间聚类算法是一种基于子空间的模糊聚类方法。

它在模糊聚类的基础上考虑了数据的高维性和局部结构,通过将数据点投影到子空间中进行聚类。

FSCM算法的特点在于能够处理高维数据和具有相关性的特征,且对于离群值具有较好的鲁棒性。

然而,由于需要对每个子空间进行聚类,计算复杂度较高。

3.3 模糊谱聚类算法(FSPC)模糊谱聚类算法是一种基于图论的模糊聚类方法。

它通过构建数据点之间的相似度图,并通过计算图的拉普拉斯矩阵的特征向量来进行聚类分析。

FSPC算法的优点在于能够处理非凸数据分布和非线性数据结构,且对于图的建模和谱分解具有较好的效果。

然而,算法的计算复杂度较高,且对于参数的选择较为敏感。

4. 模糊聚类的实际应用模糊聚类方法在多个领域中都有广泛的应用。

模糊聚类分析ppt课件

模糊聚类分析ppt课件

k 1
1 2
m k 1
(
xik
x jk )
m
( xik x jk )
rij
k 1 m
xik .x jk
k 1
5. 求模糊等价矩阵
用上述方法建立起来的模糊矩阵 R ,一般说来只 满足自反性和对称性,不一定满足传递性,即 R 不一 定是模糊等价关系,需要将 R改造成模糊等价矩阵R,
然后再在适当的阈值上进行截取,便可得所需分类。
根据需要可同时选择不同准则分别进行聚类分析,然后 通过综合取交的方法,以做到兼顾多目标,使分类结果更科学。
3、建立数据矩阵
设论域U { x1, x2 ,, xn }为被分类对象, 每个对象又由m 个指标表示其性状:
xi { xi1, xi2 ,, xim } (i 1,2,, n) 则得到原始数据矩阵为 X ( xij )nm .
1, 2,..., m
构造下列形式的F统计量,
r
i
2
ni x x /(r 1)
F i1 r ni
xij
i
x
2
/(n r)
i1 jn1
x x 其中, 为 i x x
m
i
(xk
xk )2
i

的距离, xij x i
i 为第
k 1
类中样本
xij 与
i
x 的距离。
F 统计量分子表征类与类之间的距离, 分母表示类内样本间距离,因此 F 值越大,说
改造的方法是将 R 自乘得 R R R2,再自 乘 R2 R2 R4 ,如此继续下去,得 R8 , R16 ……,至某 一步出现 R2k Rk 为止。则 Rk便是一个模糊等价关系。 这个方法是由所谓“传递闭包”理论而来,我们在此 拿来直接应用,不再作详细介绍。

三类模糊聚类方法

三类模糊聚类方法

三类模糊聚类方法三类模糊聚类方法模糊聚类是一种常用的数据聚类算法,它可以将样本点的分类问题转化为模糊集合的问题来求解。

根据模糊集合的划分方式,模糊聚类算法可以分为三类,即层次模糊聚类算法、基于相似度的模糊聚类算法和基于混合模型的模糊聚类算法。

(1)层次模糊聚类算法层次模糊聚类算法是一种简单好用的聚类算法,它的思想是通过使用不同的层次深度来划分模糊集合。

层次模糊聚类算法的典型算法有均值层次模糊聚类算法(FCM)、均方层次模糊聚类算法(SFCM)、最大化均值差层次模糊聚类算法(EMFCM)和缩放层次模糊聚类算法(SCFCM)等等。

(2)基于相似度的模糊聚类基于相似度的模糊聚类算法是一种聚类算法,它基于样本之间的相似度来划分模糊集合。

基于相似度的模糊聚类算法的常用算法有基于基础距离度量的模糊聚类算法(Fuzzy C-Means,FCM)、改进型模糊C均值算法(Modified FCM,MFCM)和改进型支持向量机算法(Modified SVM,MSVM)等。

(3)基于混合模型的模糊聚类基于混合模型的模糊聚类算法是一种基于混合模型的聚类算法,它引入了混合模型来构建模糊集合,有效地解决了其他模糊聚类算法中存在的缺陷,如局部最优性和忽略数据分布等问题。

基于混合模型的模糊聚类算法的典型算法有基于混合Normal模型的模糊聚类算法(Mixture Normal Fuzzy C-Means,MNFFCM)、基于混合Gausssian模型的模糊聚类算法(Mixture Gaussian Fuzzy C-Means,MGFCM)、基于混合Beta模型的模糊聚类算法(Mixture Beta Fuzzy C-Means,MBFCM)和基于混合Gamma模型的模糊聚类算法(Mixture Gamma Fuzzy C-Means,MGFCM)等。

模糊聚类法

模糊聚类法

第二节模糊聚类分析方法模糊聚类分析,是从模糊集的观点来探讨事物的数量分类的一类方法。

近年来,模糊聚类分析方法在地理分区与地理事物分类研究中得到了广泛地应用。

本节,我们将主要介绍基于模糊等价关系与基于最大模糊支撑树的模糊聚类分析方法在地理分区和地理事物分类中的应用。

一、基于模糊等价关系的模糊聚类分析方法基于模糊等价关系的模糊聚类分析方法的基本思想是:由于模糊等价关上的一个普通等价关系,也就得到了关于U中被分类对象元素的一种分类。

当λ由1下降到0时,所得的分类由细变粗,逐渐归并,从而形成一个动态聚类分析方法中的一个关键性的环节。

(一)建立模糊等价关系各个分类对象之间的相似性统计量,建立分类对象集合U上的模糊相似关系1.模糊相似关系的建立关于各分类对象之间相似性统计量r ij的计算,除了采用夹角余弦公式和相似系数计算公式(分别见第二章第三节中(10)和(11)式)以外,还可以采用如下几个计算公式。

(1)数量积法:在(1)式中,M是一个适当选择之正数,一般而言,它应满足:(2)绝对值差数法:在(2)式中,c为适当选择之正数,使0≤r ij<1(i≠j)。

(3)最大最小值法:(4)算术平均最小法:(5)绝对值指数法:(6)指数相似系数法:在(6)式中,s k是第k个指标的方差,即传递性,也就是说它并不是模糊等价关系。

因此,为了聚类,我们必须采用这样下去,就必然会存在一个自然数K,使得:显然,对于第二章中表2-12所描述的九个农业区域,用夹角余弦公式计算所得的相似系数矩阵就是这九个农业区域所构成的分类对象集合上的一个模糊相似关系,经过自乘计算后可以验证:■R=R4R4=R4(二)在不同的截集水平下进行聚类结果:(1)取λ=1,得:各自成为一类。

(2)取λ=0.99,得:G6,G7归并为一类,而G1,G2,G3,G4,G8,G9各自成为一类。

(3)取λ=0.95,得:行与第3行和其它各行均不相同,故G2与G8聚为一类,G4与G9聚为一类,G5、G6、G7聚为一类,而G1和G3各自成为一类。

模糊聚类分析

模糊聚类分析

模糊聚类分析是根据客观事物的特征、亲和度和相似度建立模糊相似关系,对客观事物进行聚类的一种分析方法。

当涉及到事物之间的模糊边界时,根据一定的要求对事物进行分类的一种数学方法。

聚类分析是数理统计中的一种多元分析方法,它利用数学方法定量地确定样本之间的亲和力,从而客观地对类型进行分类。

一些事物之间的界限是精确的,而另一些则是模糊的。

人与人之间脸部相似的界限是模糊的,天气之间的界限也是模糊的。

当聚类涉及到事物之间的模糊边界时,应使用模糊聚类分析方法。

模糊聚类分析在天气预报、地质、农业、林业等领域有着广泛的应用。

通常,聚类物称为样本,一组聚类物称为样本集。

模糊聚类分析的基本方法有两种:系统聚类法和逐步聚类法。

概述。

在数据分类中,常用的分类方法包括多元统计中的系统聚类、模糊聚类分析等;在模糊聚类分析中,首先要计算模糊相似矩阵,不同的模糊相似矩阵会产生不同的分类结果;即使使用相同的模糊相似矩阵,不同的阈值也会产生不同的分类结果。

“如何确定这些分类的有效性”成为模糊聚类的关键点。

这是识别研究中的一个重要问题。

在文献中,不能令人满意的有效性归因于数据集的几何结构不令人满意。

但笔者认为,不同的几何结构反映了实际需要。

我们不能排除实际需要,追求所谓的“理想几何结构”。

分类不理想不能归因于数据集的几何结构。

对于相同的模糊相似矩阵,文献建立了一种判断模糊聚类有效性的方法。

在有固定显著性水平的情况下,在不同分类中选择F统一测量临界值与F检验临界值之间的最大差值是一种有效的分类方法。

但是,当显著性水平发生变化时,该方法的结果也会发生变化。

文献引入模糊划分办公室来评价模糊聚类的有效性,并人为规定当两个类别的办公室大于1时,两个类别可以合并,最终通过逐次合并得到有效的分类。

这种方法有较多的人为干预,当指定的数量不同时,会得到不同的结果。

系统聚类法。

系统聚类法是一种基于模糊等价关系的模糊聚类分析方法。

在经典的聚类分析方法中,样本集可以通过经典的等价关系进行聚类。

模糊聚类的原理和应用

模糊聚类的原理和应用

模糊聚类的原理和应用1. 简介模糊聚类是一种聚类分析方法,它通过考虑数据点属于不同聚类的程度,使得数据点可以同时属于多个聚类。

与传统的硬聚类方法不同,模糊聚类能够更好地处理实际问题中的复杂性和不确定性。

本文将介绍模糊聚类的原理和应用。

2. 模糊聚类的原理在传统的硬聚类方法中,每个数据点只能隶属于一个聚类,而在模糊聚类中,每个数据点可以属于多个聚类,且属于不同聚类的程度可以从0到1之间的任意值。

这种程度被称为隶属度,用来表示数据点与聚类的关联程度。

模糊聚类的原理可以通过以下步骤来解释:1.初始化聚类中心:首先随机选择一些数据点作为聚类中心。

2.计算隶属度:计算每个数据点与每个聚类中心的隶属度,可以使用模糊C均值(FCM)算法来计算。

3.更新聚类中心:根据隶属度计算出每个聚类的中心点,更新聚类中心。

4.重复步骤2和3,直到聚类中心不再变化或达到预设的迭代次数。

模糊聚类的核心是通过计算隶属度来确定每个数据点对每个聚类的归属程度,从而实现多类别的聚类。

3. 模糊聚类的应用模糊聚类在许多领域中具有广泛的应用,包括数据挖掘、模式识别、图像处理和生物信息学等。

以下是几个常见的应用领域:3.1 数据挖掘在数据挖掘中,模糊聚类可以帮助找到数据集中的隐藏模式和关联规则。

通过将数据点划分到不同的聚类中,可以更好地理解数据的结构和特征。

模糊聚类还可以用作预测分析和聚类分析的基础。

3.2 模式识别在模式识别中,模糊聚类可以帮助将输入数据分类到模式类别中。

通过考虑隶属度,模糊聚类可以更好地处理模糊和不确定性的输入数据。

这在人脸识别、手写体识别等任务中非常有用。

3.3 图像处理在图像处理中,模糊聚类被广泛应用于图像分割和图像压缩等任务。

通过将图像像素划分到不同的聚类中,可以实现图像的分割和压缩。

模糊聚类还可以用于图像特征提取和图像检索等应用。

3.4 生物信息学在生物信息学中,模糊聚类被用于处理基因表达数据和蛋白质序列数据等。

模糊聚类分析法

模糊聚类分析法

关于模糊聚类法的研究及在空间信息技术中的应用模糊聚类分析 (3)一、简介 (3)1. 简要介绍 (3)2. 分类方法 (3)1. 综述 (3)2. 系统聚类法 (2)逐步聚类法 (3)2.最优分类 (3)模糊聚类分析1. 简要介绍涉及事物之间的模糊界限时按一定要求对事物进行分类的数学方法。

聚类分析是数理统计中的一种多元分析方法,它是用数学方法定量地确定样本的亲疏关系,从而客观地划分类型。

事物之间的界限,有些是确切的,有些则是模糊的。

例如人群中的面貌相像程度之间的界限是模糊的,天气阴、晴之间的界限也是模糊的。

当聚类涉及事物之间的模糊界限时,需运用模糊聚类分析方法。

模糊聚类分析广泛应用在气象预报、地质、农业、林业等方面。

通常把被聚类的事物称为样本,将被聚类的一组事物称为样本集。

模糊聚类分析有两种基本方法:系统聚类法和逐步聚类法。

2. 分类方法1综述数据分类中,常用的分类方法有多元统计中的系统聚类法、模糊聚类分析等.在模糊聚类分析中,首先要计算模糊相似矩阵,而不同的模糊相似矩阵会产生不同的分类结果;即使采用相同的模糊相似矩阵,不同的阑值也会产生不同的分类结果•“如何确定这些分类的有效性”便成为模糊聚类和模糊。

识别研究中的一个重要问题.文献,把有效性不满意的原因归结于数据集几何结构的不理想•但笔者认为,不同的几何结构是对实际需要的反映,我们不能排除实际需要而追求所谓的“理想几何结构”,不理想的分类不应归因于数据集的几何结构.针对同一模糊相似矩阵,文献建立了确定模糊聚类有效性的方法•用固定的显著性水平,在不同分类的F—统计量和F检验临界值的差中选最大者,即为有效分类•但是,当显著性水平变化时,此方法的结果也会变化.文献引进了一种模糊划分嫡来评价模糊聚类的有效性,并人为规定当两类的嫡大于一数时,此两类可合并,通过逐次合并,最终得到有效分类•此方法人为干预较多,当这个规定数不同时,也会得到不同的结果•另外这两种方法也未比较不同模糊相似矩阵的分类结果2•系统聚类法系统聚类法是基于模糊等价关系的模糊聚类分析法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊聚类分析法及其应用
(汽车学院钟锐 2011122071)
摘要模糊聚类分析方法是一种多元统计分析方法, 它通过多个指标将样本划分为若干类, 这种分类方法能很好地应用于交通规划、交通流分析、安全评价等多个方面。

文章以交通调查的选择为例说明了模糊聚类分析在规划过程中的具体应用, 并分析了模糊聚类分析在交通规划其他方面的应用。

在交通调查中, 可利用模糊聚类分析将交通分区按工业、居住、公建、道路绿化广场等各项用途来进行分类。

可相应减少同类交通分区的相似调查工作量。

关键词模糊聚类分析; 交通规划; 交通调查
1 问题的提出
交通规划旨在确定公路和城市道路交通建设的发展目标, 设计达到这些目
标的策略、过程与方案。

交通规划包括目标确定、组织工作、数据调查、相关基本模型分析、分析预测、方案设计、方案评价、方案实施过程中的信息反馈和修改等工作阶段。

在交通规划的很多阶段, 需要进行分类。

例如可将众多的交通小区划分成几大类, 将具有相似特性的交通小区归于一类, 可以减少调查的工作量; 对线路网络进行分析评价时, 也需要进行分类。

单一的指标往往不能全面反映交通分区之间的关系, 需要用多个指标来进行。

在分类方法中,聚类分析是一种应用很广泛的方法, 它在交通规划领域应用较多。

2 聚类分析方法
聚类分析取意于“人以群分, 物以类聚”的俗语, 即将一组事物根据其性质上亲疏远近的程度进行分类, 把性质相近的个体归为一类, 使得同一类中的个体具有高度的同质性, 不同类之间的个体具有高度的异质性。

为使分类合理, 必须描述个体之间的亲疏程度。

对此, 通常有距离法、相关系数法等方法。

距离法是将每个样本看成m( m 为统计指标的个数) 维空间的一个点, 在m 维空间中定义点与点之间的某种距离; 相关系数法是用某种相似系数来描述样本之间的关系, 如相关系数。

聚类的方法有很多, 如系统聚类法、模糊聚类法、分裂法、
动态聚类法、有序样品的聚类、爬山法、加入法、最优分段法、图论法、预报法、变量筛选法等, 模糊聚类法是应用较为广泛的一种方法。

1)系统聚类分析。

系统聚类法的基本原理是: 首先将一定数量的样本各自看成一类( 这时有n 类) , 视每个样本为m 维( m 个统计指标) 空间的点, 将每个统计指标看成是m 维空间的坐标轴; 然后计算n( n- 1) / 2 个距离, 并把具有最小距离的两个样本合并成两个元素的类; 再按照某一具体的聚类
方法计算这个类和其余n- 2 个样本之间的距离, 再将距离最小的两类合并;
重复这一过程, 直至将所有样本合并为一类。

系统聚类法的个核心问题是计算类与类之间的距离, 有多种不同算法: 最短距离法、最长距离法、中间距离法、重心法、类平均法、可变类平均法、可变法、离差平方法等。

系统聚类分析的基本步骤是:
( 1) 选取合适的分类指标。

这些指标要和聚类分析的目标密切相关, 要反
映分类对象的特征,在不同研究对象上的值具有明显差异, 指标之间不应高度密切相关;
( 2) 数据的标准化。

有标准差标准化和极差标准化两种方法。

标准差标准化:
式中:
极差标准化:
式中:
( 3) 相似性测度。

测度相似性主要有相关测度、距离测度、关联测度, 以距离测度应用最多。

常见的距离测度是明考斯基距离, 其中又分为绝对值距离、欧氏距离、切比雪夫距离等, 欧氏距离使用最多, 定义为:
式中: dij 为i 个样本和j 个样本之间的距离; x ik, x j k为第k 个指标i 样本和j 样本。

( 4) 选择聚类方法。

实现聚类的方法很多, 有最短距离法、最长距离法、中间距离法、重心法、类平均法、可变类平均法、可变法、离差平方法等。

( 5) 对聚类结果进行解释和验证。

2) 基于模糊等价关系的聚类分析。

在系统聚类方法中, 一个给定的样本有且只有一个类的属性, 这种聚类方法属于硬聚类方法。

在现实中, 类与类的边界是模糊的, 所以用模糊数学原理处理带有模糊性的聚类问题更为客观。

基于模糊等价关系的聚类分析就是依据客观事物间的特征、亲疏程度和相似性, 通过建立模糊等价关系对客观事物进行分类的数学方法。

模糊聚类分析的基本步骤是:
( 1) 取合适的分类指标;
( 2) 数据的标准化。

在数据的标准化时, 先用标准差标准化。

若把标准化数据压缩到[ 0, 1] 闭区间, 再采用极值标准化公式。

式中: x′j min、x′j max 分别为x′1j , x ′2j , ⋯, x ′nj 的最小值和最大值。

( 3) 求模糊相似矩阵R( 标定) 。

用相关系数rij来确定各个对象的相关程度。

式中:
( 4) 求模糊等价矩阵R* 。

模糊相似矩阵通常仅满足自反性和对称性, 不满足传递性, 故要用平方自合成法求模糊相似矩阵R 的传递闭包矩阵R* , R* 即为模糊等价矩阵。

通过计算R, R2 ,R4, ⋯, R2K ⋯, 当R2K + 1= R, 则R* = R2K 。

式中: R·R= R2 , R2·R2= R4, ⋯, 这里的运算符“·”是矩阵的平方自合成运算符。

设矩阵则R 的平方自合成运算符R
R=
模糊集运算中, a∧b= max ( a, b) , a∨b= min( a, b) 。

( 5) 根据不同的K水平值进行聚类。

在模糊等价矩阵中, 利用R* 的K截关系直接聚类。

如果R* 中的元素Vij ≥K, 则将集合X 中的X I和X J 聚为同类。

3在交通调查中的应用
交通分区的土地使用性质是由城市用地功能所决定的, 通常有工业、居住、公建、道路绿化广场等用途。

可利用模糊聚类分析将交通分区按工业、居住、公建、道路绿化广场等各项用途加以分类。

属于一类的交通分区的相似的调查工作量可相应减少。

以广州开发区为例说明聚类分析在交通调查中的具体应用。

广州开发区可分为西区、东区南片、东区北片、永和经济区1 期、永和经济区2 期、科学城等6 个分区, 分别用1、2、3、4、5、6 来表示6个分区。

每个分区各项性质用地面积占分区面积的比例如表1 所列。

标准差标准化后得到的矩阵如表2 所列。

极值标准化后得到的矩阵如表3 所列
用相关系数法求得的模糊关系矩阵R 如表4所列。

用传递闭包法对R 进行组合计算, 最后得出R8= R4 , 所以R4 就是需要的等价矩阵R* 。

如表5所列。

确定K, 将矩阵中所有大于等于K的元素置为1, 将小于K的元素置为0, 依此原则有以下分类:取0. 967≤K≤1, 等价类为{ 1} , { 2} , { 3} , { 4} ,{ 5, 6} ;取K= 0. 884, 等价类为{ 1} , { 2, 4} , { 3} , { 5, 6} ;取K= 0. 737, 等价类为{ 1, 3} , { 2, 4} , { 5, 6} ;取K= 0. 59, 等价类为{ 1, 2, 3, 4, 5, 6} ;在以上模糊分类中, K= 0. 884 和K= 0. 737 的分类比较接近实际情况, 分区2、4 的性质比较接近, 分区5、6 的性质接近, 所以取K= 0. 884, 将6 个分区分为4 类是比较合适的。

在交通分区的分类中, 还可根据人口密度、人均GDP 产值、汽车保有量等指标对交通分区进行划分, 选取指标应具有较强的代表性且容易收集。

4其他应用
1)交通流分析。

交通流数据受道路几何形状和驾驶员行为等因素影响, 不同的道路设定的临界值应该有所不同。

所以, 根据实测的交通流数据来确定某个
特定路段的临界值非常有必要。

单独根据某个交通流变量来判断交通流状况是
不够全面的应该由交通流的三个变量来共同确定交通流状况, 才能较全面反映
交通流的真实情况,交通流状况确定也就是对交通流数据的分类。

在交通流状况分类中, 人们对交通状况的判断往往不是很精确的概念, 而是拥挤, 畅通等模糊概念, 所以利用模糊聚类的方法进行研究比较合理,结合实测城市快道路实测交通流数据, 利用模糊聚类的方法同时对检测到的三个交通流变量进行分析, 给出适合
该城市道路特点的交通状况划分的方法和关键参数, 为交通控制和管理提供依据。

2)安全评价。

在可观测条件下,如果两个或多个道路使用者或者道路使用者与交通构造物在一定时间、空间彼此接近时,其中一方采取非正常交通行为,除非另一方采取相应的避险行为,否则会发生碰撞的危险,这一现象是交通冲突,这是一种不安全的交通行为。

交通冲突可按冲突的严重程度、冲突因素、冲突角度和冲突参与者等进行分类。

在分析交叉口安全时可根据不同的评价目的来选择合适分类准则下的冲突数作为参数。

安全是一个模糊的概念,表现为指标变化的连续性和安全等级划分的亦此亦彼性,而且,各特征指标对安全水平的影响程度也是模糊的。

因此采用模糊划分的评价方法是合理的,模糊聚类迭代模型以加权广义欧氏权距离为基础,建立目标函数:全体样本对全部类之间的加权广义欧氏权距离平方和最小。

通过隶属度矩阵、聚类中心、指标权向量的交替优化,求解最优分类结果。

相关文档
最新文档