信息安全数学基础

合集下载

信息安全数学基础课后答案完整版Word版

信息安全数学基础课后答案完整版Word版

第一章参考答案(1) 5,4,1,5.(2) 100=22*52, 3288=23*3*137.(4) a,b可以表示成多个素因子的乘积a=p1p2––pr, b=q1q2––qs,又因为(a,b)=1,表明a, b没有公共(相同)素因子. 同样可以将a n, b n表示为多个素因子相乘a n=(p1p2––pr)n, b n=(q1q2––qs)n明显a n, b n也没有公共(相同)素因子.(5)同样将a, b可以表示成多个素因子的乘积a=p1p2––pr, b=q1q2––qs,a n=(p1p2––pr)n, b n=(q1q2––qs)n,因为a n| b n所以对任意的i有, pi的n次方| b n,所以b n中必然含有a的所有素因子, 所以b中必然含有a的所有素因子, 所以a|b.(6)因为非零a, b, c互素,所以(a, b)=(a, c)=1,又因为a=p1p2––pr,b=q1q2––qs, ab=p1p2––prq1q2––qs, 又因为a, b, c互素, 所以a, b, c中没有公共(相同)素因子, 明显ab和c也没有公共(相同)素因子.所以(ab, c)= (a, b)(a, c).(7)2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,9 7,101,103,107, 109, 113, 127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199.(11)对两式进行变形有21=0(mod m), 1001=0(mod m),可以看出要求满足的m即使求21和1001的公约数, 为7和1.(12)(70!)/(61!)= 62*63*––*70=(-9)*(-8)*––*(-1)=-9!=-362880=1(mod 71). 明显61!与71互素, 所以两边同乘以61!, 所以70!=61!(mod 71).(13)当n为奇数时2n=(-1)n=-1=2(mod 3), 两边同时加上1有2n+1=0(mod 3), 所以结论成立.当n为偶数时2n=(-1)n=1(mod 3), 两边同时加上1有2n+1=2(mod 3), 所以结论成立.(14)第一个问:因为(c,m)=d, m/d为整数.假设ac=k1m+r, bc=k2m+r,有ac=k1d(m/d)+r, bc=k2d(m/d)+r所以ac=bc(mod m/d),因为(c,m/d)=1,所以两边可以同除以一个c, 所以结论成立.第二个问题:因为a=b(mod m), 所以a-b=ki *mi,a-b是任意mi的倍数,所以a-b是mi 公倍数,所以[mi]|a-b.(利用式子:最小公倍数=每个数的乘积/最大公约数, 是错误的, 该式子在两个数时才成立)(15)将整数每位数的值相加, 和能被3整除则整数能被3整除, 和能被9整除则整数能被9整除, (1)能被3整除, 不能被9整除,(2)都不能,(3)都不能,(4)都不能第二章答案(5)证明:显然在群中单位元e满足方程x2=x, 假设存在一个元素a满足方程x2=x, 则有a2=a, 两边同乘以a-1有a=e. 所以在群中只有单位元满足方程x2=x.(6)证明:因为群G中每个元素都满足方程x2=e, 所以对群中任意元素a,b 有aa=e, bb=e, (ab)2=abab=e. 对abab=e, 方程两边左乘以a, 右乘以b有aababb=(aa)ba(bb)=ba=aeb=ab, 有ab=ba, 所以G是交换群.(7)证明:充分性:因为在群中对任意元素a,b有(ab)2=a2b2即abab=aabb, 方程两边左乘以a的逆元右乘以b的逆元, 有a-1ababb-1= a-1aabbb-1, 有ab=ba, 所以G是交换群.必要性:因为群G是交换群, 所以对任意元素a,b有ab=ba, 方程两边左乘以a右乘以b有abab=aabb, 有(ab)2=a2b2.(8)证明:因为xaaba=xbc,所以x-1xaxbaa-1b-1=x-1xbca-1b-1,所以存在唯一解x=a-1bca-1b-1使得方程成立。

信息安全数学基础习题答案

信息安全数学基础习题答案

信息安全数学基础习题答案信息安全数学基础习题答案1.简答题 a) 什么是信息安全?信息安全是指保护信息的机密性、完整性和可用性,以防止未经授权的访问、使用、披露、干扰、破坏或篡改信息的行为。

b) 什么是加密?加密是指通过对信息进行转换,使其无法被未经授权的人理解或使用的过程。

加密算法通常使用密钥来对信息进行加密和解密。

c) 什么是对称加密算法?对称加密算法是一种使用相同的密钥进行加密和解密的算法。

常见的对称加密算法有DES、AES等。

d) 什么是非对称加密算法?非对称加密算法是一种使用不同的密钥进行加密和解密的算法。

常见的非对称加密算法有RSA、ECC等。

e) 什么是哈希函数?哈希函数是一种将任意长度的数据映射为固定长度的输出的函数。

哈希函数具有单向性,即很难从哈希值逆推出原始数据。

2.选择题 a) 下列哪种算法是对称加密算法? A. RSA B. AES C. ECC D.SHA-256答案:B. AESb) 下列哪种算法是非对称加密算法? A. DES B. AES C. RSA D. SHA-256答案:C. RSAc) 下列哪种函数是哈希函数? A. RSA B. AES C. ECC D. SHA-256答案:D. SHA-2563.计算题 a) 使用AES算法对明文进行加密,密钥长度为128位,明文长度为64位。

请计算加密后的密文长度。

答案:由于AES算法使用的是128位的块加密,所以加密后的密文长度也为128位。

b) 使用RSA算法对明文进行加密,密钥长度为1024位,明文长度为64位。

请计算加密后的密文长度。

答案:由于RSA算法使用的是非对称加密,加密后的密文长度取决于密钥长度。

根据经验公式,RSA算法中加密后的密文长度为密钥长度的一半。

所以加密后的密文长度为1024/2=512位。

c) 使用SHA-256哈希函数对一个长度为128位的明文进行哈希计算,请计算哈希值的长度。

答案:SHA-256哈希函数的输出长度为256位。

信息安全数学基础答案

信息安全数学基础答案

信息安全数学基础答案【篇一:信息安全数学基础习题答案】xt>第一章整数的可除性1.证明:因为2|n 所以n=2k , k?z5|n 所以5|2k ,又(5,2)=1,所以5|k 即k=5 k1 ,k1?z 7|n 所以7|2*5 k1 ,又(7,10)=1,所以7| k1 即k1=7 k2,k2?z 所以n=2*5*7 k2 即n=70 k2, k2?z因此70|n32.证明:因为a-a=(a-1)a(a+1)3当a=3k,k?z 3|a 则3|a-a3当a=3k-1,k?z 3|a+1 则3|a-a3当a=3k+1,k?z 3|a-1 则3|a-a3所以a-a能被3整除。

3.证明:任意奇整数可表示为2 k0+1, k0?z22(2 k0+1)=4 k0+4 k0+1=4 k0 (k0+1)+1由于k0与k0+1为两连续整数,必有一个为偶数,所以k0(k0+1)=2k2所以(2 k0+1)=8k+1 得证。

34.证明:设三个连续整数为a-1,a,a+1 则(a-1)a(a+1)= a-a3由第二题结论3|(a-a)即3|(a-1)a(a+1)又三个连续整数中必有至少一个为偶数,则2|(a-1)a(a+1)又(3,2)=1所以6|(a-1)a(a+1) 得证。

5.证明:构造下列k个连续正整数列:(k+1)!+2, (k+1)!+3, (k+1)!+4,……, (k+1)!+(k+1), k?z对数列中任一数 (k+1)!+i=i[(k+1)k…(i+1)(i-1)…2*1+1],i=2,3,4,…(k+1) 所以i|(k+1)!+i即(k+1)!+i为合数所以此k个连续正整数都是合数。

1/26.证明:因为191<14 ,小于14的素数有2,3,5,7,11,13经验算都不能整除191所以191为素数。

1/2因为547<24 ,小于24的素数有2,3,5,7,11,13,17,19,23经验算都不能整除547所以547为素数。

信息安全数学基础

信息安全数学基础

信息安全数学基础导言信息安全是在当前信息时代中广泛关注的一个重要领域。

它涉及到保护数据的机密性、完整性和可用性,以及防止未经授权的访问、修改或破坏数据的行为。

在信息安全领域,数学起着至关重要的作用。

数学提供了许多基础概念和技术,用于保护信息和数据。

本文将介绍信息安全的一些数学基础知识。

1. 整数论整数论是信息安全中不可或缺的一部分,其主要研究整数及其性质。

在信息安全中,整数论常用于加密算法和密钥生成。

其中,最常见的整数论问题是素数的应用。

素数是只能被1和自身整除的整数。

在信息安全中,素数被广泛应用于加密算法,如RSA算法。

RSA算法的基本原理是利用两个大素数的乘积作为公钥的模数,并求解其积的欧拉函数值。

因此,整数论中研究素数的性质和生成方法对于实现安全的RSA加密算法非常重要。

除了素数,整数论还涉及到很多其他概念和技术,如模运算、同余和剩余类等。

这些概念和技术在信息安全中的密码算法和密钥生成中起着至关重要的作用。

2. 离散数学离散数学是信息安全中的另一个重要基础。

离散数学研究的是离散结构,如集合、图论、布尔代数等。

在信息安全中,离散数学的概念和技术被广泛应用于密码学和网络安全。

密码学是关于信息加密和解密的科学,其中离散数学起着关键作用。

密码学使用离散数学的技术来设计和分析密码算法。

例如,离散数学的图论技术可以用于构建网络拓扑图,以评估网络的安全性。

布尔代数被广泛应用于逻辑门电路的设计和分析,用于实现对信息的逻辑操作和处理。

离散数学的另一个重要应用是在密码学中的离散对数问题。

离散对数问题是指已知一个数的底数和模数,求解指数的问题。

这个问题在公钥密码学中扮演着重要角色,如Diffie-Hellman密钥交换协议和椭圆曲线密码算法。

3. 概率论与统计学概率论和统计学是信息安全中的另一对重要基础。

它们被用于分析密码算法的安全性、测量信息系统的可靠性,并为风险评估和安全决策提供支持。

在密码学中,概率论和统计学的概念被广泛应用于对密码算法的攻击和破解。

信息安全数学基础习题答案.pdf

信息安全数学基础习题答案.pdf

“信息安全数学基础”习题答案第一章1、证明: (1)|()|()()|a b b ma m Z c d d nc n Z bd acmn mn Z ac bd ⇒=∈⇒=∈∴=∈∵,,,即。

(2)12111112|,|,,|11(3)|(),,k k k k a b a b a b a b c b c b c c c c ∴−+++∵ ,根据整除的性质及递归法,可证得:,其中为任意整数。

2、证明:1-2(2)(3,5)13|5|15|,(15,7)17|105|a a a a a =∴=∴∵∵∵根据例题的证明结论知:,又且,又,且,。

3、证明:1n p n p n >>因为,且是的最小素因数,若假设n/p 不是素数,则有121223131312,2,,,,2,,k k n p p p p k p p p p k n p p p p n p p n n p n n p =×××≥≥==×≥∴≥≤>> (其中为素数且均)若,则即,与题设矛盾,所以假设不成立,即为素数得证。

7、证明:首先证明形如6k -1的正整数n 必含有6k -1形式的素因子,这显然是成立的。

因为如果其所有素因数均为6k +1形式,则12,(61,1,2,,)j i i n p p p p k i j =×××=+= ,从而得到n 是形如6k +1形式的正整数,这与题设矛盾。

其次,假设形如6k -1的素数为有限个,依次为1212,,6s s q q q n q q q = ,考虑整数-1, 则n 是形如6k -1的正整数,所以n 必有相同形式的素因数q ,使得使得q = q j (1≤j ≤s )。

由整数的基本性质(3)有:12|(6)1s q q q q n −= ,这是不可能的。

故假设错误,即存在无穷多个形如4k -1的素数得证。

2n3n最小非负余数最小正余数绝对值最小余数最小非负余数最小正余数绝对值最小余数3 0、1 1、3 0、1 0、1、2 1、2、3 -1、0、14 0、1 1、4 0、1 0、1、3 1、3、4 -1、0、1 8 0、1、4 1、4、8 1,0 0、1、3、5、7 1、3、5、7、8 3、1、-3、-1、0 10 0、1、4、5、6、9 1、4、5、6、9、10 -4、-1、0、1、4、5 0,1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,10-5,-4,-3,-2,-1,0,1,2,3,413、解: (1)259222137222376(222,259)37372592221,1,1s t =×+=×⇒==−×∴==−(2)139571316827136821316823122(1395,713)31317136821713(13957131)2713(1)1395,1,2s t =×+=×+=×⇒==−×=−−×=×+−×∴=−=16、解: (1)(112,56)5611256[112,56]112(112,56)=×== (2)(67,335)6767335[67,335]335(67,335)=×== (3)(1124,1368)411241368[1124,1368]384408(1124,1368)=×==(7,4)1,0,7(1)4211,24410,1,2,771||1000142||100040,1,1427c s t k x k k k y k x k y x kk y k ==∴×−+×=∴=−=⎧=−=−⎪⎪=±±⎨⎪==⎪⎩≤⎧∴≤⎨≤⎩=−⎧∴=±±⎨=⎩∵ 而不定方程的一切解为: 其中,又方程的全部解为 ,其中 ,第二章1、解:(1) 错误。

信息安全数学基础

信息安全数学基础

信息安全数学基础
韩琦
计算机科学与技术学院
9 / 66
近世代数

举例
例 (希尔密码) 在希尔密码(Hill Cipher)中加密变换为 (������1 ������2 · · · ������������ ) = (������1 ������2 · · · ������������ )������ ������������������ 26 这里密钥������ ∈ ������������������ (������26 ), ������������ , ������������ ∈ ������26 , ������26 = {0, 1, · · · , 25},������������ 为明 文,������������ 为密文,式1.1右边的行向量(������1 , ������2 , · · · , ������������ )与矩阵������ 乘是先进行 通常的实数行向量与实数矩阵乘再对所得行向量的每一分量取模26。 加密过程 字母������������ · · · ������分别对应0, 1, · · · , 25,加密前先将明文字母串变换为������26 上 的数字串,然后再按上述表达式每次������个数字的将明文数字串变换为密 文数字串,最后将密文数字串变换为密文字母串。
1
当生成元������是无限阶元素时,则������称为无限阶循环群。 如果������的阶为������,即������������ = 1,那么这 时������ =< ������ >=< 1, ������, ������2 , · · · , ������������−1 >,则������称为由������所生成的������阶循 环群,注意此时1, ������, ������2 , · · · , ������������−1 两两不同。

信息安全数学基础习题答案

信息安全数学基础习题答案

信息安全数学基础习题答案信息安全数学基础习题答案信息安全是当今社会中一个重要的领域,它涉及到人们的隐私和数据的保护。

在信息安全的学习过程中,数学是一个不可或缺的基础。

本文将为您提供一些信息安全数学基础习题的答案,帮助您更好地理解和应用相关的数学概念。

一、离散对数问题离散对数问题是信息安全领域中的一个重要数学概念。

以下是一些常见的离散对数问题及其答案:1. 如果p是一个素数,a是一个整数,且a不是p的倍数,求解方程a^x ≡ b (mod p)的x值。

答案:x ≡ log_a(b) (mod p-1)2. 如果p是一个素数,g是一个p的原根,a是一个整数,且a不是p的倍数,求解方程g^x ≡ a (mod p)的x值。

答案:x ≡ log_g(a) (mod p)二、RSA算法RSA算法是一种非常常见的公钥加密算法。

以下是一些与RSA算法相关的习题及其答案:1. 如果p=17,q=11,e=7,计算n和d的值,其中n是模数,d是私钥。

答案:n = p * q = 17 * 11 = 187,d ≡ e^(-1) (mod (p-1)*(q-1)) = 7^(-1) (mod 160) = 232. 如果n=187,e=7,加密明文m=88,计算密文c的值。

答案:c ≡ m^e (mod n) = 88^7 (mod 187) = 11三、椭圆曲线密码学椭圆曲线密码学是一种基于椭圆曲线数学问题的加密算法。

以下是一些与椭圆曲线密码学相关的习题及其答案:1. 在椭圆曲线y^2 ≡ x^3 + ax + b (mod p)上,给定一个基点G和一个私钥d,计算公钥Q的值。

答案:Q = d * G2. 在椭圆曲线y^2 ≡ x^3 + ax + b (mod p)上,给定一个基点G和一个私钥d,计算共享密钥K的值。

答案:K = d * Q = d * (d * G)结语本文为您提供了一些信息安全数学基础习题的答案,涉及了离散对数问题、RSA算法和椭圆曲线密码学等内容。

信息安全数学基础第01章

信息安全数学基础第01章
注: 全体正整数可分为三类:
1 正整数 全体素数 全体合数
1.2 整数的进位制表示法
带余除法 整数的二进制表示法 数值转换
1.2 整数的进位制表示法
带余除法 定理1.2.1(带余数除法):设a是正整数,b是整数,则 一定存在唯一的整数q和r,使得 b=qa+r,其中0≤r<a 并分别称q与r为a 除b的商和余数。
1.1 整数
整除 定理1.1.1:若整数a,b,c满足条件a|b且b|c,则a|c。
证明:若a|b且b|c,则由定义1.1.1知道存在整数e和f使得 b=ae且c=bf,于是 c=bf=(ae)f=a(ef) 由于整数e与f的乘积仍然是整数,因而a|c。
例如:由于11|66且66|198,由定理1.1.1就有11|198。
1.2 整数的进位制表示法
带余除法 为什么重复带余除法的过程可以在有限步骤内使得商为 0?
因为b>1,n>0,故 q0>q1>…>qi>… qk-1 ≥0 而qi均为整数,故该不等式一定在有限项内成立。而当 qk-1<b时,必有 qk-1=b∙0+ak, 0≤ak<b 故重复带余除法过程可以在有限步骤内使得商为0。
1.2 整数的进位制表示法
带余除法 证明思路:按照带余除法的方法,先证表达式的存在性 ,再证明其唯一性。
1.2 整数的进位制表示法
带余除法 证明:先证表达式的存在性。首先,以b除n,得到 n=bq0+a0, 0≤a0<b 如果q0≠0,继续以b除q0,得到 q0=bq1+a1, 0≤a1<b 继续这个过程,依次得到 q1=bq2+a2, 0≤a2<b q2=bq3+a3, 0≤a3<b ……..................... qk-2=bqk-1+ak-1,0≤ak-1<b qk-1=b∙0+ak, 0≤ak<b 当商为0时,结束这个过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RSA算法的描述
ne c(mod N )
c d n(mod N )
验证哥德巴赫猜想

一、什么是哥德巴赫猜想 二、哥德巴赫猜想的验证 三、程序演示
什么是哥德巴赫猜想?

在1742年给欧拉的信中哥德巴赫提出 了以下猜想:任一大于2的整数都可 写成三个质数之和。因现今数学界已 经不使用“1也是素数”这个约定, 原初猜想的现代陈述为:任一大于5 的整数都可写成三个质数之和。欧拉 在回信中也提出另一等价版本,即任 一大于2的偶数都可写成两个质数之 和。今日常见的猜想陈述为欧拉的版 本。把命题"任一充分大的偶数都可 以表示成为一个素因子个数不超过a 个的数与另一个素因子不超过b个的 数之和"记作"a+b"。1966年陈景润证 明了"1+2"成立,即"任一充分大的偶 数都可以表示成二个素数的和,或是 一个素数和一个半素数的和"。
寻找最大梅森数


一、寻找梅森数的猜想 二、寻觅梅森素数漫长曲折历程 三、寻找梅森素数算法的实现 四、存在最大的梅森素数吗
寻找梅森数的猜想

人们都知道,亲数是大于1,并除了它本身和1以外,不能被 其它正整数整除的整数,如2,3 .5.7.··… 梅森素数 (M~~prime)通常记作P,二2”一l(其中P为素数)。梅森素 数是否有无穷个.是否有分布规律,一直是众多研究者试 图攻克的世界知名难题。 法国数学家马林· 梅森 (MarinMeI’8enne)在1644年断定.不大于257的各素数, 只有P二2,3,5,7,一3,17,19,3一,67,127,257,使2,一1是素数, 尽管梅森本人实际只验算了前面的7个数,但人们对其断 定仍深信不疑。 虽然梅森的断定中包含若干错误,但却 极大地激发了人们对Zr一l型素教的研究热情。而当时 梅森所猜想到M,2,也是电脑出现以前人们所确认的最 大梅森素数。 自梅森提出其断定后,人们发现的已知最 大素数几乎都是梅森素数。所以.寻找新的梅森紊数的 历程就几乎等同于寻找欲知最大亲数的历程。
寻找最大一对孪生素数


一、什么是孪生素数 二、最大的孪生素数 三、寻找孪生素数的算法实现 四、程序实现
什么是孪生素数?

所谓孪生素数指的就是这种间隔为 2 的 相邻素数,它们之间的距离已经近得不 能再近了,就象孪生兄弟一样。最小的 孪生素数是 (3, 5),在 100 以内的孪生素 数还有 (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61) 和 (71, 73),总计有 8 组。 但是随着数字的增大,孪生素数的分布 变得越来越稀疏,寻找孪生素数也变得 越来越困难。那么会不会在超过某个界 限之后就再也不存在孪生素数了呢?
存在最大的梅森素数吗?


上小学的时候, 我们就知道所有的自然数可以分为素数( 质数)和 合数两类, 当然还特别规定了������ 1 既不是素数, 也不是合数 。 100以内的素数, 从小到大依次是: 2、3、5、7、11、13、17、19、 %%、83、89、97。不用说了, 你一定会背下来。那么素数的个数 是有限多的呢? 我们先假设素数的个数是有限多的, 那么必然存在一个������ 最 大的素数 , 设这个������ 最大的素数 为N。下面我们找出从1 到N 之间的所有素数, 把它们连乘起来, 就是:2 ∃ 3 ∃ 5∃ 7 ∃ 11 ∃ 13 ∃ %%∃ N把这个连乘积再加上1, 得到一个相当大的数M:M= 2 ∃ 3 ∃ 5 ∃ 7 ∃ 11 ∃ 13 %%∃ N+ 1那么这个M 是质数还是合数呢? 乍一想, 不难判断, 既然N 是最大的质数, 而且M> N, 那么M 就应该是合数。 既然M 是合数, 就可以对M 分解质因数。可是试一下就会发现, 我 们用从1 到N 之间的任何一个素数去除M, 总是余1! 这个现实, 又 表明M 一定是素数。这个自相矛盾的结果, 无非说明: 最大的素数 是不存在的! 如果有一个足够大的素数N, 一定可以像上面那样, 找 到一个比N 更大的素数M。既然不存在最大的素数, 就可以推知自 然数中的素数应该有无限多个

RSA是被研究的最广泛的公钥算法,从提出到现在 已近二十年,经历了各种攻击的考验,逐渐被人们所 接受,普遍被认为是现在最优秀的公钥方案之一。 RSA的安全性依赖于大数的因子分解。但并没有从理 论上证明破译RSA的难度与大数分解难度等价。既 RSA的最大缺陷是无法从理论上把握它的保密性如何, 而且密码学界很多密码学家更倾向于大数的分解而不 是NPC的问题。
信息安全数学基础 ——实现RSA加密系统
验证哥德巴赫猜想 寻找最大梅森数 寻找最大一对孪生素数
——孙为坤、王效雷、朱科林、郭 红、王轩
实现RSA加密系统

一、RSA简介 二、RSA加密算法的描述 三、程序演示
RSA加密简介

RSA算法是第一个能同时用于加密和数字签名的算 法,也易于理解和操作。
哥德巴赫猜想的验证 Nhomakorabea

一、殆素数 殆素数就是素因子个数不多的正整数。现设N是偶数,虽然现在不能证明N是两个素数之和,但是可以证明它能够写成两个殆素数 的和,即N=A+B,其中A和B的素因子个数都不太多,譬如说素因子个数不超过10。现在用“a+b”来表示如下命题:每个大偶数N 都可表为A+B,其中A和B的素因子个数分别不超过a和b。显然,哥德巴赫猜想就可以写成"1+1"。在这一方向上的进展都是用所谓 的筛法得到的[1]。 二、例外集合 在数轴上取定大整数x,再从x往前看,寻找使得哥德巴赫猜想不成立的那些偶数,即例外偶数。x之前所有例外偶数的个数记 为E(x)。我们希望,无论x多大,x之前只有一个例外偶数,那就是2,即只有2使得猜想是错的。这样一来,哥德巴赫猜想就等价于 E(x)永远等于1。当然,直到现在还不能证明E(x)=1;但是能够证明E(x)远比x小。在x前面的偶数个数大概是x/2;如果当x趋于无穷 大时,E(x)与x的比值趋于零,那就说明这些例外偶数密度是零,即哥德巴赫猜想对于几乎所有的偶数成立。这就是例外集合的思 路。 三、小变量的三素数定理 如果偶数的哥德巴赫猜想正确,那么奇数的猜想也正确。我们可以把这个问题反过来思考。已知奇数N可以表成三个素数之和, 假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3,那么我们也就证明了偶数的哥德巴赫猜想。这个思想就 促使潘承洞先生在1959年,即他25岁时,研究有一个小素变数的三素数定理。这个小素变数不超过N的θ次方。我们的目标是要证 明θ可以取0,即这个小素变数有界,从而推出偶数的哥德巴赫猜想。潘承洞先生首先证明θ可取1/4。后来的很长一段时间内,这方 面的工作一直没有进展,直到1995年展涛教授把潘老师的定理推进到7/120。这个数已经比较小了,但是仍然大于0。 四、几乎哥德巴赫问题 1953年,林尼克发表了一篇长达70页的论文。在文中,他率先研究了几乎哥德巴赫问题,证明了,存在一个固定的非负整数k, 使得任何大偶数都能写成两个素数与k个2的方幂之和。这个定理,看起来好像丑化了哥德巴赫猜想,实际上它是非常深刻的。我们 注意,能写成k个2的方幂之和的整数构成一个非常稀疏的集合;事实上,对任意取定的x,x前面这种整数的个数不会超过log x的k 次方。因此,林尼克定理指出,虽然我们还不能证明哥德巴赫猜想,但是我们能在整数集合中找到一个非常稀疏的子集,每次从这 个稀疏子集里面拿一个元素贴到这两个素数的表达式中去,这个表达式就成立。这里的k用来衡量几乎哥德巴赫问题向哥德巴赫猜 想逼近的程度,数值较小的k表示更好的逼近度。显然,如果k等于0,几乎哥德巴赫问题中2的方幂就不再出现,从而,林尼克的定 理就是哥德巴赫猜想。
最大的孪生素数



最新计算发现现有最大孪生素数为 (100000000000000000×1000000000000+38-1, 100000000000000000×1000000000000+38+1)孪生素数是有限个还是有 无穷多个?这是一个一直吸引着众多的数学家孜孜以求地钻研.早在20世纪 初,德国数学家兰道就推测孪生素数有无穷多.许多迹象也越来越支持这个 猜想.最先想到的方法是使用欧拉在证明素数有无穷多个所采取的方法.设 所有的素数的倒数和为: s=1/2+1/3+1/5+1/7+1/11+... 如果素数是有限个,那么这个倒数和自然是有限数.但是欧拉证明了这 个和是发散的,即是无穷大.由此说明素数有无穷多个.1919年,挪威数学家 布隆仿照欧拉的方法,求所有孪生素数的倒数和: b=(1/3+1/5)+(1/5+1/7)+(1/11+1/13)+... 如果也能证明这个和比任何数都大,就证明了孪生素数有无穷多个了. 这个想法很好,可是事实却违背了布隆的意愿.他证明了这个倒数和是一个 有限数,现在这个常数就被称为布隆常数:b=1.90216054...布隆还发现,对于 任何一个给定的整数m,都可以找到m个相邻素数,其中没有一个孪生素数。
寻找梅森素数算法的实现






一、基本实现 为了加速整个计算过程, 我们借鉴Ma yer E W. 的Lu cas Lehmer 检验法数值算法, 同样采用了fft 算法来计 算大数的平方, 这样使得乘方运算的复杂度从O( n2 ) 下降到O( nlog 2 n) 。fft_square 子程序应用fft 算法的思想 进行大数的平方, 即实现Lucas Lehmer 检验法中L ( i) * L ( i) 这个部分。 利用St ream C 和Ker nel C 语言[ 6] 开发了一个最多包含28 个Kernel 的流程序, 简称为LUCAS 程序, 处理 的网格大小为( n/ 8) * 8, 需要迭代iter 次。其中, n 为fft算法的执行长度, iter 为迭代次数, 都是由输入给定的, iter的最大值为所要验证的梅森指数减1。 二、数据流图 LU CAS 所需要的Kernel 数目是由n 的大小决定的, 。通过数据流图可以很清楚地知道Ker nel 的功能、执 行顺序、访存以及Kernel 间的生产者消费者局域性和数据重用局域性。 三、基本流化过程 LUCAS 的流化算法可以根据Cluster 数目N 的不同进行扩展, N 的取值可以为4、8、16 等, 以N= 8 为例具体 介绍。LUCAS 主要的流化工作集中在a、b 这两个流上。对于a 和b , 组织方式是一样的。在Ker nel 中, 它们总 是一个作为输入, 另一个作为输出;在下一个Kernel 时, 又将输入和输出调换位置。因此, 只用in 和out 来标记输 入和输出。 四、根据计算特征进行优化 LUCAS 中, 最主要的程序模式是由一个二重循环构成的, 每次循环从一个二维数组中读入16 个数, 经过一系 列计算以后更新另一个二维数组中的16 个数, 而任意两次循环之间是不存在数据相关性的。这是程序最主要 的计算特征。 优化的效果很明显。经过分析, 主要有以下几个原因: ( 1) 流组织开销降低; ( 2) 并行粒度增大; ( 3) Ker nel 中对流的读取次数减少。
相关文档
最新文档