电流互感器伏安特性及试验

合集下载

(完整版)电流互感器伏安特性试验

(完整版)电流互感器伏安特性试验

电流互感器伏安特性试验阿德一试验目的CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。

试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。

二试验方法试验接线如图所示:SVERKER650二次接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个PT读取电压。

(如果有FLUKE87型万用表,由于其可测最高交流电压为4000V,可用它直接读取电压而无需另接PT。

)试验前应将电流互感器二次绕组引线和接地线均拆除。

试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。

通入的电流或电压以不超过制造厂技术条件的规定为准。

当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。

试验后,根据试验数据绘出伏安特性曲线。

三注意事项1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。

2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。

若有显著降低,应检查二次绕组是否存在匝间短路。

当有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线2、3所示(指保护CT有匝间短路,曲线2为短路1匝,曲线3为短路2匝),因此,在进行测试时,在开始部分应多测几点。

3.电流表宜采用内接法。

4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到0,然后逐点升压。

四典型U-I特性曲线相关主题:1. 用交流注流法测量电流互感器极性2. 慎用自耦变直接给电柜内回路加电流(电压)量3.电流互感器铁芯剩磁的影响与如何使退磁慎用自耦变直接给电柜内回路加电流(电压)量阿德在现场进行装置试验时,可能由于试验设备欠缺、条件有限,需要用自耦变进行各种试验,此时一定切记将所加量的回路中的接地线断开或在自耦变后串接隔离变压器;否则,可能造成交流220V短路,损坏试验设备。

电流互感器伏安特性、变比、极性实验记录

电流互感器伏安特性、变比、极性实验记录

电流(A) 3S1,3S2
电压(V)
结论 调试人员
审 批
日期
电流互感器伏安特性、变比、极性实验记录
中国十五冶二公司(电)表
工程名称 贵冶2007年修电解高配改造 安装地址 母联
用途


施工图号
产品型号 LZZBJ9-10A1
额定电压 12KV
额定频率 50HZ
准确级 0.5级
电流比 1000:5 设备种类
100
200
200
300
300
200
R60" 100000 100000 100000 100000 100000 100000
耐压后
R15"
200
200
300
200
200
300
耐压实验
互感器经工频耐压27KV,一分钟无击穿闪络.
A

B

C

极性测试
测量极性
同相
同相
同相
保护极性
同相
同相
同相
A

B

C
A相
出厂 编号
B相
C相
710187 710186 710184
工厂号 A相
出厂日期 B相 C相
2007.1 2007.1
A-D
B-D
C-D
单位(MΩ)
R60"
100000
绝缘电阻
R15"
200
100000 100000 100000 100000 100000
耐压前
200
150
230
200
250
R60" 100000 100000 R15"

电流互感器伏安特性试验与误差曲线详解-伏安特性测试仪

电流互感器伏安特性试验与误差曲线详解-伏安特性测试仪

电流互感器伏安特性试验与误差曲线详解王兰芳武汉市华英电力科技有限公司1 概述在电力系统中针对于保护用电流互感器最常见的试验项目是伏安特性试验,在很多地方电力部门还要求对保护用电流互感器绘制误差曲线,并将误差曲线数据上报至相关的管理部门。

伏安特性试验对应于国家标准和IEC标准的准确称呼是励磁特性试验,执行励磁特性试验的目的是获取电流互感器励磁特性曲线,并根据励磁特性曲线计算电流互感器的相关参数以判断电流互感器是否能达到要求。

误差曲线是根据励磁特性曲线和电流互感器二次线圈电阻计算而来的曲线,误差曲线建立了电流互感器最大允许误差和所连接二次负荷的关系,只要确保电流互感器所在系统的短路电流和所接二次负荷落在误差曲线的允许区间内,保护用电流互感器就能正常工作,否则电流互感器则可能发生磁饱和而失效2 励磁特性试验2.1 励磁曲线的定义图1 HYVA-405测量的电流互感器励磁特性曲线在不同的标准中,电流互感器励磁曲线的绘制要求也不同,在IEC60044-1/GB1208中励磁曲线的Y轴是电流互感器二次端电压有效值,X轴是电流互感器二次端电流有效值;在IEC60044-6/GB16847电流互感器励磁特性试验的Y轴是电流互感器二次电动势有效值,X轴是电流互感器的二次电流的峰值;在IEEE C57.13中电流互感器励磁特性试验的Y轴是电流互感器二次电动势有效值,X轴是电流互感器二次电流有效值取对数后的值。

因此针对不同标准的电流互感器,其励磁特性曲线的绘制方法也不同,由于我国的标准遵从与IEC 体系,因此针对我国的保护用电流互感器励磁特性曲线主要有IEC60044-1/GB1208和IEC60044-6.GB16847两种。

在完成励磁特性曲线后通常要计算励磁特性曲线的拐点电压,拐点电压反映的是电流互感器进入磁饱和区域的阈值,拐点电压以后电流互感器进入深度磁饱和状态,如果电流互感器运行时其二次端电压达到或超过拐点电压,则互感器进入磁饱和状态而失效。

【国家电网 培训课件】电流互感器伏安特性校验

【国家电网 培训课件】电流互感器伏安特性校验
e 非线性励磁阻抗2Zm
伏安特性试验
φ1
两者满足: e2 = dNφ1/dt
因此通过测量励磁电流和e2的 关系,表征电流互感器的抗饱 和能力,并为误差分析提供理 论依据。
知识点二
为何要进行伏安特性校验 如何进行伏安特性校验 伏安特性校验结果分析
试验接线
电流表 串联在 回路中
V
A
电源
电压表 并联在 二次绕 组两端
试验数据及曲线
e2 V
100 80 60 40
20
0
50 100 150 200 500
磁通变化 已趋近最 大值。
Im
2000 mA
横坐标所对应的 点,饱和前3点, 饱和后3点
(5mA, 8V) (25mA, 25V) (50mA, 50V) (100mA, 90V) (150mA, 97V) (500mA, 98V) (2000mA, 100V)
若二次负载为3欧姆,其变比误差是否能满足规程要求?
若二次负载不变,其一次侧通过的最大短路电流为15kA , 其变比误差是否能满足规程要求?
若以满足10%变比误差为条件,以最 大短路电流纵坐标和二次负载为横坐 标,得到的一组曲线是什么?
欢迎指正 谢谢
本节内容结束
值得注意的几个问题
e2
V
A
电源
1.选择合适试验设备 注意电源的容量、电流、 电压表的档位
电源的容量尽可能大、电流档 位保证灵敏度、电压表的档位尽可 能大
2.电源加在二次侧,能否 在一次侧加电源?
二次侧线圈匝数较大,相同的 磁通变化,所需的电流较小。
3.励磁电流不可上升太快, 有磁滞效应,应让铁芯被 充分励磁。
e2
I2

电流互感器伏安特性试验

电流互感器伏安特性试验

电流互感器伏安特性试验阿德一试验目的CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。

二试验方法试验接线如图所示:SVERKER650二次接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须电流互感器二次侧额定电流)升压和一个PT读取电压。

(如果有FLUKE87型万用表,由于其可测最高交流电压为4000V,可用它直接读试验前应将电流互感器二次绕组引线和接地线均拆除。

试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选或电压以不超过制造厂技术条件的规定为准。

当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止三注意事项1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。

2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。

若有显著降低,应检查二次绕组是否存在较正常的略低,如图中曲线2、3所示(指保护CT有匝间短路,曲线2为短路1匝,曲线3为短路2匝),因此,在进行测试时,在开3.电流表宜采用内接法。

4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到0,然后逐点升压。

四典型U-I特性曲线相关主题:1. 用交流注流法测量电流互感器极性2. 慎用自耦变直接给电柜内回路加电流(电压)量3.电流互感器铁芯剩磁的影响与如何使退磁慎用自耦变直接给电柜内回路加电流(电压)量阿德在现场进行装置试验时,可能由于试验设备欠缺、条件有限,需要用自耦变进行各种试验,此时一定切记将所加量离变压器;否则,可能造成交流220V短路,损坏试验设备。

原因解释可能碰到的错误接线方式:坛子岭变电站2B(1B)主变压器高压侧方向过流回路无电流2004年2月19日☐☐ 现象在坛子岭变电站2#主变压器(2B )35kv 高压侧后备保护(SEL351A )装置上,显示高压侧一次电流为0,但现场该变压器高压侧实际有20A 负荷。

电流互感器伏安特性试验

电流互感器伏安特性试验

电流互感器伏安特性试验目的及试验方法一、试验目的CT 伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。

试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。

二、试验方法试验接线如图所示:接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个 PT 读取电压。

试验前应将电流互感器二次绕组引线和接地线均拆除。

试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。

通入的电流或电压以不超过制造厂技术条件的规定为准。

当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。

试验后,根据试验数据绘出伏安特性曲线。

三、注意事项1、电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。

2、测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。

若有显著降低,应检查二次绕组是否存在匝间短路。

当有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线 2、3 所示(指保护 CT 有匝间短路,曲线 2 为短路 1 匝,曲线 3 为短路 2 匝),因此,在进行测试时,在开始部分应多测几点。

3、电流表宜采用内接法。

4、为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到 0,然后逐点升压典型的 U-I 特性曲线。

附:电力设备预防性试验规程(DL/T 596-1996)中关于CT 二次保护绕组的伏安发生的规定:与同类型互感器特性曲线或制造厂提供的特性曲线比较,就无明显差别。

电流互感器伏安特性和 10%误差曲线 的原理和分析方法

电流互感器伏安特性和 10%误差曲线 的原理和分析方法

电流互感器伏安特性和10%误差曲线的原理和分析方法一、电流互感器的工作原理电流互感器(CT)是变换电流的电气设备,它的主要功能是向二次系统提供电流信号以反映一次系统的工作情况。

目前,电力系统应用比较广泛的是带铁芯的无气隙式电流互感器,其基本结构与变压器相同并按照变压器工作原理工作。

(如下图)K1K2图1图2 CT一次侧绕组串接于电网,二次侧绕组与测量仪表或继电器的电流线圈相串联。

图中L1、L2和K1、K2表示电流互感器一次、二次绕组。

此为一般CT 的简单原理图。

CT的额定变比K=I1/I2=N2/N1,为原方与付方的匝数比。

对于理想CT:I1×N1=I2×N2,I1:I2=N2:N1当原方I1为1个电流时,付方产生I2=(I1×N1/N2)个电流。

但在理论计算中常将付方电流I2进行归一化,即将I2归一化为归算电流I2’:I2’=I2×K=I2×N2/N1这样当原方电流I1为1个电流时,付方I2’也为1个电流,这样可以将CT简化为图2所示的T型网路等效电路用于计算。

下面为了描述方便归算电流I2’用符号I2来表示。

二、电流互感器的磁饱和特性带铁芯的电流互感器的结构形式是原方绕组和副方绕组通过一个共同的铁芯进行互感耦合。

正常工作时铁芯的磁通密度B很低,激磁电流Ij很小,故I2=I1-Ij≈I1,I2与I1的误差极小。

当发生短路时原方短路电流将变得很大,使磁通密度B大大增加,Ij也相应增加。

在磁通密度B不很大时,Ij基本与B成线性增长,但B增加到一定程度后将出现饱和现象,磁通增加将变得困难,这时增加Ij并不能使磁通成线性增加,而是增加Ij时B增加越来越少。

磁通密度B与激磁电流Ij的关系曲线如图3,当B增加到一定程度后将出现饱和,这时Ij将急剧增大,于是I2=I1-Ij就会出现较大误差。

这就是铁心饱和导致互感器出现大的传导误差的原理。

图3大的激磁电流Ij将会产生很大的功率Ij×U1,这个功率会使CT产生高的热量,达到一定程度还可能烧毁电流互感器;磁场由小变大产生的磁场交变引起大的磁力,从而导致铁心和硅钢片震动,所以我们经常能听到CT发出嗡嗡的声音。

电流互感器的试验

电流互感器的试验

电流互感器的试验电流互感器的极性检查一,极性检查的意义极性检查是为了验证电流互感器极性是否正确,如极性错误会使计量仪表指示错误,更严重的是使带有方向性的继电保护误动作。

二,极性检查的方法电流互感器的一,二次绕组为减极性,极性检查一般采用直流法。

试验时电源加在互感器的一次侧,测量仪表接在互感器的二次侧。

电流互感器的励磁特性试验一,励磁特性定义互感器的励磁特性(伏安特性)是指互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线。

二,励磁特性试验的目的励磁特性试验的主要目的是校核用于继电保护的电流互感器特性是否符合主要要求,并从励磁特性曲线发现一次绕组有无匝间短路。

三,励磁特性试验的主要方法按要求接好电流互感器的励磁特性的接线。

实验前,应将电流互感器的二次绕组引线和接地线均拆除。

试验时,一次侧开路,从二次侧施加电压,升压时以电流为基准,读取电压值。

通入的电流或电压以不超过制造厂技术条件的规定为准。

当电流增大而电压变化不大时,说明铁芯已饱和,应停止试验。

试验后,根据实验数据绘出励磁特性曲线及伏安特性曲线。

电流互感器的铁芯退磁一,铁芯剩磁的产生原因电流互感器在大电流下切断电源或在运行中发生二次开路时,通过短路电路或采用直流电源的试验后,都有可能在电流互感器的铁芯中留下剩磁,剩磁使电流互感器的比差尤其是角差增大,因此应对电流互感器铁芯进行退磁。

二,铁芯退磁的方法将电流互感器一次绕组开路,二次绕组通入50Hz交流电,然后使电流从最大值均匀降到零(时间不少于10S),并在切断电源前将二次绕组短路。

如此重复2-3次,即可退去电流互感器铁芯中的剩磁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流互感器伏安特性及试验
伏安特性中的“伏”就是电压,“安”就是电流,从字面解释,伏安特性就是电流互感器二次绕组的电压与电流之间的关系。

如果从小到大调整电压,将所加电压对应的每一个电流画在一个座标系中(电压为纵坐标,电流为横坐标),所组成的曲线就称为伏安特性曲线。

由于电流互感器铁心具有逐渐饱和的特性,在短路电流下,电流互感器的铁心趋于饱和,励磁电流急剧上升,励磁电流在一次电流中所占的比例大为增加,使比差逐渐移向负值并迅速增大。

由于继电器的动作电流一般比额定电流大好几倍,所以作为继电保护用的电流互感器应该保证在比额定电流大好几倍的短路电流下能够使继电器可靠动作。

FA-102 CT伏安特性测试仪可以完成的试验包括: CT伏安特性试验、CT极性试验、CT 变比极性试验。

仪器能自动计算CT的任意点误差曲线,CT变比比差等结果参数。

电流互感器伏安特性试验
一、试验目的
CT 伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。

试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。

二、试验方法
试验接线如图所示:
接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达 400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个 PT 读取电压。

试验前应将电流互感器二次绕组引线和接地线均拆除。

试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。

通入的电流或电压以不超过制造厂技术条件的规定为准。

当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。

试验后,根据试验数据绘出伏安特性曲线。

三、注意事项
1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。

2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。

若有显著降低,应检查二次绕组是否存在匝间短路。

当有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线 2、3 所示(指保护 CT 有匝间短路,曲线 2 为短路 1 匝,曲线 3 为短路 2 匝),因此,在进行测试时,在开始部分应多测几点。

3.电流表宜采用内接法。

4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到 0,然后逐点升压典型的 U-I 特性曲线
根据大二互提供的LZZBJ9-10C5误差试验,1S1-1S2,进行了二次Ie电流5%,20%,100%,120%情况的测量误差;2S1-2S2进行了100%二次Ie电流情况下的测量误差。

伏安特性试验,2S1-2S2进行了420V,0.1Ie;420V,0.1Ie;450V,0.5Ie;480V,0.3Ie;500V,0.5Ie;420V,0.75Ie。

汇制成.dwg图纸。

相关文档
最新文档