第三章 纳米材料基本的物理效应_PPT课件

合集下载

第三章:纳米材料基本理论

第三章:纳米材料基本理论

组装法
强迫组装 自组装

强迫组装
自组装
分立能级
量子尺寸效应
当粒子尺寸下降到某一值时,金属
费米能级附近的电子能级由准连续 变为离散能级的现象和纳米半导体 微粒存在不连续的最高被占据分子 轨道和最低未被占据的分子轨道能 级,能隙变宽现象均称为量子尺寸 效应.
量子尺寸效应
当能级间距大于热能、磁能、静磁能、静 电能、光子能量或超导态的凝聚能时,这 时必须要考虑量子尺寸效应,这会导致纳 米微粒磁、光、声、热、电以及超导电性 与宏观特性有着显著的不同. 纳米微粒的比热、磁化率与所含的电子奇 偶性有关,光谱线的频移,催化性质与粒 子所含电子数的奇偶有关. 导体变绝缘体等.
2.表面效应
表面效应
表面原子百分数
纳米粒子直径(nm)
2.表面效应
不同表面原子不同配位缺失

表面效应



随着粒径减小,表面原子数迅速增加.这是由于粒径小, 表面积急剧变大所致. 粒径为10 nm时,比表面积为90m2/g,粒径为5 nm时, 比表面积为 180m2/g,粒径下降2nm,比表面积猛增到 450m2/g. 这样高的比表面,使处于表面的原子数越来越多,同时, 表面能迅速增加. 由于表面原-子数增多,原子配位不足及高的表面能,使 这些表面原子具有高的活性,极不稳定,很容易与其他原 子结合. 例如金属的纳米粒子在空气中会燃烧,无机的纳米粒子暴 露在空气中会吸附气体,并与气体进行反应.

1. 分类:物理方法和化学方法
几种化学方法简介
1)化学气相沉积法(Chemical Vapor Deposition, CVD) 利用气态或蒸汽态的物质在气相或气固界面上反应生成固 态沉积物的技术。 20世纪60年代John M Blocher Jr等首先提出Vapor Deposition,根据过程的性质分为PVD 和CVD。 CVD技术被广泛应用于半导体和集成电路技术: ♣CVD是目前超纯多晶硅的唯一生产方法; ♣化合物半导体的制备,比如III-V族半导体; ♣各种搀杂半导体薄膜的生长,以及绝缘薄膜的生长

纳米材料ppt课件

纳米材料ppt课件

02
纳米材料的制备方法
物理法
机械研磨法
通过高能球磨或振动磨的方式, 将大块材料破碎成纳米级尺寸。 这种方法简单易行,但制备的纳
米材料纯度较低。
激光脉冲法
利用高能激光脉冲在极短时间内 将材料加热至熔化或气化,然后 迅速冷却形成纳米颗粒。该方法 制备的纳米材料粒径小且均匀,
但设备成本高昂。
电子束蒸发法
磁损耗
在交变磁场中,纳米材料的磁损耗远高于宏观材料,这与其界面和 表面效应有关。
磁电阻效应
某些纳米材料表现出显著的磁电阻效应,如巨磁电阻和自旋阀效应 。这些效应可用于磁电阻传感器和磁随机存储器等领域。
04
纳米材料的应用实例
纳米材料在能源领域的应用
太阳能电池
利用纳米结构提高光电转 换效率,降低成本。
纳米材料的环保问题
纳米材料在环境中的持久性
一些纳米材料可能在环境中长时间存在,不易降解,可能造成长期的环境污染。
纳米材料的环境释放途径
生产和使用纳米材料过程中,可能通过废水、废气等途径将纳米颗粒释放到环境中。
纳米材料对生态系统的潜在影响
纳米材料可能通过食物链进入生物体,影响生物的生理功能和生态平衡。
解决纳米材料安全与环保问题的策略与建议
加强纳米材料的环境和健康影响 研究
深入研究纳米材料的环境行为和健康影响 ,为制定有效的管理措施提供科学依据。
制定严格的法规和标准
制定针对纳米材料的生产和使用的法规和 标准,限制其对环境和健康的潜在风险。
发展绿色合成方法和应用技术
提高公众意识和参与度
开发环保友好的纳米材料合成方法和应用 技术,减少纳米材料的环境释放。
生物合成法
利用微生物(如细菌)合成有机或无机纳米材料。该方法制 备的纳米材料具有生物相容性和生物活性,在生物医学领域 有广泛应用前景。

纳米材料基本效应PPT讲稿

纳米材料基本效应PPT讲稿
总表面积急 剧增大,比表面积相应的也急剧加大。
•如:把边长为1cm的立方体逐渐分割减小的立方 体,总表面积将明显增加。
边长
1 cm 10-5 cm (100 nm) 10-6 cm (10 nm) 10-7 cm (1 nm)
立方体数
1 1015 1018 1021
• 这样高的比表面,使处于表面的原子数越来越
多,同时表面能迅速增加。
5
• 2. 表面原子数的增加 • 由于粒子尺寸减小时,表面积增大,使处于表
面的原子数也急剧增加.
6
表面原子数占全部原子数的比例和粒径之间的关系
7
• 3.表面能 • 由于表层原子的状态与本体中不同。 • 表面原子配位不足,因而具有较高的表面能。 • 如果把一个原子或分子从内部移到界面,或者
17
18
19
2. 特殊的热学性质
固态物质在其形态为大尺寸时,其熔点是固定的, 超细微化后却发现其熔点将显著降低,当颗粒小于10 纳米量级时尤为显著。
利用这个特性可以作为高效率的光热、光电等转换材料, 可以高效率地将太阳能转变为热能、电能。此外又有 可能应用于红外敏感元件、红外隐身技术等。
1991年春的海湾战争,美国执行空袭任务的F-117A型隐身战斗 机,其机身外表所包覆的红外与微波隐身材料中就包含有多种 纳米超微颗粒,它们对不同波段的电磁波有强烈的吸收能力, 以欺骗雷达,达到隐形目的。在海湾战争中使用了该项技术, 成功地实现了对伊拉克重要军事目标的打击。
每面面积
1 cm2 10-8 cm2 10-12 cm2 10-14 cm2
总表面 积
6 cm2 6×105cm2 6×106cm2 6×107cm2
4
• 随着粒径减小,表面原子数迅速增加。这是由 于粒径小,总表面积急剧变大所致。

纳米材料及其应用PPT课件

纳米材料及其应用PPT课件
2000s
纳米材料在各个领域得到广泛应用,成为研 究热点。
1990s
纳米技术迅速发展,出现多种制备方法。
2010s至今
纳米技术不断创新,应用领域不断拓展。
02
纳米材料的制备方法
物理法
真空蒸发冷凝法
01
在真空条件下,通过加热蒸发物质,并在冷凝过程中形成纳米
粒子。
激光诱导法
02
利用高能激光束照射物质表面,通过激光能量使物质蒸发并冷
生物法
微生物合成法
利用微生物作为模板或催化剂,通过生物反应合成具有特定结构 和性质的纳米材料。
植物提取法
利用植物中的天然成分作为原料,通过提取和纯化得到纳米材料。
酶催化法
利用酶的催化作用合成具有特定结构和性质的纳米材料。
03
纳米材料的应用领域
能源领域
01
02
03
燃料电池
纳米材料可以提高燃料电 池的效率和稳定性,降低 成本。
纳米材料及其应用 ppt课件
目录
• 纳米材料简介 • 纳米材料的制备方法 • 纳米材料的应用领域 • 纳米材料面临的挑战与前景 • 纳米材料的应用案例分析
01
纳米材料简介
纳米材料的定义与特性
定义
纳米材料是指在三维空间中至少有一 维处于纳米尺度范围(1-100nm)或 由它们作为基本单元构成的材料。
凝形成纳米粒子。
机械研磨法
03
通过机械研磨将大块物质破碎成纳米级粒子,常见于金属、陶
瓷等硬质材料的制备。
化学法
化学气相沉积法
利用化学反应在加热条件下生成纳米粒子,通常需要使用气态反 应剂和催化剂。
溶胶-凝胶法
通过将原料溶液进行溶胶和凝胶化处理,再经过热处理得到纳米 粒子。

3.-纳米功能材料理论基础PPT课件

3.-纳米功能材料理论基础PPT课件
局限性在于能够处理的系统的大小有限,计算所需要的CPU时间 和存储器容量随着系统中电子数的增加而急剧增加,能够处理的 原子数量一般在1000个原子以内。
只能研究尺寸较小的纳米结构,或得到局部性质,如表面/界面等。
7
-
泛函密度理论的框架
物质的电子结构由多粒子体系哈密顿函数和薛定格方程 描述
通过Born-Oppenheimer 近似,实现离子和电子自由度的 分离
ZnO纳米线激子束缚能与半径的关系(a) L=0轻空穴 (b) L=±1重空穴。
1s,2s和3s分别对应于基态,第一激发态和第二激发态的结合能。
32
-
Z方向波函数的平方在Z方向的分布
33
-
• 沿Z方向的波函数的平方 在Z方向的分布,其中的 实线代表考虑了介电失 配的结果,而虚线代表 没有考虑介电失配的结 果。
26
-
缺陷对ZnO纳米线能带结构的影响
存在VZn, Pi, Oi, PZn-2VZn, VO和 Zni缺陷时ZnO纳米线的 27 - 电子能带结构图。费米能级设定为零。
掺杂对电子结构的影响(费米面处态密度分布)
用SIESTA软件计算的Na、Ga和N掺杂ZnO纳米线在费米面附近的态 密度分布的等高面
带隙与表面原子比
近似线性关系表明带隙随纳米线直径的变化是由表面原子引 21 - 起的。Eg~d的关系可以用来调控发光波长。
Eg与纳米带度/厚度的关系
ZnO纳米带的LDA带隙宽度(EgLDA)随纳米带截面积的尺寸相关变化。 (a)点线连接具有相同宽度不同厚度的纳米带 ,A、B、C代表具有相近
截面积,但不同禁带宽度的情况
(b) 点线连接具有相同厚度不同宽度的纳米带
22
-

材料物理课件5纳米材料与纳米效应-PPT课件

材料物理课件5纳米材料与纳米效应-PPT课件

13
二、 纳米材料的制备方法(3)
3、固相制备法 固体材料在不发生熔化、气化的情况下使 原始晶体细化或反应生成纳米晶体的过程。 机械研磨法(Mechanical Milling) 固相反应法(Solid Reaction) 大塑性变形法(Severe Plastic Deformation)
2019/3/7 10
4、宏观量子隧道效应
微观粒子具有贯穿势垒的能力称为隧道效应。
近来,人们发现一些宏观量,例如微颗粒的磁 化强度,量子相干器件中的磁通量等也具有隧道效 应,称为宏观的量子隧道效应。 宏观量子隧道效应无论在基础研究还是实际应 用方面都有着非常重要的意义,它限定了磁带、磁 盘进行信息储存的时间及空间极限。
2019/3/7
11
二、 纳米材料的制备方法(1)
1、气相制备法
将高温的蒸气在冷阱中冷凝或在衬底上 沉积和生长出低维纳米材料的方法。
采用气相法可合成纳米粉体、纳米丝和 生长出超晶格薄膜和量子点等。 物理气相沉积法(PVD) 化学气相沉积法(CVD)
2019/3/7 12
二、 纳米材料的制备方法(2)
纳米晶Cu的自由能随晶 粒尺寸D和温度的变化
(当尺寸D小于1.4nm时, 4 nc Cu的G大于非晶态Cu 的 G而不能维持晶态)
2、量子效应(1)
小尺寸系统的量子效应,是指电子的能量被量子化,形成 分立的电子态能级,电子在该系统中的运动受到约束。 随着金属粒子尺寸的减小,金属费米能级附近的电子能级 由准连续变为离散能级的现象,以及半导体微粒存在不连续 的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽 的现象,均称为量kBT为热能。
当微粒的能隙大于电子的kB时,热运动不能使电子跃过能隙, 电子的状态受到限制,表现出量子效应。对于金属材料,由于 费米面附近的能隙很小,只有当其颗粒非常小时才会产生明显 的量子效应。 对于半导体材料,出现量子效应的尺寸要比金属粒子的尺 寸大得多,其量子效应主要表现为导带与价带间的带隙变宽且 出现能级分离。

第三章 纳米材料基本的物理效应

第三章 纳米材料基本的物理效应

(4)特殊的力学性质 4
由于纳米材料粒度非常微小,具有良好的表面效应 由于纳米材料粒度非常微小 具有良好的表面效应 克纳米材 具有良好的表面效应,1克纳米材 料的表面积达到几百平方米。因此,用纳米材料制成的产品其 料的表面积达到几百平方米。因此 用纳米材料制成的产品其 强度、柔韧度、延展性都十分优越 都十分优越, 强度、柔韧度、延展性都十分优越,就象一种有千万对脚的 毛毛虫,当它吸附在光滑的玻璃面上时,由于接触面积大, 毛毛虫,当它吸附在光滑的玻璃面上时,由于接触面积大, 12级台风有也吹不掉它。 级台风有也吹不掉它。 级台风有也吹不掉它 陶瓷材料在通常情况下呈脆性,陶瓷茶壶一摔就碎, 陶瓷材料在通常情况下呈脆性 , 陶瓷茶壶一摔就碎 , 然而 由纳米超微颗粒压制成的纳米陶瓷材料, 由纳米超微颗粒压制成的纳米陶瓷材料,竟然可以象弹簧一 良好的韧性。 样具有良好的韧性 样具有良好的韧性。 研究表明,人的牙齿之所以具有很高的强度, 研究表明 , 人的牙齿之所以具有很高的强度 , 是因为它是 由磷酸钙等纳米材料构成的。 由磷酸钙等纳米材料构成的。呈纳米晶粒的金属要比传统的 粗晶粒金属硬3~ 倍 至于金属 陶瓷等复合纳米材料 金属---陶瓷等复合纳米材料, 粗晶粒金属硬 ~5倍。至于金属 陶瓷等复合纳米材料,其 应用前景十分宽广。 应用前景十分宽广。
各种 元素 的 原 子具 有特 原子、大块晶体、和纳米晶的能态 定的 光谱 线, 如 钠 原子 具有 黄色 的 光 谱线 。由 无数的原子构成固体时, 单独 原子 的 能 级就 并合 成能 带, 由 于 电 子 数目 很多 , 能 带 中能 级的间 距很 小, 因 此 可 以 看作 是连 续的, 从 能 带 理论 出发 成功 地 解 释了 大块 金属 、半 导 体、绝 缘体 原子 固体 固体能级填充 纳米晶 之间的联系与区别。

纳米材料基本效应

纳米材料基本效应

超细银粉制成的导电浆料可以进行低温烧结,此时元件的
基片不必采用耐高温的陶瓷材料,甚至可用塑料。
表(界)面效应的主要影响
熔点降低 烧结温度降低 晶化温度降低 表面化学反应活性
催化活性
纳米材料的(不)稳定性 铁磁质的居里温度降低 纳米材料的超塑性和超延展性 介电材料的高介电常数(界面极化)
1 nm,表面原子~99%
粒径越小,表面原子所占 比例越高
表面原子 26/27 表面原子 98/125
教育部顧問室奈米科技人才培育計畫
表面原子的效应
•原子配位(coordination)不足
•高面能
直径小于100nm的微粒之表面效应不可忽略
1 、熔 点 显 著 降 低
与常规粉体材料相比,纳米粒子的表面能高,表面原子数多, 这些表面原子近邻配位不全,活性大,因此,其熔化时所需增 加的内能小得多,这就使得纳米粒子熔点急剧下降。
当 δ大于热能 kBT、磁能、净磁能、静电能、光子能 量或超导态的凝聚能时,必须要考虑量子尺寸效应
量 子 尺 寸 效 应 影 响
1. 导体向绝缘体的转变 2. 吸收光谱的兰移现象 3. 磁矩的大小和颗粒中电子是奇 数还是偶数有关
4. 纳米颗粒的发光现象
二、表(界)面 效 应
球形颗粒的表面积与直径的平方成正比,其体积与直径的 立方成正比,故其比表面积(表面积/体积)与直径成反比。 随着颗粒直径变小,比表面积将会显著增大,说明表面原子 所占的百分数将会显著地增加。
电、磁、热、力学等特性呈现新的小尺寸效
应。
小尺寸效应的主要影响
金属纳米相材料的电阻增大与临界尺寸现象(电子平均自 由程) 超导相向正常相的转变(超导相干长度?) 宽频带强吸收性质(光波波长) 激子增强吸收现象(激子半径) 磁有序态向磁无序态的转变(超顺磁性)(各向异性能) 超导相向正常相的转变(超导相干长度?) 磁性纳米颗粒的高矫顽力(单畴临界尺寸) 吸收光谱的红移现象
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 如果两个量子点通过一个“结”连接起来, 一个量子点上的单个电子穿过能垒到另一 个量子点上的行为称作量子隧穿。
electron
• 有人估计,如果量子点的尺寸为1nm左右, 我们可 以在室温下观察到上述效应.当量子点尺寸在十几 纳米范围, 观察上述效应必须在液氮温度下.原因 很容易理解, 体系的尺寸越小,电容C越小,e2/2C越 大,[(e2/2C)>kT] 这就允许我们在较高温度下进行 观察.利用库仑堵塞和量子隧穿效应可以设计下一 代的纳米结构器件, 如单电子晶体管和量子开关 等.
四、宏观量子隧道效应
电子具有粒子性又具有波动性,因 此存在隧道效应。隧道效应是基本的量 子现象之一,即当微观粒子的总能量小 于势垒高度时,该粒子仍能穿越这一势 垒。近年来,人们发现一些宏观物理量, 如微颗粒的磁化强度、量子相干器件中 的磁通量等亦显示出隧道效应,称之为 宏观的量子隧道效应。
• 宏观量子隧道效应的研究对基础研究及实用都有着重 要意义。 它限定了磁带、磁盘进行信息贮存的时间极 限。量子尺寸效应、隧道效应将会是未来微电子器件 的基础, 或者它确立了现存微电子器 件进一步微型化 的极限。当微电子器件进一步细微化时 , 必须要考虑 上述的量子效应。例如,在制造半导体集成电路时, 当电路的尺寸接近电子波长时,电子就通过隧道效应 而溢出器件,使器件无法正常工作,经典电路的极限 尺寸大概在0.25微米。目前研制的量子共振隧穿晶体 管就是利用量子效应制成的新一代器件。
• 一、小尺寸效应 • 二、表面效应 • 三、量子尺寸效应 • 四、宏观量子隧道效应 • 五、库仑堵塞与量子隧穿 • 六、介电限域效应
一、小尺寸效应
随着颗粒尺寸的量变,在一定条件 下会引起颗粒性质的质变。由于颗粒尺 寸变小所引起的宏观物理性质的变化称 为小尺寸效应。对超微颗粒而言,尺寸 变小,同时其比表面积亦显著增加,从 而产生如下一系列新奇的性质。
空气中会吸附气体 , 并 与气体进行反值时 , 金属费米 能级附近的电子能级由准连续变为离散 能级的现象以及纳米半导体微粒存在不 连续的最高被占据分子轨道和最低未被 占据的分子轨道能级而使能隙变宽现象 均称为量子尺寸效应。
各种 元 素 的 原 子 具 有特 原子、大块晶体、和纳米晶的能态 定的光谱线,如钠原子
δ正比于V-1(1/d3)
对于宏观物体包含无限个原子: 导电电子数N →∞, δ →0 即 对于大粒子或宏观物体能级间距几乎为0
对于纳米微粒,所包含原子数有限,N值很小,这就导 致为一定的值,即能级间距发生分裂。
当能级间距大于热能、电场能或者磁场能 时,这时必须考虑量子尺寸效应,且会导 致纳米微粒磁、光、声、热、电以及超导 性与宏观物体截然不同的反常特性。例如, 导电的金属在超微颗粒时可以变成绝缘体, 光谱线会产生向短波长方向的移动。
(1) 特殊的光学性质
当黄金被细分到小于光波波长的尺寸时,即 失去了原有的富贵光泽而呈黑色。事实上,所有 的金属在超微颗粒状态都呈现为黑色。尺寸越小, 颜色愈黑,银白色的铂(白金)变成铂黑,金属 铬变成铬黑。由此可见,金属超微颗粒对光的反 射率很低,通常可低于l%,大约几微米的厚度就 能完全消光。利用这个特性可以作为高效率的光 热、光电等转换材料,可以高效率地将太阳能转 变为热能、电能。此外又有可能应用于红外敏感 元件、红外隐身技术等。
具有黄色的光谱线。由
无数的原子构成固体时,
单独原子的能级就并合
成能带,由于电子数目
很多,能带中能级的间
距很小,因此可以看作
是连续的,从能带理论
出发成功地解释了大块
金属、半导体、绝缘体
之间的联系与区别。
原子
固体 固体能级填充 纳米晶
能带理论表明,金属费米面附近电子能级一般是连续的, 这一点只有在高温或宏观尺寸情况下才成立。对于只有 有限个导电电子的超微粒子来说,低温下能级是离散的, 根据久保提到能级间距与费米能级和金属颗粒直径的关 系:
粒径(nm)
2 nm 5nm 10nm 100nm
原子总数N
350 4000 30000 3×106
表面原子百分数 86 40 20
2
比表面积(m2/g) 450 180 90
9
表 100

原 80
子比 数例
60
相( 对
%
40
总)
原 20
子 数0
0 10 20 30 40 50
• 由于表面原子数增多 , 原子配位不足及高的表 面能 , 使这些表面原子 具有高的活性 , 极不稳 定 , 很容易与其他原子 结合。例如金属的纳米 粒子在空气中会燃烧 , 无机的纳米粒子暴露在
研究表明,人的牙齿之所以具有很高的强度,是因为它是 由磷酸钙等纳米材料构成的。呈纳米晶粒的金属要比传统的 粗晶粒金属硬3~5倍。至于金属---陶瓷等复合纳米材料,其 应用前景十分宽广。
二、表面效应
• 纳米微粒尺寸小 , 表面能高 , 位于表面的原子占相当大的比 例。随着粒径减小 , 表面原子 数迅速增加。这是由于粒径 小 , 表面积急 剧变大所致。
五、库仑堵塞与量子隧穿
• 库仑堵塞效应是20世纪80年代介观领域所发现的极其重 要的物理现象之一。
• 当体系的尺度进入到纳米级 (一般金属粒子为几个纳米 , 半导体粒子为几十纳米 ), 体系是电荷 “量子化 ” 的 , 即 充电和放电过程是不连续的, 充入一个电子所需的能量 Ec 为 e2/2C,e 为一个电子的电荷,C为小体系的电容, 体系越 小,C 越小, 能量Ec 越大.我们把这个能量称为库仑堵塞能 . 换句话说,库仑堵塞能是前一个电子对后一个电子的库仑 排斥能, 这就导致了对一个小体系的充放电过程, 电子不能 集体传输, 而是一个一个单电子的传 输.通常把小体系这种 单电子输运行为称库仑堵塞效应
(4)特殊的力学性质
由于纳米材料粒度非常微小,具有良好的表面效应,1克纳米材 料的表面积达到几百平方米。因此,用纳米材料制成的产品其 强度、柔韧度、延展性都十分优越,就象一种有千万对脚的 毛毛虫,当它吸附在光滑的玻璃面上时,由于接触面积大, 12级台风有也吹不掉它。
陶瓷材料在通常情况下呈脆性,陶瓷茶壶一摔就碎,然而 由纳米超微颗粒压制成的纳米陶瓷材料,竟然可以象弹簧一 样具有良好的韧性。
相关文档
最新文档