数学建模大赛A题中国人口增长预测与控制题目和论文赏析
数学建模之中国人口增长的预测和人口结构的简析

数学建模之中国人口增长的预测和人口结构的简析随着社会经济的发展,人口增长一直是一个备受关注的问题。
数学建模是研究人口增长和人口结构的重要方法之一、本文将对中国人口增长的预测和人口结构进行简析,并利用数学建模方法进行预测分析。
首先,中国人口增长的情况是众所周知的。
随着中国的经济快速发展,人民生活水平的提高,医疗水平的提高以及计划生育政策的实施,中国的人口增长率逐渐放缓。
根据国家统计数据,自2024年以来,中国的总人口增长率一直在下降,其中在2024年总人口为14亿人,增长率仅为0.35%。
根据这一趋势,可以推断出未来的人口增长率可能会进一步下降。
在进行人口增长预测时,可以运用数学建模方法中的指数增长模型。
指数增长模型是描述人口增长的一种常用方法,其基本形式为:N(t)=N0*e^(r*t)其中,N(t)表示时间t时刻的人口数量,N0表示初始人口数量,r表示人口增长率,e表示自然对数的底数。
利用指数增长模型可以对未来的人口增长进行预测。
但要注意的是,由于人口增长受到多种因素的影响,例如政策调整、经济发展、文化变迁等,所以对于人口的精确预测是一项复杂而困难的任务。
因此,在进行人口预测时,应结合实际情况,综合考虑人口增长的多个因素。
另外,人口结构是指人口在不同年龄段的分布情况。
人口结构反映了一个地区或国家的经济、社会、教育等方面的发展状况。
中国的人口结构表现为老龄化趋势和少子化现象。
根据国家统计数据,中国的老龄化人口比例逐年提高,同时生育率呈下降趋势。
这种人口结构的变化将对中国的社会、经济等多个方面产生深远的影响。
为了分析人口结构的变化,可以利用数学建模中的人口金字塔。
人口金字塔以年龄为横轴,人口数量为纵轴,通过金字塔的形状和比例来反映人口的结构情况。
通过观察人口金字塔的变化,可以了解人口的年龄分布情况,判断人口的变化趋势,为相关政策和规划提供依据。
总之,中国人口增长的预测和人口结构的分析是一个复杂的问题,数学建模可以提供一种客观、科学的方法来分析这些问题。
数学建模全国赛07年A题一等奖论文

关于中国人口增长趋势的研究【摘要】本文从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了Logistic、灰色预测、动态模拟等方法进行建模预测。
首先,本文建立了Logistic阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合,对2007至2020年的人口数目进行了预测,得出在2015年时,中国人口有13.59亿。
在此模型中,由于并没有考虑人口的年龄、出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理论上很好,实用性不强,有一定的局限性。
然后,为了减少人口的出生和死亡这些随机事件对预测的影响,本文建立了GM(1,1) 灰色预测模型,对2007至2050年的人口数目进行了预测,同时还用1990至2005年的人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测,得出2030年时,中国人口有14.135亿。
与阻滞增长模型相同,本模型也没有考虑年龄一类的因素,只是做出了人口总数的预测,没有进一步深入。
为了对人口结构、男女比例、人口老龄化等作深入研究,本文利用动态模拟的方法建立模型三,并对数据作了如下处理:取平均消除异常值、对死亡率拟合、求出2001年市镇乡男女各年龄人口数目、城镇化水平拟合。
在此基础上,预测出人口的峰值,适婚年龄的男女数量的差值,人口老龄化程度,城镇化水平,人口抚养比以及我国“人口红利”时期。
在模型求解的过程中,还对政府部门提出了一些有针对性的建议。
此模型可以对未来人口做出细致的预测,但是需要处理的数据量较大,并且对初始数据的准确性要求较高。
接着,我们对对模型三进行了改进,考虑人为因素的作用,加入控制因子,使得所预测的结果更具有实际意义。
在灵敏度分析中,首先针对死亡率发展因子θ进行了灵敏度分析,发现人口数量对于θ的灵敏度并不高,然后对男女出生比例进行灵敏度分析得出其灵敏度系数为0.8850,最后对妇女生育率进行了灵敏度分析,发现在生育率在由低到高的变化过程中,其灵敏度在不断增大。
数学建模之中国人口增长的预测和人口结构的简析

中国人口增长的预测和人口结构的简析摘要本文根据过去数十年的人口数据,通过建立不同的数学模型,对中国人口的增长进行了短期和中长期的预测。
模型一:从中国统计年鉴—2008,查找得到2000-2007年的人口数据,然后用灰色模型进行人口的短期(2008-2017)预测。
这里,我们采用两种算法进行人口总数的预测。
一种是用灰色模型分别对城镇人口和乡村人口进行人口预测,然后求加和得到总的人口数;另一种是用灰色模型对实际的总人口数进行预测,预测未来10年的总人口数。
通过比较相对误差率知道第二种方法预测得到的数据误差较小,故采用第二种方法预测的未来10年的人口数为:模型二:对于中长期的预测我们采用Leslie模型进行预测。
我们利用题中所提供的人口数据的比例,将人分为6种类型,在考虑年龄结构的基础上,对各类人中的女性人数分别进行预测,然后根据男女的性别比例,求出男性的人口数,再将预测得到的各类人数进行汇总加和,最终得到总的人口数。
由于我们是根据年龄结构进行的预测,所以可以对人口进行简单的分析,得到老龄化变化趋势,乡镇市的人口所占比例的变化等。
关键词:人口预测;灰色模型;分类计算;Leslie模型一、模型假设模型一的假设:1、不考虑国际迁移,认为国家内部迁移不改变人口总量;2、不考虑自然灾害、疾病等因素对人口数量的影响;3、文中短期预测到2017年4、大面积自然灾害、疾病的发生以及人们的生育观念等因素会对当年的生育率和人口数量产生影响,认为这些因素在预测误差允许的范围内.模型二的假设:1、每一年龄组的女性在每一个时间段内有相同的生育率和死亡率;2、在预测的时间段内男女的性别比例保持现状不变;3、不考虑人口的迁入和迁出;4、不考虑空间等自然因素的影响,不考虑自然灾害对人口数量的影响。
二、问题分析中国是一个人口大国,随着经济的不断发展,生产力达到较高的水平,现在的问题已不是仅仅满足个人的需要,而是要考虑社会的需要。
中国未富先老,对经济的发展产生很大的影响。
2007A竞赛论文【中国人口增长预测】娄贞贞、白荣华、殷文芳

中国人口增长预测摘要本文从中国人口的实际情况和人口增长的特点出发,根据题目和中国统计年鉴中的相关数据,建立了两个关于中国人口增长的数学模型,并对中国人口做出了分析和预测。
模型一:利用中国统计年鉴中2000—2005 年人口的数据,运用灰色理论的基本原理建立GM(1,1) 模型。
该模型利用离散数据列进行生态处理,建立动态的微分方程,对我国近5年、10年、20年的总人口分别进行了预测。
又根据中国人口城乡分布不同且总趋势也不同的特点,把全国人口分为城市人口、城镇人口、乡村人口三部分分别进行灰色预测。
结果表明,该模型较好的反映并预测中国人口短中期和长期的变化情况。
模型二:按人口年龄结构特征,将人口分为幼年(0—14岁)男女、中年(15—49岁)男女、老年(50岁以上)男女。
各年龄段的人口变化是由出生率、死亡率和转化为其他年龄段的转化人数决定的。
根据各年龄段人口数量变化特点,对各年龄段转化人数引入转化因子,改进马尔萨斯模型,附带出生率、死亡率、生育率、出生性别比率等约束条件,建立了新的具有年龄结构的人口增长模型。
结合我国人口的特点,运用已知数据和利用微分方程的数值解,预测出男性和女性幼年、中年、老年的人口数量。
可反映中国不同年龄结构的人口分布情况。
关键词:灰色预测;小误差频率;微分方程组;人口模型;转移因子一.问题重述中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。
因此人口预测的科学性、准确性是至关重要的。
英国人口学家马尔萨斯的人口指数增长模型和荷兰生物学家的Logistic模型都是经典的人口预测模型。
但是,影响中国人口的因素较多,人口结构较复杂,这些模型对人口预测很粗略,甚至是不准确的。
因此,我们要根据我国具体的人口结构现状(如老龄化进程加速)、人口的分布现状(如乡村人口城镇化)、人口比率现状(如出生人口性别比持续升高)等特点,来较准确、较具体地对中国人口进行预测,建立人口增长的数学模型,由此对中国人口中短期和长期增长趋势做出预测。
人口增长的预测(数学建模论文

关键字:人口数平衡点方程模型运动预测曲线稳定增长人口一题目:请在人口增长的简单模型的基础上。
" (1)找到现有的描述人口增长,与控制人口增长的模型;" (2)深入分析现有的数学模型,并通过计算机进行仿真验证;" (3)选择一个你们认为较好的数学模型,并应用该模型对未来20年的某一地区或国家的人口作出有关预测;" (4)就人口增长模型给报刊写一篇文章,对控制人口的策略进行论述。
二摘要:本次建模是依照已知普查数据,利用Logistic模型,对中国人口的增长进行预测。
首先假设人口增长符合Logistic模型,即引入常数,用来表示自然环境条件所能容许的最大人口数。
并假设净增长率为,即净增长率随着人口数N(t)增长而减小,当N(t) 时,净增长率趋于零。
按照这个假设,。
用参数=3.0,r=0.0386, =1908, =14.5。
画出N=N(t)的图像,作为人口增长模型的一种近似。
做微分方程解的定性分析,求出N=N(t)的驻点和拐点,按照函数作图方法列出定性分析表,作出相轨迹的运动图。
当初始人口<时,方程的解单调递增到地趋向,这意味着如果使用Logistic模型描述人口增长,则人口发展地总趋势是渐增到最大人口数,因此可作为人口的预测值,也称谓平衡点。
用导数做稳定分析,为判断平衡点是否为稳定,可在平面上绘制f(x)的图象,然后像函数绘图那样,用导数进行定性分析,通过图看出人口数N(t)按时间是递增的,当人口数未达到饱和状态的时候,将逐渐地趋向,这意味着是稳定的平衡点。
按该模型,未来人口的数量将随着时间的演化,从初始状态出发达到极限状态,这样就给出了人口的未来预测。
三问题的提出1. Malthus模型英国统计学家Malthus(1766-1834)发现人口增长率是一个常数。
设t时刻人口为N(t),因为人口总数很大,可近似把N(t)当作连续变量处理。
Malthus的假设是:在人口的自然增长过程中,净相对增长率(出生率减去死亡率)是常数,即单位时间内人口的增长量与人口总数成正比。
中国人口增长预测-数学建模

中国人口增长的预测和人口的结构分析摘要本文是在已知国家政策和人口数据的前提下对未来人口的发展进行预测和评估,选择了两种模型分别对人口发展的短期和长期进行预测。
模型一中我们在人口阻滞增长模型logistic模型的基础上进行改进,弥补了logistic原始模型仅仅能表示环境对人口发展趋势影响的缺陷,加入了社会因素的影响作为改进,保证了logistic改进模型的有效性和短期预测的正确性。
多次运用拟合的方法(非线性单元拟合,线性多元拟合)对数据进行整合,得到的改进模型对短期预测具有极高的准确性,证明了我们的修正方式与模型改进具有一定的正确性。
模型二中我们分别考虑了城、乡、镇人口的发展情况,利用不同年龄段存活率和死亡率的不同,采用迭代的方式也就是Leslie矩阵的方式对人口发展进行预测,迭代的方式不同于拟合,具有逐步递进的准确性,在参数正确的前提下,能够保证每一年得到的人口都有正确性,同时我们分男女两方面来考虑模型,不仅仅用静态的男女比例来估算人口总数,具有更高的准确性。
然而Leslie模型涉及的参数较多,如果采用动态模型的方式,计算量过大,我们首先用均值的方式对模型进行简化,同样得到迭代矩阵后的人口数值,发展趋势与预测相同,能够很好的预测中国人口的长期发展,同时,由于Leslie矩阵涉及多个参数,所以我们用最终的结果来表征老龄化程度,城乡比,抚养比等多个评价社会发展的参数,得到了较好的估计值,使模型在估算人口的基础上得到了推广和应用。
通过logistic改进模型和Leslie模型我们分别对中国人口发展进行短期和中长期预测,均能得到很好的效果,说明了我们的模型在适用范围内的准确性和实用性。
关键词:人口发展预测;logistic模型改进;参数拟合;Leslie迭代模型;一、问题重述中国是世界上人口最多的发展中国家, 人口问题始终是制约我国发展的关键因素之一,人口众多、资源相对不足、环境承载能力较弱是中国现阶段的基本国情,短时间内难以改变。
数模优秀论文(人口预测)

论文题目:中国人口增长趋势预测与分析摘要本文主要针对中国人口增长趋势和城、镇、乡人口结构进行短期和中长期的预测与分析。
同时对人口出生率人口增长的迟滞效应、人口老龄化等因素作出了合理预测。
方面一预测短期内人口的增长趋势,本文首先运用经典的Logistic模型描述人口的增长规律,它所描述的“慢速变化--急速上升--再慢速变化”的变化过程是符合人口的增长模式,由此预测出我国人口将于2020年达到15.6亿。
通过检验,Logistic模型的误差相对较大,精确度较低,因此本文用多项式拟合的方法进行预测。
在多项式拟合中我们分别进行了不同次函数的拟合,通过比较分析发现二次拟合为最优模型,能得到很好的线性拟合,于是本文进行二次函数拟合。
通过模型求解,本文预测出未来的10年内我国人口总量将持续上涨,并且到2015年总人口将达到13.76亿,2022年人口数将逼近14亿。
另一方面,由于人口素质的提高以及国家相关政策的执行,人口出生率将逐年下降。
方面二预测中长期中国人口增长趋势,此时Logistic模型和函数拟合就不再适用。
本文建立离散模型来表现人口数量的变化规律,选取2005年的相关数据用Leslie矩阵原理,分别计算城、镇、乡各年龄段的女性人口,再根据男女比例得到男性人口数,依次递推得到了以后各年的各年龄组的人口数。
同时对人口年龄结构和人口老龄化等现象进行预测,并且考虑到出生人口的“小高峰”想象,对人口出生的迟滞效应进行了分析。
通过模型求解,预测出中国人口总数中长期情况下将先增加后减少,在2020年左右将超过18亿,达到峰值。
育龄妇女的人口总数将逐渐下降,但由于人口增长迟滞效应,2015年左右我国将会出现人口出生的又一次小高峰。
同时我国人口老龄化现象将逐步严重,到2035年我国老龄人口所占比例将达到35%,给社会带来沉重负担。
关键词:Logistic模型;多项式拟合;Leslie模型;迟滞效应;人口结构分析中国人口增长趋势预测与分析摘要本文主要针对中国人口增长趋势和城、镇、乡人口结构进行短期和中长期的预测与分析。
中国人口增长预测_灰色模型——全国数学建模大赛

根据所给的附表,计算出2001年到2005年的出生率和死亡率,见下表:
年份
死亡率
(2)计算 序列的均方差:
= =0.0001262
(3)计算残差的均值: = [ ]=0.0000281
(4)计算残差的均方差:
= =0.00003725
(5)计算C: =0.00003725/0.0001262=0.2952
(6)计算小残差概率: =0.6745 0.0001261=0.00008505
实际值(万)
预测值
相对误差
2006
131448
1311616568
0.218%
2007
132129
1318021656
0.247%
2008
132802
1324335575
0.277%
2009
133861
1330587368
0.599%
结果分析
从上述预测结果来看,前三年的预测值与实际值的误差的相对误差稳定在0.3%以内,而第四年的预测值与实际值的相对误差达到0.599%,较之前的翻了一倍,说明第四年的预测已经不是很准。所以,我们认为GM(1,1)模型只适用于比较准确的预测三年之内的总人数。
0.010147
4.283%
2005
0.009367
0.0096969
3.522%
因为 ,那就可得各年份死亡率的预测值,与现实值进行比较得出该模型精度较高,可进行预测和预报。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将男、女人口,城、镇、村的人口分开考虑,得到六个子对象,如图2所示:
图2
以下建立适用于各个子对象的通用模型。男、女性分别用下标 , 表示;城、镇、村分别用下标 表示。
将第 年初的人口分为在第 年末出生的人口与第 年末未死亡未迁出的非新生人口两类,即:
设有年龄结构向量:
其中, 为第 年初年龄为 的该类地区人数
图1
一、老龄化、城镇化、性别比的及国家政策与人口增长的关系:
1. 老龄化、城镇化、性别比与中国人口增长的关系:
老龄化使人口年龄结构发生变化,能生育的人口比例降低,进而影响各类地区人口比例及总人口数。
城镇化影响各类地区占总人口的比例,由于各类地区的死亡率、出生率不同,城镇化也影响人口总数的增长量。
性别比持续增高给人口性别结构带来变化。与老龄化类似,性别比增高使有生育能力的人口比例降低,进而影响各类地区人口比例(及城镇化程度)和总人口增长量。
4.1.1求第 年末出生的人口数
设 为第 年末年龄为 的人的死亡率, 表示各年龄生育的女性占总生育女性的概率分布(即生育模式), 为第 年末平均每个育龄女性的生育数,可以得到:
第 年末年龄为 的妇女人数为
第 年末年龄为 的妇女生下的婴儿数量为
另外,设 为第 年末生育性别比,则有:
二、
问题的假设
假设一每一年的人口总数,人口结构及分布和其他有关各量仅在年末发生变化,变化顺序是:一部分人先死亡,然后一部分人生小孩,最后一部分人迁移
假设二本文中所提到的婴儿出生率指的是婴儿出生且在一岁前存活的概率
假设三生育妇女一年只生一胎
假设四九十岁以上的人口变化对总人口变化影响不大,因此不予以考虑
中国人口增长预测与控制
摘要
针对中国人口的实际特点,建立了中国人口增长的数学模型,得到了中国人口随年份变化的增长率,解决了中国人口中短期和长期的人口预测与控制问题,包括人口总数、年龄结构、性别比、城乡比变化等各因素的预测与控制研究。
关键词:人口控制 差分模型 预测 拟和 Leslie模型 Logistic方程
数据分析:
为了建立模型,需整理筛选2001—2005年的数据,挖掘各种有用信息,剔除不良信息。很明显数据中相当一部分数据是有误的,特别是2003年的妇女生育率。本文部分数据来自于《中国统计年鉴》。
本题中的数据是通过抽样调查统计得到的,难免会出现偏差,而且用五年的数据预测三年或是三年以上的变化略显单薄。但是通过对数据的挖掘,得到了对建立模型很有帮助的数据特点,使得用5年数据预测三年以上的变化变成了可能。
假设五人口的迁移路径仅考虑从村到镇,从村到城
假设六国际迁入迁出对于人口的影响较小
三、
为了与机理分析结合求得较精确的结果,可以建立递推模型,利用附录中所给数据确定未知参数,进而确定描述中国人口增长的数学模型,并用此进行中短期、长期预测。
首先,由于人口增长受多个因素影响,我们分别建立描述各因素的数学模型,包括:死亡率模型、出生人口模型、生育性别比模型和迁移模型。由于死亡率模型和生育性别比有性别差异,各模型皆有城、镇、乡差异,所以需将男性人口与女性人口,城、镇、乡人口分开考虑。
其次,由于中短期、长期预测时问题的复杂程度不同,侧重点不同,因此中短期、长期预测的模型有所差异。中短期预测仅利用现有数据的变化趋势进行预测,长期预测需要通过机理分析得到。
最后,要检验模型的准确性,必须参照别的模型实际数据,因此我们用两个经典的模型:Logistic模型和Leislie模型进行求解并与本文模型进行比较。
四、
4.1中国人口增长的影响因素分析
人口变化包括人口增长及人口性别结构、年龄结构的变化。其中,人口性别结构、年龄结构的变化影响人口增长量及增长速度。
为了建立中国人口增长的数学模型,并进行预测,首先须考虑人口变化的影响因素。其中,老龄化、城镇化、性别比的增高等中国人口变化的特点须给与考虑。
当前各地区的人口总数和人口比例、人口年龄结构决定以后的人口总数和人口比例、人口年龄结构。人口总数和人口比例、人口年龄结构表现为老龄化程度、城镇化程度和性别比。其变化情况由出生率、死亡率、迁移率决定。国家政策影响出生率、死亡率、迁移率。以上关系见图1。
在总人口增长的影响下,各个年龄段的人口增量不同,由此使年龄结构变化,老龄化程度变化。
2.国家政策对人口增长的影响:
“三个代表”提出了中国人口发展的战略思路是稳定低生育水平,提高人口素质,改善人口结构,引导人口合理分布,保障人口安全。
其中,稳定低生育水平可控制生育率,改善人口结构意味着对出生人口性别比的控制,引导人口合理分布可控制城、镇、乡迁移率。
一、
中国人口增长影响因素主要包括老龄化进程的加速、出生人口性别比的升高和乡村人口城镇化。而老龄化程度、出生人口性别比和城镇化程度是由死亡人口、出生人口及城、镇、乡迁移人口所决定的。因此,人口增长的根本性影响因素是环境条件(决定死亡率)及国家政策(决定出生人口数量及性别结构)。
我们要解决的问题是:首先对中国人口增长做出分析;其次建立人口增长的数学模型,对人口在一至十年的中短期内及二十五年的长期内的增长情况做出预测,并向国家提出政策上的建议;最后将此模型与经典模型做出比较,指出差异及此模型的优缺点。
可见,国家政策可在中短期内降低性别比增长速度,长期内使性别比控制在合理值,影响人口总数增量。另外,政策也调整各类地区的人口比例,进而影响人口总数增量。
二、老龄化、城镇化、性别比的影响因素:
由于各类地区的人口总数、人口比例、人口结构体现出性别比、城镇化程度、老龄化程度,死亡率、出生率和出生人口性别结构、迁移率共同决定各类地区的人口总数、人口比例、人口结构的变化,所以分析人口增长的根本方法是分析死亡率、迁移率以及出生率和出生人口性别结构,同时须考虑政策的影响。
数据特点如下:
1.城市妇女生育率、镇妇女生育率、乡村妇女生育率按年龄的分布相似,并且近似满足于Gamma分布。
2.0岁时的死亡率不服从其它年龄段的死亡率近似服从的概率分布,须要剔除。
3.数据在时间上具有递推性,即人口分布在年龄以及年份上具有连续性,这是建立递推模型的关键。
4.城镇乡人口比例适用于线性回归。