2011年硕士研究生入学考试试题
2011考研试题及评分标准.

(D) α 2 , α 3 , α 4
(7) 设 F1 ( x) 与 F2 ( x ) 为两个分布函数,其相应的概率密度 f1 ( x ) 与 f 2 ( x) 是连续函数,则必 为概率密度的是 (A) f1 ( x ) f 2 ( x) 则 E (UV ) = (A) EU ⋅ EV (B) EX ⋅ EY (C) EU ⋅ EY (D) EX ⋅ EV (B) 2 f 2 ( x ) F1 ( x) (C) f1 ( x ) F2 ( x ) (D) f1 ( x ) F2 ( x) + f 2 ( x ) F1 ( x) (8) 设随机变量 X 与 Y 相互独立, 且 EX 与 EY 存在, 记 U = max{ X , Y } , V = min{ X , Y } ,
T (6) 设 A = (α1 , α 2 , α 3 , α 4 ) 是 4 阶矩阵, A 为 A 的伴随矩阵。 若 (1, 0,1, 0) 是方程组 Ax = 0 *
的一个基础解系,则 A* x = 0 的基础解系可为 (A) α1 , α 3 (B) α1 , α 2 (C) α1 , α 2 , α 3
(B) I < K < J (C) J < I < K (D) K < J < I
(5) 设 A 为 3 阶矩阵,将 A 的第 2 列加到第 1 列得矩阵 B ,再交换 B 的第 2 行与第 3 行得
1 0 0 1 0 0 单位矩阵。记 P1 = 1 1 0 , P2 = 0 0 1 ,则 A = 0 0 1 0 1 0 −1 (A) P1P2 (B) P1 P2 (C) P2 P1 (D) P2 P1−1
D
计算二重积分 I =
2011考研数学一真题及答案解析

2011年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线234(1)(2)(3)(4)y x x x x =−−−−的拐点是( )(A) (1,0). (B) (2,0). (C) (3,0). (D) (4,0). (2) 设数列{}n a 单调减少,lim 0n n a →∞=,1(1,2,)nn kk S an ===∑ 无界,则幂级数1(1)nn n a x ∞=−∑的收敛域为( )(A) (1,1]−. (B) [1,1)−. (C) [0,2). (D) (0,2]. (3) 设函数()f x 具有二阶连续导数,且()0f x >,(0)0f '=,则函数()ln ()z f x f y =在点(0,0)处取得极小值的一个充分条件是( )(A) (0)1f >,(0)0f ''>. (B) (0)1f >,(0)0f ''<. (C) (0)1f <,(0)0f ''>. (D) (0)1f <,(0)0f ''<.(4) 设4ln sin I x dx π=⎰,40ln cot J x dx π=⎰,40ln cos K x dx π=⎰,则,,I J K 的大小关系是( )(A) I J K <<. (B) I K J <<. (C) J I K <<. (D) K J I <<.(5) 设A 为3阶矩阵,将A 的第2列加到第1列得矩阵B ,再交换B 的第2行与第3行得单位矩阵,记1100110001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2100001010P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A =( ) (A) 12PP . (B) 112P P −. (C) 21P P . (D) 121P P −.(6) 设1234(,,,)A αααα=是4阶矩阵,*A 为A 的伴随矩阵,若(1,0,1,0)T是方程组0Ax =的一个基础解系,则*0A x =的基础解系可为( )(A) 13,αα. (B) 12,αα. (C) 123,,ααα. (D) 234,,ααα.(7) 设1()F x ,2()F x 为两个分布函数,其相应的概率密度1()f x ,2()f x 是连续函数,则必为概率密度的是( )(A)12()()f x f x . (B)212()()f x F x .(C)12()()f x F x . (D)1221()()()()f x F x f x F x +.(8) 设随机变量X 与Y 相互独立,且()E X 与()E Y 存在,记{}max ,U X Y =,{}min ,V X Y =则()E UV =( )(A)()()E U E V ⋅. (B)()()E X E Y ⋅. (C)()()E U E Y ⋅. (D)()()E X E V ⋅.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 曲线0tan (0)4π=≤≤⎰xy tdt x 的弧长s = .(10) 微分方程cos xy y e x −'+=满足条件(0)0y =的解为y = .(11) 设函数2sin (,)1xytF x y dt t =+⎰,则222x y F x ==∂=∂ .(12) 设L 是柱面方程221x y +=与平面=+z x y 的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分22L y xzdx xdy dz ++=⎰ .(13) 若二次曲面的方程22232224x y z axy xz yz +++++=,经过正交变换化为221144y z +=,则a = .(14) 设二维随机变量(),X Y 服从正态分布()22,;,;0N μμσσ,则()2E X Y = .三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限110ln(1)lim()x e x x x−→+.(16)(本题满分9分)设函数(,())z f xy yg x =,其中函数f 具有二阶连续偏导数,函数()g x 可导且在1x =处取得极值(1)1g =,求211x y zx y==∂∂∂.(17)(本题满分10分)求方程arctan 0k x x −=不同实根的个数,其中k 为参数.(18)(本题满分10分)(Ⅰ)证明:对任意的正整数n ,都有111ln(1)1n n n<+<+ 成立. (Ⅱ)设111ln (1,2,)2n a n n n=+++−=,证明数列{}n a 收敛.(19)(本题满分11分)已知函数(,)f x y 具有二阶连续偏导数,且(1,)0f y =,(,1)0f x =,(,)Df x y dxdy a =⎰⎰,其中{}(,)|01,01D x y x y =≤≤≤≤,计算二重积分''(,)xy DI xy f x y dxdy =⎰⎰.(20)(本题满分11分)设向量组123(1,0,1)(0,1,1)(1,3,5)T T T ααα===,,,不能由向量组1(1,1,1)T β=,2(1,2,3)T β=,3(3,4,)T a β=线性表示.(I) 求a 的值;(II) 将123,,βββ由123,,ααα线性表示.(21)(本题满分11分)A 为三阶实对称矩阵,A 的秩为2,即()2r A =,且111100001111A −⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭.(I) 求A 的特征值与特征向量; (II) 求矩阵A . (22)(本题满分11分)设随机变量X 与Y且{}221P X Y ==.(I) 求二维随机变量(,)X Y 的概率分布; (II) 求Z XY =的概率分布; (III) 求X 与Y 的相关系数XY ρ.(23)(本题满分 11分) 设12,,,n X X X 为来自正态总体20(,)μσN 的简单随机样本,其中0μ已知,20σ>未知.X 和2S 分别表示样本均值和样本方差.(I) 求参数2σ的最大似然估计量2σ∧; (II) 计算2()E σ∧和2()D σ∧.2011年全国硕士研究生入学统一考试数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1)【答案】(C).【解析】记1111,1,0y x y y '''=−==,2222(2),2(2),2,y x y x y '''=−=−= 32333(3),3(3),6(3),y x y x y x '''=−=−=− 432444(4),4(4),12(4),y x y x y x '''=−=−=− (3)()y x P x ''=−,其中(3)0P ≠,30x y =''=,在3x =两侧,二阶导数符号变化,故选(C).(2)【答案】(C).【解析】观察选项:(A),(B),(C),(D)四个选项的收敛半径均为1,幂级数收敛区间的中心在1x =处,故(A),(B)错误;因为{}n a 单调减少,lim 0n n a →∞=,所以0n a ≥,所以1nn a∞=∑为正项级数,将2x =代入幂级数得1nn a∞=∑,而已知S n =1nkk a=∑无界,故原幂级数在2x =处发散,(D)不正确.当0x =时,交错级数1(1)nn n a ∞=−∑满足莱布尼茨判别法收敛,故0x =时1(1)nn n a ∞=−∑收敛.故正确答案为(C).(3)【答案】(A). 【解析】(0,0)(0,0)|()ln ()|(0)ln (0)0zf x f y f f x∂''=⋅==∂, (0,0)(0,0)()|()|(0)0,()z f y f x f y f y '∂'=⋅==∂故(0)0f '=, 2(0,0)(0,0)2|()ln ()|(0)ln (0)0,zA f x f y f f x∂''''==⋅=⋅>∂22(0,0)(0,0)()[(0)]|()|0,()(0)z f y f B f x x y f y f ''∂'==⋅==∂∂222(0,0)(0,0)22()()[()][(0)]|()|(0)(0).()(0)z f y f y f y f C f x f f y f y f ''''∂−''''==⋅=−=∂ 又22[(0)]ln (0)0,AC B f f ''−=⋅>故(0)1,(0)0f f ''>>.(4)【答案】(B). 【解析】因为04x π<<时, 0sin cos 1cot x x x <<<<,又因ln x 是单调递增的函数,所以ln sin ln cos ln cot x x x <<. 故正确答案为(B). (5)【答案】 (D).【解析】由于将A 的第2列加到第1列得矩阵B ,故100110001A B ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 即1AP B =,11A BP −=.由于交换B 的第2行和第3行得单位矩阵,故100001010B E ⎛⎫⎪= ⎪ ⎪⎝⎭, 即2,P B E =故122B P P −==.因此,121A P P −=,故选(D).(6)【答案】(D).【解析】由于(1,0,1,0)T 是方程组0Ax =的一个基础解系,所以(1,0,1,0)0TA =,且()413r A =−=,即130αα+=,且0A =.由此可得*||A A A E O ==,即*1234(,,,)A O =αααα,这说明1234,,,αααα是*0A x =的解.由于()3r A =,130αα+=,所以234,,ααα线性无关.又由于()3r A =,所以*()1r A =,因此*0A x =的基础解系中含有413−=个线性无关的解向量.而234,,ααα线性无关,且为*0A x =的解,所以234,,ααα可作为*0A x =的基础解系,故选(D).(7)【答案】(D). 【解析】选项(D)1122()()()()f x F x f x F x dx +∞−∞⎡⎤+⎣⎦⎰2211()()()()F x dF x F x dF x +∞−∞⎡⎤=+⎣⎦⎰21()()d F x F x +∞−∞⎡⎤=⎣⎦⎰12()()|F x F x +∞−∞=1=. 所以1221()()f F x f F x +为概率密度.(8)【答案】(B).【解析】因为 {},,max ,,,X X Y U X Y Y X Y ≥⎧==⎨<⎩ {},,min ,,Y X Y V X Y X X Y ≥⎧==⎨<⎩.所以,UV XY =,于是()()E UV E XY = ()()E X E Y =.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)【答案】(ln 1+.【解析】选取x 为参数,则弧微元sec ds xdx ===所以440sec ln sec tan ln(1s xdx x x ππ==+=+⎰. (10)【答案】sin xy e x −=.【解析】由通解公式得(cos )dx dxx y e e x e dx C −−⎰⎰=⋅+⎰(cos )x e xdx C −=+⎰(sin )xe x C −=+.由于(0)0,y =故C =0.所以sin xy e x −=.(11)【答案】4. 【解析】2sin 1()F xy y x xy ∂=⋅∂+, 22222cos sin 2[1()]F y xy xy xy y x xy ∂−⋅=⋅∂+, 故2(0,2)2|4Fx∂=∂. (12)【答案】π.【解析】取22:0,1S x y z x y +−=+≤,取上侧,则由斯托克斯公式得,原式=22SS dydz dzdx dxdyydydz xdzdx dxdy x y z y xzx∂∂∂=++∂∂∂⎰⎰⎰⎰.因'',1, 1.x y z x y z z =+==由转换投影法得221[(1)(1)1]Sx y ydydz xdzdx dxdy y x dxdy +≤++=⋅−+−+⎰⎰⎰⎰.221(1)x y x y dxdy π+≤=−−+=⎰⎰221x y dxdy π+≤==⎰⎰.(13)【答案】1a =.【解析】由于二次型通过正交变换所得到的标准形前面的系数为二次型对应矩阵A 的特征值,故A 的特征值为0,1,4.二次型所对应的矩阵1131111a A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,由于310ii A λ===∏,故113101111a a a =⇒=.(14)【答案】()22μμσ+.【解析】根据题意,二维随机变量(),X Y 服从()22,;,;0N μμσσ.因为0xy ρ=,所以由二维正态分布的性质知随机变量,X Y 独立,所以2,X Y .从而有()()()()()()22222E XY E X E Y D Y E Y μμμσ⎡⎤==+=+⎣⎦. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)【解析】110ln(1)lim[]x e x x x−→+0ln(1)1lim[1].1x x x x e e →+−−=2ln(1)limx x xx e →+−=22201()2lim x x x o x x x e→−+−=22201()2lim x x o x x e→−+=12e −=.(16)(本题满分9分) 【解析】[],()z f xy yg x =[][]12,(),()()zf xy yg x y f xy yg x yg x x∂'''=⋅+⋅∂ [][]211112,()(,())(,())()zf xy yg x y f xy yg x x f xy yg x g x x y∂'''''=++∂∂ []{}21222(),()()[,()][,()]()g x f xy yg x yg x f xy yg x x f xy yg x g x '''''''+⋅+⋅+. 因为()g x 在1x =可导,且为极值,所以(1)0g '=,则21111121|(1,1)(1,1)(1,1)x y d zf f f dxdy =='''''=++. (17)(本题满分10分)【解析】显然0x =为方程一个实根. 当0x ≠时,令(),arctan xf x k x=−()()22arctan 1arctan xx x f x x −+'=. 令()2arctan 1x g x x x R x =−∈+,()()()222222211220111x x x x g x x x x +−⋅'=−=>+++, 即(),0x R g x '∈>. 又因为()00g =,即当0x <时,()0g x <; 当0x >时,()0g x >. 当0x <时,()'0f x <;当0x >时,()'0f x >.所以当0x <时,()f x 单调递减,当0x >时,()f x 单调递增 又由()00lim lim1arctan x x xf x k k x→→=−=−,()lim lim arctan x x xf x k x→∞→∞=−=+∞, 所以当10k −<时,由零点定理可知()f x 在(,0)−∞,(0,)+∞内各有一个零点; 当10k −≥时,则()f x 在(,0)−∞,(0,)+∞内均无零点.综上所述,当1k >时,原方程有三个根.当1k ≤时,原方程有一个根.(18)(本题满分10分)【解析】(Ⅰ)设()()1ln 1,0,f x x x n ⎡⎤=+∈⎢⎥⎣⎦显然()f x 在10,n⎡⎤⎢⎥⎣⎦上满足拉格朗日的条件,()1111110ln 1ln1ln 1,0,1f f n n n n n ξξ⎛⎫⎛⎫⎛⎫⎛⎫−=+−=+=⋅∈ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭所以10,n ξ⎛⎫∈ ⎪⎝⎭时, 11111111101n n n nξ⋅<⋅<⋅+++,即:111111n n n ξ<⋅<++, 亦即:111ln 11n n n⎛⎫<+< ⎪+⎝⎭. 结论得证.(II )设111111ln ln 23nn k a n n n k==++++−=−∑. 先证数列{}n a 单调递减.()111111111ln 1ln ln ln 1111n n n n k k n a a n n k k n n n n ++==⎡⎤⎡⎤⎛⎫⎛⎫−=−+−−=+=−+ ⎪ ⎪⎢⎥⎢⎥+++⎝⎭⎝⎭⎣⎦⎣⎦∑∑,利用(I )的结论可以得到11ln(1)1n n <++,所以11ln 101n n ⎛⎫−+< ⎪+⎝⎭得到1n n a a +<,即数列{}n a 单调递减.再证数列{}n a 有下界.1111ln ln 1ln nnn k k a n n k k ==⎛⎫=−>+− ⎪⎝⎭∑∑,()11112341ln 1ln ln ln 1123nnk k k n n k k n ==++⎛⎫⎛⎫⎛⎫+==⋅⋅=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∏,()1111ln ln 1ln ln 1ln 0nnn k k a n n n n k k ==⎛⎫=−>+−>+−> ⎪⎝⎭∑∑.得到数列{}n a 有下界.利用单调递减数列且有下界得到{}n a 收敛.(19)(本题满分11分) 【解析】11''(,)xy I xdx yf x y dy =⎰⎰11'0(,)x xdx ydf x y =⎰⎰()()111'000,|,x x xdx yf x y f x y dy ⎡⎤'=−⎢⎥⎣⎦⎰⎰ ()11''0(,1)(,)x x xdx f x f x y dy =−⎰⎰.因为(,1)0f x =,所以'(,1)0x f x =.11'(,)xI xdx f x y dy =−⎰⎰11'0(,)x dy xf x y dx =−⎰⎰111000(,)|(,)dy xf x y f x y dx ⎡⎤=−−⎢⎥⎣⎦⎰⎰1100(1,)(,)dy f y f x y dx ⎡⎤=−−⎢⎥⎣⎦⎰⎰ Dfdxdy =⎰⎰a =.(20)(本题满分11分)【解析】(I)由于123,,ααα不能由123,,βββ线性表示,对123123(,,,,,)βββααα进行初等行变换:123123113101(,,,,,)12401313115a ⎛⎫ ⎪= ⎪⎪⎝⎭βββααα113101011112023014a ⎛⎫ ⎪→− ⎪ ⎪−⎝⎭113101011112005210a ⎛⎫ ⎪→− ⎪ ⎪−−⎝⎭. 当5a =时,1231231(,,)2(,,,)3r r ββββββα=≠=,此时,1α不能由123,,βββ线性表示,故123,,ααα不能由123,,βββ线性表示.(II)对123123(,,,,,)αααβββ进行初等行变换:123123101113(,,,,,)013124115135⎛⎫ ⎪= ⎪ ⎪⎝⎭αααβββ101113013124014022⎛⎫ ⎪→ ⎪ ⎪⎝⎭101113013124001102⎛⎫ ⎪→ ⎪ ⎪−−⎝⎭ 1002150104210001102⎛⎫ ⎪→ ⎪ ⎪−−⎝⎭, 故112324βααα=+−,2122βαα=+,31235102βααα=+−.(21)(本题满分11分)【解析】(I)由于111100001111A −⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,设()()121,0,1,1,0,1T T αα=−=,则()()1212,,A αααα=−,即1122,A A αααα=−=,而120,0αα≠≠,知A 的特征值为121,1λλ=−=,对应的特征向量分别为()1110k k α≠,()2220k k α≠.由于()2r A =,故0A =,所以30λ=.由于A 是三阶实对称矩阵,故不同特征值对应的特征向量相互正交,设30λ=对应的特征向量为()3123,,Tx x x α=,则13230,0,T T⎧=⎨=⎩αααα即13130,0x x x x −=⎧⎨+=⎩. 解此方程组,得()30,1,0Tα=,故30λ=对应的特征向量为()3330k k α≠.(II) 由于不同特征值对应的特征向量已经正交,只需单位化:))()3121231231,0,1,1,0,1,0,1,0T T Tαααβββααα==−====. 令()123,,Q βββ=,则110TQ AQ −⎛⎫⎪=Λ= ⎪ ⎪⎝⎭, TA Q Q =Λ22122001102201022⎛−⎛⎫⎪ ⎪−⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪⎪ ⎪⎪⎝⎭⎪ ⎪− ⎪⎪⎝⎭ ⎪⎝⎭220012200000002210001022⎛−⎛⎫− ⎪ ⎪⎛⎫⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭.(22)(本题满分11分)【解析】(I)因为{}221P X Y==,所以{}{}222210≠=−==P X Y P X Y.即{}{}{}0,10,11,00P X Y P X Y P X Y==−=======.利用边缘概率和联合概率的关系得到{}{}{}{}1 0,000,10,13P X Y P X P X Y P X Y====−==−−===;{}{}{}11,110,13P X Y P Y P X Y==−==−−==−=;{}{}{}11,110,13P X Y P Y P X Y====−===.即,X Y的概率分布为(II)Z的所有可能取值为1,0,1−.{}{}111,13P Z P X Y=−===−=.{}{}111,13P Z P X Y=====.{}{}{}101113P Z P Z P Z==−=−=−=.Z XY=的概率分布为(III)因为XY Cov XY E XY E X E Y ρ−⋅==其中()()1111010333E XY E Z ==−⋅+⋅+⋅=,()1111010333E Y =−⋅+⋅+⋅=.所以()()()0−⋅=E XY E X E Y ,即X ,Y 的相关系数0ρ=XY . (23)(本题满分 11分)【解析】因为总体X 服从正态分布,故设X 的概率密度为202()2()x f x μσ−−=,x −∞<<+∞.(I) 似然函数22002211()()22222211()(;)](2)ni i i x nnnx i i i L f x eμμσσσσπσ=−−−−−==∑===∏∏;取对数:222021()ln ()ln(2)22ni i x n L μσπσσ=−=−−∑; 求导:22022221()ln ()()22()ni i x d L nd μσσσσ=−=−+∑2202211[()]2()nii x μσσ==−−∑.令22ln ()0()d L d σσ=,解得22011()n i i x n σμ==−∑. 2σ的最大似然估计量为02211()ni i X n σμ∧==−∑.(II) 方法1:20~(,)μσi X N ,令20~(0,)i i Y X N μσ=−,则2211n i i Y n σ=∧=∑.2212221()()()()[()]n i i i i i E E Y E Y D Y E Y n σσ=∧===+=∑.2222212221111()()()()n i n i i D D Y D Y Y Y D Y n nnσ∧===+++=∑442244112{()[()]}(3)σσσ=−=−=i i E Y E Y n n n. 方法2:20~(,)μσi X N ,则~(0,1)i X N μσ−,得到()2201~ni i X Y n μχσ=−⎛⎫= ⎪⎝⎭∑,即()2201ni i Y X σμ==−∑.()()222222011111()n i i E E X E Y E Y n n n n n μσσσσσ=∧⎛⎫⎡⎤=−===⋅= ⎪⎢⎥⎣⎦⎝⎭∑.()()22444022222111112()2n i i D D X D Y D Y n nn n n n μσσσσσ=∧⎛⎫⎡⎤=−===⋅= ⎪⎢⎥⎣⎦⎝⎭∑.。
2011考研数学(一二三)真题(含答案)

(B) 1,2 .
(C) 1,2,3 . (D) 2 ,3,4 .
【解析】由 x 0 的基础解系只有一个知 r(A) 3 ,所以 r( A) 1,
f
(0),
B
2z xy
|(0,0)
f
(x)
f ( y) f (y)
|(0,0)
[
f (0)]2 f (0)
0,
C
2z y2
|(0,0)
f
(x)
f
( y) f
(y) [ f f 2(y)
( y)]2
|(0,0)
f (0) [ f (0)]2 f (0)
较强。
观察选项:(A),(B),(C),(D)四个选项的收敛半径均为 1,幂级数收敛区间的中心在 x 1 处,
故(A),(B)错误;
因为
an
单调减少,lim n
an
0 ,所以 an
0 ,所以
n1
an
为正项级数,将
x
2 代入幂级数得
n1
an
,
n
而已知 Sn ak 无界,故原幂级数在 x 2 处发散,(D)不正确. k 1
2011 年全国硕士研究生入学 统一考试
数学(一、二、三) 试题及解析
山东考研辅导专家 苏老师
1
2011 年全国硕士研究生入学统一考试
数学(一)试题
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每题给出的四个选项中,只有一个选项符合题目要 求,请将所选项前的字母填在答.题.纸.指定位置上.
2
2011年考研数学三真题及解析

2011年全国硕士研究生入学统一考试数学三试题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1) 已知当0x时,3sin sin3f x x x 与kcx 是等价无穷小,则( )(A) k=1, c =4 (B ) k=1,c = 4(C) k=3,c =4(D ) k=3,c =4【答案】(C)【详解】本题涉及到的主要知识点:当0x时,sin x x在本题中,3sin sin 3limkxx xcx3sin sin cos 2cos sin 2limk xxx xx xcx2si n 3c o s 22c o sl i mkxxx x cx213c o s 22c o sl i mk xx x cx22132cos 12cos limk xx xcx221144cos 4sin limlimk k xxx x cxcx34l i m 14,3kx c kcx,故选择(C).(2) 已知函数f x 在x=0处可导,且0f =0,则2332limxx f xf xx = ( )(A) 2f (B)f (C) 0f (D) 0.【答案】(B)【详解】本题涉及到的主要知识点:导数的定义0000()()lim()xf x x f x f x x在本题中,2322333020220limlim x x x f xf xx f xx f f xf x x3300lim20200xf x f f xf f f f xx故应选(B)(3) 设n u 是数列,则下列命题正确的是( )(A)若1n n u 收敛,则2121()nn n u u 收敛(B) 若2121()nn n u u 收敛,则1n n u 收敛(C) 若1n n u 收敛,则2121()nn n u u 收敛(D) 若2121()nn n u u 收敛,则1n n u 收敛【答案】(A)【详解】本题涉及到的主要知识点:级数的基本性质若级数1n n u 收敛,则不改变其项的次序任意加括号,并把每个括号内各项的和数作为一项,这样所得到的新级数仍收敛,而且其和不变.在本题中,由于级数2121()nn n u u 是级数1n n u 经过加括号所构成的,由收敛级数的性质:当1n n u 收敛时,2121()nn n u u 也收敛,故(A )正确.(4) 设40ln sin Ix dx ,40ln cot Jx dx ,40ln cos K xdx ,则,,I J K 的大小关系是( )(A) IJ K(B) I KJ(C) JIK(D) KJ I【答案】(B)【详解】本题涉及到的主要知识点:如果在区间[,]a b 上,()()f x g x ,则()()b b aaf x dxg x dx ()ab 在本题中,如图所示:因为04x,所以0sin cos 1cot x x x又因ln x 在(0,)是单调递增的函数,所以ln sin ln cos ln cot x xx(0,)4x4440ln sin ln cos ln cot x dx x dx x dx即I KJ .选(B ).(5) 设A 为3阶矩阵,将A 的第二列加到第一列得矩阵B ,再交换B 的第二行与第三行得单位矩阵,记1100110001P ,210000101P ,则A = ( )(A)12P P (B)112P P (C)21P P (D)121P P 【答案】(D)【详解】本题涉及到的主要知识点:设A 是一个m n 矩阵,对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵.π/4在本题中,由于将A 的第2列加到第1列得矩阵B ,故100110,1A B 即111,AP B ABP 故由于交换B 的第2行和第3行得单位矩阵,故10000101B E即2,P BE 故122,BP P 因此,1112121,A P P P P 故选(D)(6) 设A 为43矩阵,123,,是非齐次线性方程组Ax的3个线性无关的解,12,k k 为任意常数,则Ax的通解为()(A) 23121()2k (B)23121()2k (C)23121231()()2k k (D)23121231()()2k k 【答案】(C)【详解】本题涉及到的主要知识点:(1)如果1,2是Ax b 的两个解,则12是0Ax 的解;(2)如n 元线性方程组Axb 有解,设12,,,t是相应齐次方程组0Ax的基础解系,是Ax b 的某个已知解,则11220ttk k k 是Axb 的通解(或全部解),其中12,,,t k k k 为任意常数.在本题中,因为123,,是Ax的3个线性无关的解,那么21,31是0Ax的2个线性无关的解.从而()2n r A ,即3()2()1r A r A 显然()1r A ,因此()1r A 由()312n r A ,知(A )(B )均不正确. 又232311222AAA,故231()2是方程组Ax的解.所以应选(C ).(7) 设1()F x ,2()F x 为两个分布函数,其相应的概率密度1()f x 与2()f x 是连续函数,则必为概率密度的是()(A) 1()f x 2()f x (B) 22()f x 1()F x (C)1()f x 2()F x (D)1()f x 2()F x +2()f x 1()F x 【答案】(D)【详解】本题涉及到的主要知识点:连续型随机变量的概率密度()f x 的性质:()1f x dx 在本题中,由于1()f x 与2()f x 均为连续函数,故它们的分布函数1()F x 与2()F x 也连续.根据概率密度的性质,应有()f x 非负,且()1f x dx .在四个选项中,只有(D )选项满足1221()()()()f x F x f x F x dx2112()()()()F x dF x F x dF x 121212()()()()()()F x F x F x dF x F x dF x 1故选(D ).(8) 设总体X 服从参数为(0)的泊松分布,12,,,(2)n X X X n为来自该总体的简单随机样本,则对于统计量111ni i T X n和121111n in i T X X n n,有()(A) 1ET >2ET ,1DT >2DT (B) 1ET >2ET ,1DT <2DT (C)1ET <2ET ,1DT >2DT (D)1ET <2ET ,1DT <2DT 【答案】(D)【详解】本题涉及到的主要知识点:(1)泊松分布()X P 数学期望EX ,方差DX(2)()E cX cEX ,()E X Y EXEY ,2()D cX c DX ,()D XY DXDY (X 与Y 相互独立)在本题中,由于12,,,n X X X 独立同分布,且0iiEX DX ,1,2,,i n ,从而111111()()nni i i i E T E X E X n E Xnnn,112111111()()11n n ini n ii E T EX X E X E X n nn n11(1)()()1i n n E X E X n n111E XE X nn故12E T E T 又1121((11))ni i D T D n D X D Xn nX nn,12221111()(1)1(1)n in i D T D X X n n nn n12()1D T n nn,故选(D ).二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9) 设0lim 13xtt f x x t,则f x.【答案】313xex【详解】本题涉及到的主要知识点:重要极限公式1l i m (1)xxxe在本题中,3130lim 13lim13x t x tttttf x x tx t 3xx e所以有313xf x ex .(10) 设函数1xyx z y,则1,1dz.【答案】12ln 2dx dy【详解】用对数求导法.两边取对数得ln ln(1)x x zyy,故11[ln(1)]z x x z xyyxy,21[ln(1)]z x x x z yyyxy令1x ,1y ,得(1,1)2ln 21z x ,(1,1)(2ln 21)z y,从而(1,1)12ln 2dz dx dy(11) 曲线tan 4yxye 在点0,0处的切线方程为.【答案】2yx【详解】方程变形为arctan()4y x ye ,方程两边对x 求导得211y yeyy e,在点(0,0)处(0)2y ,从而得到曲线在点(0,0)处的切线方程为2yx .(12) 曲线21yx,直线2x及x 轴所围成的平面图形绕x 轴旋转所成的旋转体的体积为.y21y x【答案】43【详解】本题涉及到的主要知识点:设有连续曲线()yf x ()axb ,则曲线()yf x 与直线x a ,x b 及x 轴围成的平面图形绕x 轴旋转一周产生的旋转体的体积2()b xaV f x dx在本题中,222223111141().33Vy dxxdxx x (13) 设二次型123,,Tf x x x x Ax 的秩为1,A 中各行元素之和为3,则f 在正交变换x Qy 下的标准形为.【答案】213y【详解】本题涉及到的主要知识点:任给二次型,1()nij i j ijji i j fa x x a a ,总有正交变换xPy ,使f 化为标准形2221122nnfyyy ,其中12,,,n是f 的矩阵()ij A a 的特征值.在本题中,A 的各行元素之和为3,即1112131112132122232122233132333132333,13113,1313113113a a a a a a a a a a a a A a a a a a a 所以3是A 的一个特征值.再由二次型Tx Ax 的秩为10是A 的2重特征值.因此,正交变换下标准形为:213y.(14) 设二维随机变量,X Y 服从正态分布22,;,;0N,则2E X Y= .【答案】22()【详解】本题涉及到的主要知识点:(1)如果随机变量X 和Y 的相关系数0XY,则称X 与Y 不相关.(2)若随机变量X 与Y 的联合分布是二维正态分布,则X 与Y 独立的充要条件是X 与Y 不相关.(3)如果随机变量X 与Y 相互独立,则有()E XY EXEY在本题中,由于,X Y 服从正态分布22,;,;0N,说明X ,Y 独立同分布,故X 与2Y 也独立.由期望的性质有22()E XY EX EY ,又EX,2222()EYDYEY ,所以222()()E XY 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分)求极限012sin 1limln 1xx x x x【详解】本题涉及到的主要知识点:当0x时,ln(1)x x在本题中,012sin 1limln 1xx x x x212sin 1lim x xx x2cos 1cos 12sin cos 12sin 212sin lim lim lim 22212sin x x x xx xx x x xxx xcos sin cos 112sin lim lim .22212sin x x x x x xx(16) (本题满分10分)已知函数,f u v 具有连续的二阶偏导数,1,12f 是,f u v 的极值,(,,)z f x y f x y .求21,1zx y【详解】本题涉及到的主要知识点:极值存在的必要条件设(,)zf x y 在点00(,)x y 具有偏导数,且在点00(,)x y 处有极值,则必有00(,)0x f x y ,00(,)0y f x y .在本题中,(,(,))z f xy f x y 121(,(,))(,(,))(,)z f xy f x y f xy f x y f x y x2111221(,(,))(,(,))(,)(,)zf x y f x y f x y f x y f x y f x y x y21222212[(,(,))(,(,))(,)](,(,)),f xy f x y f x y f x y f x y f x y f x y f x y 1,12f 为,f u v 的极值121,11,1f f211212(1,1)2,2(2,2)(1,1)z f f f x y (17) (本题满分10分)求不定积分arcsin ln xxdxx【详解】本题涉及到的主要知识点:(1)()x t ,1()[()]()()[()]f x dx f t t dt G t C G x C ;(2)udvuvvdu ;(3)[()()]()()f x g x dx f x dx g x dx . 在本题中,令t x,2xt ,2dxtdt arcsin ln xxdxx2arcsin ln 2tttdt t 22arcsin ln t t dt22222arcsin 22ln 21tt t tdt t tt dttt222(1)2arcsin 2ln 41d t t t t tt t222arcsin 2ln 214t t t ttt C2arcsin 2ln 214x x x x x x C ,其中C 是任意常数.(18) (本题满分10分)证明方程44arctan 303xx恰有两个实根.【详解】本题涉及到的主要知识点:(1)零点定理设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ),那么在开区间(,)a b 内至少有一点,使()0f (2)函数单调性的判定法设函数()yf x 在[,]a b 上连续,在(,)a b 内可导.①如果在(,)a b 内()0f x ,那么函数()y f x 在[,]a b 上单调增加;②如果在(,)a b 内()0f x ,那么函数()yf x 在[,]a b 上单调减少. 在本题中,令4()4arctan 33f x xx,'24()11f x x当3x 时,'()0f x ,()f x 单调递减;当3x时,'()0f x ,()f x 单调递增.4(3)4a r c t a n (3)(3)303f .当3x 时,()f x 单调递减,,3x,()0f x ;当33x时,()f x 单调递增, 3,3x,()f x 3x是函数()f x 在(,3)上唯一的零点.又因为48(3)4arctan33323033f 且4lim lim 4arctan 3.3xxfxx x由零点定理可知,03,x ,使0f x ,方程44arctan 303xx恰有两个实根.(19)(本题满分10分)设函数()f x 在区间0,1具有连续导数,(0)1f ,且满足'()()ttD D f xy dxdyf t dxdy , (,)0,0(01)tD x y yt x xt t,求()f x 的表达式.【详解】本题涉及到的主要知识点:一阶线性微分方程()()dy P x y Q x dx 的通解()()(())P x dxP x dxyeQ x edx C .在本题中,因为()()t tt xD f xy dxdydxf xy dy ,令x y u ,则()()()()t x t x f x y dyf u duf t f x 0()(()())()()tt t D f xy dxdyf t f x dxtf t f x dx21()()()()2tt D tf t f x dxf t dxdyt f t . 两边对t 求导,得2()()02f t f t t ,解齐次方程得212()(2)dt t C f t Cet 由(0)1f ,得4C . 所以函数表达式为24()(01)(2)f x x x .(20) (本题满分11分)设向量组11,0,1T,20,1,1T,31,3,5T不能由向量组11,1,1T,21,2,3T,33,4,Ta线性表出.(I)求a 的值;(II)将1,2,3用1,2,3线性表出.【详解】本题涉及到的主要知识点:向量组12,,,l b b b 能由向量组12,,,m a a a 线性表示的充分必要条件是121212(,,,)(,,,,,,,)m m l r a a a r a a a b b b (I)因为123101,,01310115,所以123,,线性无关.那么123,,不能由123,,线性表示123,,线性相关,即123113113,,124011501323aaa,所以5a (II)如果方程组112233(1,2,3)jx x x j 都有解,即123,,可由123,,线性表示.对123123,,,,,()作初等行变换,有123123,,,,,()=10111301312411513510111301312401422101113013124011021002150104210001102故112324,2122,31235102(21) (本题满分11分)A 为3阶实对称矩阵,A 的秩为2,且11110001111A (I) 求A 的所有特征值与特征向量;(II) 求矩阵A .【详解】本题涉及到的主要知识点:(1)(0)A为矩阵A 的特征值,为对应的特征向量(2)对于实对称矩阵,不同特征值的特征向量互相正交.(I )因()2r A 知0A ,所以0是A 的特征值.又111000111A,110011A ,所以按定义1是A 的特征值,1(1,0,1)T是A 属于1的特征向量;1是A 的特征值,2(1,0,1)T是A 属于1的特征向量.设3123(,,)Tx x x 是A 属于特征值0的特征向量,作为实对称矩阵,不同特征值对应的特征向量相互正交,因此131323130,0,T T x x x x 解出3(0,1,0)T故矩阵A 的特征值为1,1,0;特征向量依次为123(1,0,1),(1,0,1),(0,1,0)T T Tk k k ,其中123,,k k k 均是不为0的任意常数.(II)由12312(,,)(,,0)A ,有1112123110110001(,,0)(,,)000001000111101A . (22)(本题满分11分)设随机变量X 与Y 的概率分布分别为X 01P 1/32/3Y 10 1P1/31/31/3且22()1P XY .(I) 求二维随机变量(,)X Y 的概率分布;(II) 求ZXY 的概率分布;(III) 求X 与Y 的相关系数XY.【详解】本题涉及到的主要知识点:(1)协方差cov ,X Y E XY E X E Y(2)相关系数c o v ,()()XYX Y D X D Y (I)设(,)X Y 的概率分布为YX-110 11p 12p 13p 1/3 121p 22p 23p 2/31/31/31/3根据已知条件221P XY,即0,01,11,11P X Y P X YP XY ,可知12211p pp ,从而11130p pp ,12212313p p p ,即(,)X Y 的概率分布为(II) Z XY 的所有可能取值为-1,0,1 .111,13P Z P X Y 111,13P Z P XY101113P ZP Z P ZZ XY 的概率分布为(3) 23EX,0EY ,0EXY ,故(,)0Cov X Y EXY EX EY ,从而0XY.(23)(本题满分11分)设二维随机变量(,)X Y 服从区域G 上的均匀分布,其中G 是由0,2x y x y 与0y 所围成的三角形区域.(I) 求X 的概率密度()X f x ;(II) 求条件概率密度|(|)X Y f x y .【详解】本题涉及到的主要知识点:(1)X 、Y 是连续型随机变量,边缘概率密度为()(,)X f x f x y dy ,()(,)Y f y f x y dx ;(2)在Y y 的条件下X 的条件概率密度(,)()()X Y Y f x y f x y f y ;(3)设G 是平面上的有界区域,其面积为A .若二维随机变量(,)X Y 具有概率密度Z -1 0 1 p1/31/31/3X Y -1 0 1 0 1/3 0 10 1/31/31,(,),(,)0,x y G f x y A 其他则称(,)X Y 在G 上服从均匀分布.(I)(,)X Y 的联合密度为1,(,),(,)0,(,).x y G f x y x y G 当01x 时,0()(,)1xX f x f x y dy dy x ;当12x时,20()(,)12x X f x f x y dydyx ;当0x或2x时,()0X f x .所以, 01,()2, 12,0,X x x f x x x其它.(II)|(,)(|)()X Y Y f x y f x y f y 当01y时,2()122y Y yf y dx y ;当0y 或1y时,()0Y f y .所以|1,2,01,22(|)0,X Y yxy yy f x y 其他.。
2011年全国硕士研究生入学考试英语试题及答案

2011年全国硕士研究生入学考试英语(二)试题及参考答案2011年01月17日16:43 Section I Use of EnglishDirections:Read the following text. Choose the best word(s) for each numbered black and mark A, B, C or D on ANSWER SHEET 1. (10 points)The Internet affords anonymity to its users, a blessing to privacy and freedom of speech. But that very anonymity is also behind the explosion of cyber-crime that has 1 across the Web.Can privacy be preserved 2 bringing safety and security to a world that seems increasingly 3 ?Last month, Howard Schmidt, the nation’s cyber-czar, offered the federal government a 4 to make the Web a safer place-a “voluntary trusted identity” system that would be the high-tech 5 of a physical key, a fingerprint and a photo ID card, all rolled 6 one. The system might use a smart identity card, or a digital credential 7 to a specific computer .and would authenticate users at a range of online services.The idea is to 8 a federation of private online identity systems. User could 9 which system to join, and only registered users whose identities have been authenticated could navigate those systems. The approach contrasts with one that would require an Internet driver’s license 10 by the government.Google and Microsoft are among companies that already have these“single sign-on” systems that make it possible for users to 11 just once but use many different services.12 .the approach would create a “walled garden” n cyberspace, with safe “neighborhoods” and bright “streetlights” to establish a sense of a 13 community.Mr. Schmidt described it as a “voluntary ecosystem” in which “individuals and organizations can complete online transactions with 14 ,trusting the identities of each other and the identities of the infrastructure 15 which the transaction runs”.Still, the administration’s plan has 16 privacy rights activists. Some applaud the approach; others are concerned. It seems clear that such a scheme is an initiative push toward what would 17 be a compulsory Internet “drive’s license” mentality.The plan has also been greeted with 18 by some computer security experts, who worry that the “voluntary ecosystem” envisioned by Mr. Schmidt would still leave much of the Internet 19 .They argue that all Internet users should be 20 to register and identify themselves, in the same way that drivers must be licensed to drive on public roads.1.A.sweptB.skippedC.walkedD.ridden2.A.forB.withinC.whileD.though3.A.carelesswlessC.pointlessD.helpless4.A.reasonB.reminderpromiseD.proposal5.rmationB.interferenceC.entertainmentD.equivalent6.A.byB.intoC.fromD.over7.A.linkedB.directedC.chainedpared8.A.dismissC.createD.improve9.A.recallB.suggestC.selectD.realize10.A.relcasedB.issuedC.distributedD.delivered11.A.carry onB.linger onC.set inD.log in12.A.In vainB.In effectC.In returnD.In contrast13.A.trustedB.modernized c.thriving peting14.A.cautionB.delightC.confidenceD.patience15.A.onB.afterC.beyond16.A.dividedB.disappointedC.protectedD.united17.A.frequestlyB.incidentallyC.occasionallyD.eventually18.A.skepticismB.releranceC.indifferenceD.enthusiasm19.A.manageableB.defendableC.vulnerableD.invisible20.A.invitedB.appointedC.allowedD.forcedSection II Reading ComprehensionPart ADirections:Read the following four texts. Answer the questions after each text by choosing A, B, C or D. Mark your answers on ANSWER SHEET 1. (40points)Text 1Ruth Simmons joined Goldman Sachs’s board as an outside director in Janu ary 2000: a year later she became president of Brown University. For the rest of the decade she apparentlymanaged both roles without attracting much eroticism. But by the end of 2009 Ms. Simmons was under fire for having sat on Goldman’s compensation comm ittee; how could she have let those enormous bonus payouts pass unremarked? By February the next year Ms. Simmons had left the board. The position was just taking up too much time, she said.Outside directors are supposed to serve as helpful, yet less biased, advisers on a firm’s board. Having made their wealth and their reputations elsewhere, they presumably have enough independence to disagree with the chief executive’s proposals. If the sky, and the share price is falling, outside directors should be able to give advice based on having weathered their own crises.The researchers from Ohio University used a database hat covered more than 10,000 firms and more than 64,000 different directors between 1989 and 2004. Then they simply checked which directors stayed from one proxy statement to the next. The most likely reason for departing a board was age, so the researchers concentrated on those “surprise” disappearances by directors under the age of 70. They fount that after a surprise departure, the probability that the company will subsequently have to restate earnings increased by nearly 20%. The likelihood of being named in a federal class-action lawsuit also increases, and the stock is likely to perform worse. The effect tended to be larger for larger firms. Although a correlation between them leaving and subsequent bad performance at the firm is suggestive, it does not mean that such directors are always jumping off a sinking ship. Often they “trade up.” Leaving riskier, smaller firms for larger and more stable firms.But the researchers believe that outside directors have an easier time of avoiding a blow to their reputations if they leave a firm before bad news breaks, even if a review of history shows they were on the board at the time any wrongdoing occurred. Firms who want to keep their outside directors through tough times may have to create incentives. Otherwise outside directors will follow the example of Ms. Simmons, once again very popular on campus.21. According to Paragraph 1, Ms. Simmons was criticized for .[A]gaining excessive profits[B]failing to fulfill her duty[C]refusing to make compromises[D]leaving the board in tough times22. We learn from Paragraph 2 that outside directors are supposed to be .[A]generous investors[B]unbiased executives[C]share price forecasters[D]independent advisers23. According to the researchers from Ohio University after an outside dir ector’s surprise departure, the firm is likely to .[A]become more stable[B]report increased earnings[C]do less well in the stock market[D]perform worse in lawsuits24. It can be inferred from the last paragraph that outside directors .[A]may stay for the attractive offers from the firm[B]have often had records of wrongdoings in the firm[C]are accustomed to stress-free work in the firm[D]will decline incentives from the firm25. The author’s attitude toward the role of outside directors is .[A]permissive[B]positive[C]scornful[D]criticalText 2Whatever happened to the death of newspaper? A year ago the end seemed near. The recession threatened to remove the advertising and readers that had not already fled to the internet. Newspapers like the San Francisco Chronicle were chronicling their own doom. America’s Federal Trade commission launched a round of talks about how to save newspapers. Should they become charitable corporations? Should the state subsidize them ? It will hold another meeting soon. But the discussions now seem out of date.In much of the world there is the sign of crisis. German and Brazilian papers have shrugged off the recession. Even American newspapers, which inhabit the most troubled come of the global industry, have not only survived but often returned to profit. Not the 20% profit margins that were routine a few years ago, but profit all the same.It has not been much fun. Many papers stayed afloat by pushing journalists overboard. The American Society of News Editors reckons that 13,500 newsroom jobs have gone since 2007. Readers are paying more for slimmer products. Some papers even had the nerve to refuse delivery to distant suburbs. Yet these desperate measures have proved the right ones and, sadly for many journalists, they can be pushed further.Newspapers are becoming more balanced businesses, with a healthier mix of revenues from readers and advertisers. American papers have long been highly unusual in their reliance on ads. Fully 87% of their revenues came from advertising in 2008, according to the Organization for Economic Cooperation & Development (OECD). In Japan the proportion is 35%. Not surprisingly, Japanese newspapers are much more stable.The whirlwind that swept through newsrooms harmed everybody, but much of the damage has been concentrated in areas where newspaper are least distinctive. Car and film reviewers have gone. So have science and general business reporters. Foreign bureaus have been savagely cut off. Newspapers are less complete as a result. But completeness is no longer a virtue in the newspaper business.26. By sa ying “Newspapers like … their own doom” (Lines 3-4, Para. 1), the author indicates that newspaper .[A]neglected the sign of crisis[B]failed to get state subsidies[C]were not charitable corporations[D]were in a desperate situation27. Some newspapers refused delivery to distant suburbs probably because .[A]readers threatened to pay less[B]newspapers wanted to reduce costs[C]journalists reported little about these areas[D]subscribers complained about slimmer products28. Compared with their American counterparts, Japanese newspapers are much more stable because they .[A]have more sources of revenue[B]have more balanced newsrooms[C]are less dependent on advertising[D]are less affected by readership29. What can be inferred from the last paragraph about the current newspaper business?[A]Distinctiveness is an essential feature of newspapers.[B]Completeness is to blame for the failure of newspaper.[C]Foreign bureaus play a crucial role in the newspaper business.[D]Readers have lost their interest in car and film reviews.30. The most appropriate title for this text would be .[A]American Newspapers: Struggling for Survival[B]American Newspapers: Gone with the Wind[C]American Newspapers: A Thriving Business[D]American Newspapers: A Hopeless StoryText 3We tend to think of the decades immediately following World War II as a time of prosperity and growth, with soldiers returning home by the millions, going off to college on the G. I. Bill and lining up at the marriage bureaus.But when it came to their houses, it was a time of common sense and a belief that less could truly be more. During the Depression and the war, Americans had learned to live with less, and that restraint, in combination with the postwar confidence in the future, made small, efficient housing positively stylish.Economic condition was only a stimulus for the trend toward efficient living. The phrase“less is more” was actually first popularized by a German, the architect Ludwig Mies van der Rohe, who like other people associated with the Bauhaus, a school of design, emigrated to the United States before World War IIand took up posts at American architecture schools. These designers came to exert enormous influence on the course of American architecture, but none more so that Mies.Mies’s signature phrase means that less decoration, properly organized, has more impact that a lot. Elegance, he believed, did not derive from abundance. Like other modern architects, he employed metal, glass and laminated wood-materials that we take for granted today buy that in the 1940s symbolized the future. Mies’s sophisticated presentation masked the fact that the spaces he designed were small and efficient, rather than big and often empty.The apartments in the elegant towers M ies built on Chicago’s Lake Shore Drive, for example, were smaller-two-bedroom units under 1,000 square feet-than those in their older neighbors along the city’s Gold Coast. But they were popular because of their airy glass walls, the views they afforded a nd the elegance of the buildings’ details and proportions, the architectural equivalent of the abstract art so popular at the time.The trend toward “less” was not entirely foreign. In the 1930s Frank Lloyd Wright started building more modest and efficient houses-usually around 1,200 square feet-than the spreading two-story ones he had designed in the 1890s and the early 20th century.The “Case Study Houses” commissioned from talented modern architects by California Arts & Architecture magazine between 1945 and 1962 were yet another homegrown influence on the “less is more” trend. Aesthetic effect came from the landscape, new materials and forthright detailing. In his Case Study House, Ralph everyday life –few American families acquired helicopters, though most eventually got clothes dryers –but his belief that self-sufficiency was both desirable and inevitable was widely shared.31. The postwar American housing style largely reflected the Americans’ .[A]prosperity and growth[B]efficiency and practicality[C]restraint and confidence[D]pride and faithfulness32. Which of the following can be inferred from Paragraph 3 about Bauhaus?[A]It was founded by Ludwig Mies van der Rohe.[B]Its designing concept was affected by World War II.[C]Most American architects used to be associated with it.[D]It had a great influence upon American architecture.33. Mies held that elegance of architectural design .[A]was related to large space[B]was identified with emptiness[C]was not reliant on abundant decoration[D]was not associated with efficiency34. What is true about the apartments Mies building Chicago’s Lake Shore Drive?[A]They ignored details and proportions.[B]They were built with materials popular at that time.[C]They were more spacious than neighboring buildings.[D]They shared some characteristics of abstract art.35. What can we learn about the design of the “Case Study House”?[A]Mechanical devices were widely used.[B]Natural scenes were taken into consideration[C]Details were sacrificed for the overall effect.[D]Eco-friendly materials were employed.Text 4Will the European Union make it? The question would have sounded strange not long ago. Now even the project’s greatest cheerleaders talk of a continent facing a “Bermuda triangle” of debt, population decline and lower growth.As well as those chronic problems, the EU face an acute crisis in its economic core, the 16 countries that use the single currency. Markets have lost faith that the euro zone’s economies,weaker or stronger, will one day converge thanks to the discipline of sharing a single currency, which denies uncompetitive members the quick fix of devaluation.Yet the debate about how to save Europe’s single currency from disintegration is stuck. It is stuck because the euro zone’s dominant powers, France and Germany, agree on the need for greater harmonization within the euro zone, but disagree about what to harmonies.Germany thinks the euro must be saved by stricter rules on borrow spending and competitiveness, barked by quasi-automatic sanctions for governments that do not obey. These might include threats to freeze EU funds for poorer regions and EU mega-projects and even the suspension of a country’s voting rights in EU ministerial councils. It insists that economic co-ordination should involve all 27 members of the EU club, among whom there is a small majority for free-market liberalism and economic rigour; in the inner core alone, Germany fears, a small majority favour French interference.A “southern” camp headed by French wants something different: ”European economic government” within an inner core of euro-zone members. Translated, that means politicians intervening in monetary policy and a system of redistribution from richer to poorer members, via cheaper borrowing for governments through common Eurobonds or complete fiscal transfers. Finally, figures close to the France government have murmured, curo-zone members should agree to some fiscal and social harmonization: e.g., curbing competition in corporate-tax rates or labour costs.It is too soon to write off the EU. It remains the world’s largest trading block. At its best, the European project is remarkably liberal: built around a single market of 27 rich and poor countries, its internal borders are far more open to goods, capital and labour than any comparable trading area. It is an ambitious attempt to blunt the sharpest edges of globalization, and make capitalism benign.36. The EU is faced with so many problems that .[A] it has more or less lost faith in markets[B] even its supporters begin to feel concerned[C] some of its member countries plan to abandon euro[D] it intends to deny the possibility of devaluation37. The debat e over the EU’s single currency is stuck because the dominant powers .[A] are competing for the leading position[B] are busy handling their own crises[C] fail to reach an agreement on harmonization[D] disagree on the steps towards disintegration38. To solve the euro problem ,Germany proposed that .[A] EU funds for poor regions be increased[B] stricter regulations be imposed[C] only core members be involved in economic co-ordination[D] voting rights of the EU members be guaranteed39. The French proposal of handling the crisis implies that __ __.[A]poor countries are more likely to get funds[B]strict monetary policy will be applied to poor countries[C]loans will be readily available to rich countries[D]rich countries will basically control Eurobonds40. Regarding the future of the EU, the author seems to feel __ __.[A]pessimistic[B]desperate[C]conceited[D]hopefulPart BDirections:Read the following text and answer the questions by finding information from the right column that corresponds to each of the marked details given in the left column. There are two extra choices in the right column. Mark your answer on ANSWER SHEET 1. (10 points)46.Direction:In this section there is a text in English. Translate it into Chinese, write your translation on ANSWER SHEET 2. (15points)Who would have thought that, globally, the IT industry produces about the same volumes of greenhouse gases as the world’s airlines do-rough 2 percent of all CO2 emissions?Many everyday tasks take a surprising toll on the environment. A Google search can leak between 0.2 and 7.0 grams of CO2 depending on how many attempts are needed to get the “right” answer. To deliver results to its users quickly, then, Google has to maintain vast data centres round the world, packed with powerful computers. While producing large quantities of CO2, these computers emit a great deal of heat, so the centres need to be well air-conditioned, which useseven more energy.However, Google and other big tech providers monitor their efficiency closely and make improvements. Monitoring is the first step on the road to reduction, but there is much to be done, and not just by big companies.。
2011年考研数学二真题及答案解析

x2 f x x2 f 0 2 f x3 2 f 0
lim x0
x3
f x f 0 f x3 f 0
lim x0
x
2
x3
f 0 2 f 0 f 0.
故答案选(B). (3)【答案】(C).
1
1
2
1 O
1
x
x2 y2 1 1
图1
(21) (本题满分 11 分)
已知函数 f (x, y) 具有二阶连续偏导数,且 f (1, y) 0 ,f (x,1) 0 , f (x, y)dxdy a ,
D
其中 D (x, y) | 0 x 1,0 y 1 ,计算二重积分 I xy fxy (x, y)dxdy .
(6)【答案】(B).
【解析】因为 0 x 时, 0 sin x cos x 1 cot x , 4
又因 ln x 是单调递增的函数,所以 ln sin x ln cos x ln cot x .
故正确答案为(B). (7)【答案】 (D).
【解析】由于将 A 的第 2 列加到第 1 列得矩阵 B ,故
xyd .
D
(14) 二次型 f (x1, x2, x3) x12 3x22 x32 2x1x2 2x1x3 2x2x3 ,则 f 的正惯性指数
为
.
三、解答题(15~23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文
.
xy x1
y 1
(18) (本题满分 10 分)
数学(二)试题 第 2 页 (共 13 页)
设函数 y(x) 具有二阶导数,且曲线 l : y y(x) 与直线 y x 相切于原点,记 为曲线 l
全国硕士研究生入学统一考试思想政治理论试题及答案

2011 年全国硕士研究生入学统一考试思想政治理论试题及答案一、单项选择题: 1~16 小题,每小题 1 分,共 16 分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
请在答题卡上将所选项的字母涂黑。
1、我国数学家华罗庚再一次报告中以“一支粉笔多长为好”为例来讲解他所倡导的选法,对此,他解释道:“每支粉笔都要丢掉一段一定长的粉笔头,但就这一点来说愈长愈好。
但太长了,使用起来很不方便,而且容易折断。
每断一次,必然多浪费一个粉笔头,反而不合适。
因为就出现了粉笔多长最合适的问题——这就是一个优选问题所谓优选问题,从辩证法的角度看,就是要( C )A注重量的积累B保持事物质的稳定性C坚持适度原则D全面考率事物属性的多样性2、社会存在是指社会的物质生活条件,它有多方面的内容,其中最能集中体现人类社会性质的是:( D )A社会形态B地理环境C人口因素D生产方式3、马克思把商品转换成货币称为“商品的惊险的跳跃”,“这个跳跃如果不成熟,坏的不是商品,但一定是商品占有者”。
这是因为只有商品变为货币( D )A货币才能转化为资本B价值才能转化为使用价值C抽象劳动才能转化为具体劳动D私人劳动才能转化为社会劳动4、邓小平指出:“社会主义究竟是个什么样子,苏联搞了很多年,也并没有搞清楚,可能列宁的思路比较好,搞了个新经济政策,但是最后苏联模式僵化了”,列宁新经济政策关于社会主义的思路之所以“比较好”是因为:( B ) A提出了比较系统的社会主义建设纲领B根据俄国的实际情况来探索社会主义建设的道路C为俄国找到一种比较成熟的社会主义发展模式D按照马克思恩格斯关于未来的设想来建设社会主义5、1927 年大革命失败后,党的工作重心开始转向农村,在农村建立革命根据地,则革命根据地能够在中国长期存在和发展的根本原因是 ( A )A中国是一个政治、经济、文化皆发展不平衡的半殖民地半封建社会B良好的群众基础和革命形势的继续向前发展C相当力量正式红军的存在D党的领导及其正确的政策6、社会主义初级阶段基本经济制度,既包括非公有制经济。
2011年全国硕士研究生入学统一考试数学(三)真题及解析

2011年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1) 已知当0x →时,()3sin sin3f x x x =-与k cx 是等价无穷小,则 ( )(A ) k=1, c =4 (B ) k=1,c =-4 (C ) k=3,c =4 (D ) k=3,c =-4 (2) 已知函数()f x 在x =0处可导,且()0f =0,则()()2332limx x f x f x x →-= ( )(A) -2()0f ' (B) -()0f ' (C) ()0f ' (D) 0.(3) 设{}n u 是数列,则下列命题正确的是 ( ) (A)若1nn u∞=∑收敛,则2121()n n n uu ∞-=+∑收敛 (B) 若2121()n n n u u ∞-=+∑收敛,则1n n u ∞=∑收敛(C) 若1nn u∞=∑收敛,则2121()n n n uu ∞-=-∑收敛 (D) 若2121()n n n u u ∞-=-∑收敛,则1n n u ∞=∑收敛(4) 设40ln sin I x dx π=⎰,4ln cot J x dx π=⎰,40ln cos K x dx π=⎰,则,,I J K 的大小关系是( )(A) I J K << (B) I K J << (C) J I K << (D) K J I <<(5) 设A 为3阶矩阵,将A 的第二列加到第一列得矩阵B ,再交换B 的第二行与第三行得单位矩阵,记1100110001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2100001010P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A = ( )(A) 12P P (B) 112P P - (C) 21P P (D) 121-P P(6) 设A 为43⨯矩阵,123,,ηηη是非齐次线性方程组Ax β=的3个线性无关的解,12,k k 为任意常数,则Ax β=的通解为( )(A)23121()2k ηηηη++-(B)23121()2k ηηηη-+-(C) 23121231()()2k k ηηηηηη++-+- (D)23121231()()2k k ηηηηηη-+-+-(7) 设1()F x ,2()F x 为两个分布函数,其相应的概率密度1()f x 与2()f x 是连续函数,则必为概率密度的是 ( )(A) 1()f x 2()f x (B) 22()f x 1()F x(C) 1()f x 2()F x (D) 1()f x 2()F x +2()f x 1()F x (8) 设总体X 服从参数为(0)λλ>的泊松分布,12,,,(2)n X X X n ≥为来自该总体的简单随机样本,则对于统计量111n i i T X n ==∑和121111n i n i T X X n n -==+-∑,有 ( )(A) 1ET >2ET ,1DT >2DT (B) 1ET >2ET ,1DT <2DT (C) 1ET <2ET ,1DT >2DT (D) 1ET <2ET ,1DT <2DT二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 设()()0lim 13xtt f x x t →=+,则()f x '= .(10) 设函数1x yx z y ⎛⎫=+⎪⎝⎭,则()1,1=dz .(11) 曲线tan 4yx y e π⎛⎫++= ⎪⎝⎭在点()0,0处的切线方程为 . (12)曲线y =2x =及x 轴所围成的平面图形绕x 轴旋转所成的旋转体的体积为 .(13) 设二次型()123,,T f x x x x Ax =的秩为1,x Q y =下的标准形为 .(14) 设二维随机变量(),X Y 服从正态分布(,μN三、解答题:15~23小题,共94分.证明过程或演算步骤. (15) (本题满分10分)求极限0x →(16) (本题满分10分)已知函数(),f u v 具有连续的二阶偏导数,()1,12f =是(),f u v 的极值,()(,,)z f x y f x y =+.求()21,1zx y∂∂∂(17) (本题满分10分)求不定积分(18) (本题满分10分)证明方程44arctan 03x x π-+=恰有两个实根.(19)(本题满分10分)设函数()f x 在区间[]0,1具有连续导数,(0)1f =,且满足'()()+=⎰⎰⎰⎰ttD D f x y dxdy f t dxdy , {}(,)0,0(01)=≤≤-≤≤<≤tD x y y t x x t t ,求()f x 的表达式.(20) (本题满分11分)设向量组()11,0,1Tα=,()20,1,1T α=,()31,3,5T α= 不能由向量组()11,1,1β=T,()21,2,3T β=,()33,4,β=Ta 线性表出.(I)求a 的值 ;(II)将1β,2β,3β用1α,2α,3α线性表出. (21) (本题满分11分)A 为3阶实对称矩阵,A 的秩为2,且111100001111A -⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭(I) 求A 的所有特征值与特征向量;(II) 求矩阵A . (22)(本题满分11分)设随机变量与的概率分布分别为且22()1P X Y ==.(I) 求二维随机变量(,)X Y 的概率分布; (II) 求Z XY =的概率分布; (III) 求X 与Y 的相关系数XY ρ. (23)(本题满分11分)设二维随机变量(,)X Y 服从区域G 上的均匀分布,其中G 是由0,2x y x y -=+=与0y =所围成的三角形区域.(I) 求X 的概率密度()X f x ; (II) 求条件概率密度|(|)X Y f x y .2011年全国硕士研究生入学统一考试数学三试题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1) 已知当0x →时,()3sin sin3f x x x =-与kcx 是等价无穷小,则 ( )(A ) k=1, c =4 (B ) k=1,c =-4 (C ) k=3,c =4 (D ) k=3,c =-4 【答案】 (C)【详解】本题涉及到的主要知识点: 当0x →时,sin x x 在本题中,03sin sin 3limk x x x cx →-03sin sin cos 2cos sin 2limkx x x x x xcx →--= ()20sin 3cos 22cos limkx x x x cx →--=2103cos 22cos lim k x x xcx -→--= ()22132cos 12cos limk x x xcx -→---=22110044cos 4sin lim lim k k x x x x cx cx --→→-== 304lim 14,3k x c k cx -→==⇒==,故选择(C).(2) 已知函数()f x 在x =0处可导,且()0f =0,则()()2332limx x f x f x x→-= ( )(A) -2()0f ' (B) -()0f ' (C) ()0f ' (D) 0. 【答案】(B)【详解】本题涉及到的主要知识点: 导数的定义 0000()()lim ()x f x x f x f x x→+-'=在本题中,()()()()()()232233320220limlimx x x f x f x x f x x f f x f xx→→---+=()()()()()()()33000lim 20200x f x f f x f f f f x x →⎡⎤--'''⎢⎥=-=-=-⎢⎥⎣⎦故应选(B)(3) 设{}n u 是数列,则下列命题正确的是 ( )(A)若1nn u∞=∑收敛,则2121()n n n uu ∞-=+∑收敛 (B) 若2121()n n n u u ∞-=+∑收敛,则1n n u ∞=∑收敛(C) 若1nn u∞=∑收敛,则2121()n n n uu ∞-=-∑收敛 (D) 若2121()n n n u u ∞-=-∑收敛,则1n n u ∞=∑收敛【答案】(A)【详解】本题涉及到的主要知识点: 级数的基本性质 若级数1nn u∞=∑收敛,则不改变其项的次序任意加括号,并把每个括号内各项的和数作为一项,这样所得到的新级数仍收敛,而且其和不变. 在本题中,由于级数2121()n n n uu ∞-=+∑是级数1n n u ∞=∑经过加括号所构成的,由收敛级数的性质:当1nn u∞=∑收敛时,2121()n n n uu ∞-=+∑也收敛,故(A )正确.(4) 设4ln sin I x dx π=⎰,40ln cot J x dx π=⎰,40ln cos K x dx π=⎰,则,,I J K 的大小关系是( )(A) I J K << (B) I K J << (C) J I K << (D) K J I << 【答案】(B)【详解】本题涉及到的主要知识点: 如果在区间[,]a b 上,()()f x g x ≤,则()()bbaaf x dxg x dx ≤⎰⎰()a b <在本题中,如图所示: 因为04x π<<,所以0sin cos 1cot <<<<x x x又因ln x 在(0,)+∞是单调递增的函数,所以lnsin lncos lncot x x x << (0,)4x π∈4440ln sin ln cos ln cot x dx x dx x dx πππ⇒<<⎰⎰⎰即I K J <<.选(B ).(5) 设A 为3阶矩阵,将A 的第二列加到第一列得矩阵B ,再交换B 的第二行与第三行得单位矩阵,记1100110001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2100001010P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A = ( )(A) 12P P (B) 112P P - (C) 21P P (D) 121-P P 【答案】(D)【详解】本题涉及到的主要知识点:设A 是一个m n ⨯矩阵,对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵.在本题中,由于将A 的第2列加到第1列得矩阵B ,故100110,001A B ⎛⎫ ⎪= ⎪ ⎪⎝⎭即111,AP B A BP -==故由于交换B 的第2行和第3行得单位矩阵,故100001010B E ⎛⎫⎪= ⎪ ⎪⎝⎭即2,P B E =故122,B P P -==因此,1112121,A P P P P ---==故选(D)(6) 设A 为43⨯矩阵,123,,ηηη是非齐次线性方程组Ax β=的3个线性无关的解,12,k k 为任意常数,则Ax β=的通解为( )(A)23121()2k ηηηη++-(B)23121()2k ηηηη-+-(C) 23121231()()2k k ηηηηηη++-+-(D) 23121231()()2k k ηηηηηη-+-+-【答案】(C)【详解】本题涉及到的主要知识点:(1)如果1ξ,2ξ是Ax b =的两个解,则12ξξ-是0Ax =的解; (2)如n 元线性方程组Ax b =有解,设12,,,t ηηη是相应齐次方程组0Ax =的基础解系,0ξ是Ax b =的某个已知解,则11220t t k k k ηηηξ++++是Ax b =的通解(或全部解),其中12,,,t k k k 为任意常数.在本题中,因为123,,ηηη是Ax β=的3个线性无关的解,那么21ηη-,31ηη-是0Ax =的2个线性无关的解.从而()2n r A -≥,即3()2()1r A r A -≥⇒≤ 显然()1r A ≥,因此()1r A =由()312n r A -=-=,知(A )(B )均不正确. 又232311222A A A ηηηηβ+=+=,故231()2ηη+是方程组Ax β=的解.所以应选(C ).(7) 设1()F x ,2()F x 为两个分布函数,其相应的概率密度1()f x 与2()f x 是连续函数,则必为概率密度的是 ( )(A) 1()f x 2()f x (B) 22()f x 1()F x(C) 1()f x 2()F x (D) 1()f x 2()F x +2()f x 1()F x 【答案】(D)【详解】本题涉及到的主要知识点: 连续型随机变量的概率密度()f x 的性质:()1f x dx +∞-∞=⎰在本题中,由于1()f x 与2()f x 均为连续函数,故它们的分布函数1()F x 与2()F x 也连续.根据概率密度的性质,应有()f x 非负,且()1f x dx +∞-∞=⎰.在四个选项中,只有(D )选项满足[]1221()()()()f x F x f x F x dx +∞-∞+⎰2112()()()()F x dF x F x dF x +∞+∞-∞-∞=+⎰⎰121212()()()()()()F x F x F x dF x F x dF x +∞+∞+∞-∞-∞-∞=-+⎰⎰1=故选(D ).(8) 设总体X 服从参数为(0)λλ>的泊松分布,12,,,(2)n X X X n ≥为来自该总体的简单随机样本,则对于统计量111n i i T X n ==∑和121111n i n i T X X n n -==+-∑,有 ( ) (A) 1ET >2ET ,1DT >2DT (B) 1ET >2ET ,1DT <2DT (C) 1ET <2ET ,1DT >2DT (D) 1ET <2ET ,1DT <2DT 【答案】(D)【详解】本题涉及到的主要知识点: (1)泊松分布()XP λ 数学期望EX λ=,方差DX λ=(2)()E cX cEX =,()E X Y EX EY +=+,2()D cX c DX =,()D X Y DX DY +=+(X 与Y 相互独立) 在本题中,由于12,,,n X X X 独立同分布,且0i i EX DX λ==>,1,2,,i n =,从而()()111111()()n ni i i i E T E X E X n E X n n nλ=====⋅⋅=∑∑,()112111111()()11--==⎛⎫=+=+ ⎪--⎝⎭∑∑n n i n in i i E T E X X E X E X n n n n 11(1)()()1=⋅-+-i n n E X E X n n ()()111λ⎛⎫=+=+ ⎪⎝⎭E X E X n n 故()()12<E T E T又()()1121((11))λ===⋅⋅==∑n i i D T D n D X D X n n X n n,()12221111()(1)1(1)n i n i D T D X X n n n n n λλ-==+=⋅-⋅+--∑12()1D T n n n λλλ=+>=-,故选(D ).二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 设()()0lim 13xtt f x x t →=+,则()f x '= .【答案】()313xex +【详解】本题涉及到的主要知识点: 重要极限公式 10lim(1)xx x e →+=在本题中,()()()31300lim 13lim 13x t xtt tt t f x x t x t ⋅→→⎡⎤=+=+⎢⎥⎣⎦3x x e =⋅所以有()()313'=+xf x ex .(10) 设函数1x yx z y ⎛⎫=+⎪⎝⎭,则()1,1=dz .【答案】()()12ln 2dx dy +- 【详解】用对数求导法.两边取对数得ln ln(1)x x z y y=+, 故11[ln(1)]z x x z x y y x y ∂=++∂+,21[ln(1)]z x x x z y y y x y∂=-++∂+ 令1x =,1y =,得(1,1)2ln 21z x ∂=+∂,(1,1)(2ln 21)zy ∂=-+∂, 从而()()(1,1)12ln 2dz dx dy =+-(11) 曲线tan 4yx y e π⎛⎫++= ⎪⎝⎭在点()0,0处的切线方程为 . 【答案】2y x =- 【详解】方程变形为arctan()4y x y e π++=,方程两边对x 求导得211yye y y e ''+=+,在点(0,0)处(0)2y '=-,从而得到曲线在点(0,0)处的切线方程为2y x =-.(12)曲线y =2x =及x 轴所围成的平面图形绕x 轴旋转所成的旋转体的体积为 . 【答案】43π【详解】本题涉及到的主要知识点: 设有连续曲线()y f x =()a x b ≤≤,则曲线()y f x =与直线x a =,x b =及x绕x 轴旋转一周产生的旋转体的体积2(bx aV f π=⎰在本题中,()222223111141().33V y dx x dx x x ππππ==-=⋅-=⎰⎰(13) 设二次型()123,,T f x x x x Ax =的秩为1,A 中各行元素之和为3,则f 在正交变换x Q y =下的标准形为 .【答案】213y【详解】本题涉及到的主要知识点: 任给二次型,1()nij ijijji i j f a x x aa ===∑,总有正交变换x Py =,使f 化为标准形2221122n n f y y y λλλ=+++,其中12,,,n λλλ是f 的矩阵()ij A a =的特征值.在本题中,A 的各行元素之和为3,即1112131112132122232122233132333132333,13113,1313113113a a a a a a a a a a a a A a a a a a a ++=⎧⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++=⇒=⇒=⎨⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++=⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎩ 所以3λ=是A 的一个特征值.再由二次型Tx Ax 的秩为10λ⇒=是A 的2重特征值. 因此,正交变换下标准形为:213y .(14) 设二维随机变量(),X Y 服从正态分布()22,;,;0μμσσN ,则()2E XY = .【答案】22()μμσ+【详解】本题涉及到的主要知识点:(1)如果随机变量X 和Y 的相关系数0XY ρ=,则称X 与Y 不相关.(2)若随机变量X 与Y 的联合分布是二维正态分布,则X 与Y 独立的充要条件是X 与Y不相关.(3)如果随机变量X 与Y 相互独立,则有()E XY EXEY = 在本题中,由于(),X Y 服从正态分布()22,;,;0μμσσN,说明X ,Y 独立同分布,故X与2Y 也独立.由期望的性质有22()E XY EX EY =⋅,又EX μ=,2222()EY DY EY σμ=+=+,所以222()()E XY μμσ=+三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分10分)求极限x →【详解】本题涉及到的主要知识点: 当0x →时,ln(1)x x +在本题中,0x →201lim x x x →-=000x x x →→→===01.2x x →→==-=-(16) (本题满分10分)已知函数(),f u v 具有连续的二阶偏导数,()1,12f =是(),f u v 的极值,()(,,)z f x y f x y =+.求()21,1zx y∂∂∂【详解】本题涉及到的主要知识点:极值存在的必要条件 设(,)z f x y =在点00(,)x y 具有偏导数,且在点00(,)x y 处有极值,则必有00(,)0x f x y '=,00(,)0y f x y '=. 在本题中,(,(,))z f x y f x y =+121(,(,))(,(,))(,)zf x y f x y f x y f x y f x y x∂'''=+++⋅∂ 2111221(,(,))(,(,))(,)(,)zf x y f x y f x y f x y f x y f x y x y∂''''''=++++∂∂ ()21222212[(,(,))(,(,))(,)](,(,)),f x y f x y f x y f x y f x y f x y f x y f x y ''''''''+++++⋅()1,12f =为(),f u v 的极值 ()()121,11,10f f ''∴==211212(1,1)2,2(2,2)(1,1)z f f f x y ∂'''''∴=+⋅∂∂(17) (本题满分10分)求不定积分【详解】本题涉及到的主要知识点: (1)()x t ϕ=,1()[()]()()[()]f x dx f t t dt G t C G x C ϕϕϕ-'==+=+⎰⎰;(2)udv uv vdu =-⎰⎰; (3)[()()]()()f x g x dx f x dx g x dx ±=±⎰⎰⎰.在本题中,令t =,2x t =,2dx tdt =∴2arcsin ln 2t t tdt t +=⋅⎰()22arcsin ln t t dt =+⎰ 2222arcsin 22ln 2tt t t t t dt t=⋅-+⋅-⋅⎰222arcsin 2ln 4t t t t t=⋅+⋅+-22arcsin 2ln 4t t t t t C=⋅+⋅++x C =+,其中C 是任意常数.(18) (本题满分10分)证明方程44arctan 03x x π-+=恰有两个实根. 【详解】本题涉及到的主要知识点:(1)零点定理 设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使()0f ξ= (2)函数单调性的判定法 设函数()y f x =在[,]a b 上连续,在(,)a b 内可导. ①如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; ②如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少.在本题中,令4()4arctan 3f x x x π=-+-,'24()11f x x=-+当x >'()0f x <,()f x 单调递减;当x <时,'()0f x >,()f x 单调递增.4(4arctan((03f π=-+=.当x <()f x 单调递减,∴(,x ∈-∞,()0f x >;当x <<()f x 单调递增,∴(x ∈,()0f x >x ∴=()f x在(-∞上唯一的零点.又因为48033f ππ==-> 且()4lim lim 4arctan .3x x f x x x π→+∞→+∞⎛=-+-=-∞ ⎝∴由零点定理可知,)0x ∃∈+∞,使()00f x =,∴方程44arctan 03x x π-+=恰有两个实根.(19)(本题满分10分)设函数()f x 在区间[]0,1具有连续导数,(0)1f =,且满足'()()+=⎰⎰⎰⎰ttD D f x y dxdy f t dxdy , {}(,)0,0(01)=≤≤-≤≤<≤tD x y y t x x t t ,求()f x 的表达式.【详解】本题涉及到的主要知识点: 一阶线性微分方程()()dyP x y Q x dx+=的通解()()(())P x dx P x dx y e Q x e dx C -⎰⎰=+⎰. 在本题中,因为()()tt t xD f x y dxdy dx f x y dy -''+=+⎰⎰⎰⎰,令x y u +=,则()()()()t xtx f x y dy f u du f t f x -''+==-⎰⎰()(()())()()tttD f x y dxdy f t f x dx tf t f x dx '+=-=-⎰⎰⎰⎰201()()()()2ttD tf t f x dx f t dxdy t f t ∴-==⎰⎰⎰.两边对t 求导,得 2()()02'+=-f t f t t ,解齐次方程得212()(2)--⎰==-dt t C f t Ce t由(0)1f =,得4C =. 所以函数表达式为24()(01)(2)f x x x =≤≤-.(20) (本题满分11分)设向量组()11,0,1T α=,()20,1,1T α=,()31,3,5T α= 不能由向量组()11,1,1β=T,()21,2,3T β=,()33,4,β=Ta 线性表出.(I)求a 的值 ;(II)将1β,2β,3β用1α,2α,3α线性表出. 【详解】本题涉及到的主要知识点: 向量组12,,,l b b b 能由向量组12,,,m a a a 线性表示的充分必要条件是 121212(,,,)(,,,,,,,)m m l r a a a r a a a b b b =(I)因为123101,,01310115ααα==≠,所以123,,ααα线性无关.那么123,,ααα不能由123,,βββ线性表示⇒123,,βββ线性相关,即123113113,,1240115013023a aa βββ===-=-,所以5a =(II)如果方程组112233(1,2,3)j x x x j αααβ++==都有解,即123,,βββ可由123,,ααα线性表示.对123123,,,,,αααβββ()作初等行变换,有123123,,,,,αααβββ()=101113013124115135⎛⎫⎪ ⎪ ⎪⎝⎭101113013124014022⎛⎫ ⎪→ ⎪ ⎪⎝⎭101113013124001102⎛⎫ ⎪→ ⎪ ⎪--⎝⎭1002150104210001102⎛⎫⎪→ ⎪ ⎪--⎝⎭ 故112324βααα=+-,2122βαα=+,31235102βααα=+-(21) (本题满分11分)A 为3阶实对称矩阵,A 的秩为2,且111100001111A -⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭(I) 求A 的所有特征值与特征向量;(II) 求矩阵A .【详解】本题涉及到的主要知识点: (1)(0)A αλαα=≠λ为矩阵A 的特征值,α为对应的特征向量(2)对于实对称矩阵,不同特征值的特征向量互相正交. (I )因()2r A =知0A =,所以0λ=是A 的特征值.又111000111A -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,110011A ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 所以按定义1λ=是A 的特征值,1(1,0,1)Tα=是A 属于1λ=的特征向量;1λ=-是A 的特征值,2(1,0,1)T α=-是A 属于1λ=-的特征向量.设3123(,,)Tx x x α=是A 属于特征值0λ=的特征向量,作为实对称矩阵,不同特征值对应的特征向量相互正交,因此131323130,0,T Tx x x x αααα⎧=+=⎪⎨=-=⎪⎩ 解出3(0,1,0)Tα= 故矩阵A 的特征值为1,1,0-;特征向量依次为123(1,0,1),(1,0,1),(0,1,0)T T Tk k k -,其中123,,k k k 均是不为0的任意常数.(II)由12312(,,)(,,0)A ααααα=-,有1112123*********(,,0)(,,)000001000110110100A ααααα---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦.(22)(本题满分11分)且22()1P X Y ==.(I) 求二维随机变量(,)X Y 的概率分布; (II) 求Z XY =的概率分布; (III) 求X 与Y 的相关系数XY ρ. 【详解】本题涉及到的主要知识点:(1)协方差 ()()()()cov ,X Y E XY E X E Y =-⋅ (2)相关系数cov ,XY X Y ρ=(I)设(,)X Y 的概率分布为根据已知条件{}221P XY ==,即{}{}{}0,01,11,11P X Y P X Y P X Y ==+==-+===,可知1221231p p p ++=,从而110p p p ===,1p p p ===,即(,)X Y 的概率分布为(II) Z XY =的所有可能取值为-1,0,1 .{}{}111,13P Z P X Y =-===-={}{}111,13P Z P X Y ====={}{}{}101113P Z P Z P Z ==-=-=-=Z XY =的概率分布为(3) 23EX =,0EY =,0EXY =,故(,)0Cov X Y EXY EX EY =-⋅=,从而0XY ρ=.(23)(本题满分11分)设二维随机变量(,)X Y 服从区域G 上的均匀分布,其中G 是由0,2x y x y -=+=与0y =所围成的三角形区域.(I) 求X 的概率密度()X f x ; (II) 求条件概率密度|(|)X Y f x y . 【详解】本题涉及到的主要知识点:(1)X 、Y 是连续型随机变量,边缘概率密度为()(,)X f x f x y dy +∞-∞=⎰,()(,)Y f y f x y dx +∞-∞=⎰;(2)在Y y =的条件下X 的条件概率密度(,)()()X Y Y f x y f x y f y =; (3)设G 是平面上的有界区域,其面积为A .若二维随机变量(,)X Y 具有概率密度1,(,),(,)0,x y G f x y A ⎧∈⎪=⎨⎪⎩其他则称(,)X Y 在G 上服从均匀分布.(I)(,)X Y 的联合密度为1,(,),(,)0,(,).x y G f x y x y G ∈⎧=⎨∉⎩当01x ≤<时,0()(,)1x X f x f x y dy dy x +∞-∞===⎰⎰; 当12x ≤≤时,20()(,)12x X f x f x y dy dy x +∞--∞===-⎰⎰;当0x <或2x >时,()0X f x =.所以 , 01,()2, 12,0, X x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其它.(II)|(,)(|)()X Y Y f x y f x y f y =当01y ≤<时,2()122yY yf y dx y -==-⎰;当0y <或1y ≥时,()0Y f y =.所以|1, 2,01,22(|)0, X Y y x y y y f x y ⎧<<-≤<⎪-=⎨⎪⎩其他.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13、无限大功率电源供电系统(工频) ,突然三相短路时,冲击电流将在短路发生后约( ) 秒。 A.0 B.0.01 C.0.02 D.0.05
14、架空输电线路的避雷线对零序阻抗的影响是( ) 。 A.减小线路的零序阻抗 B.增大线路的零序阻抗 C.无影响 D.不确定
15、由无限大电源供电的系统发生三相短路后出现非周期分量电流的原因是( ) 。 A.电容两端的电压可以突变
华北电力大学(北京)2011 年硕士研究生入学考试试题
考试科目: 《电力系统分析基础一》 考生注意:答案必须写在答题纸上 试题内容: 一 、不定项选择题
1、广义电力系统包括( ) A.发电机等生产电能的设备 B. 变压器等输送分配电能的设备
C. 电动机等消耗电能的设备 D. 保护控制装置及能量管理系统 2、下列关于电力系统运行特征中,正确的说法包括( ) A.电能不能大量储存 C.过渡过程比较快 B. 输配电各环节不能分割 D. 电力系统地区性特点很强
2 3 0.08 0.3 0.5 25、试分析对于高压线路,改变电压的大小主要是改变无功功率分布,而改变电压的相位,所能改变的 主要是有功功率分布。 26 、简要分析影响变压器零序电抗参数的因素有哪些。 若选SB =100MVA, U B U av ,(即变 27、某系统接线及各元件参数如图所示,设在 f 点发生三相短路。 压器变比取平均额定变比),试计算: (1)作出系统等值电路。 (2)流过短路点的短路冲击电流iM 的 有名值(设冲击系数 K M =1.9)。
资料说明: 本资料由华北电力大学在校学生提供,为方便外校学生考研复习,我们整理了所有的专业课考研资料,上传 了所有内部资料(所有真题+所有内部资料+所有视频) ,所有资料都是完全免费,完全共享。 我们是由一群“勇闯北京、热爱华电”的华电本校热血学生组成,本科时有本校的、外校的和跨专业的,现 在全部考上华电研究生。 为了方便“立志在华电”学生交流,我们建立 QQ 群 276540388,为大家免费答疑,分享华电最新消息,提供 最新内部试题,各种疑难问题,我们都尽最大努力帮助,只为“大华电,大电力,中国梦,梦华电! ”
6、电力线路自然功率是指( ) A.线路输送的额定功率 B. 线路允许输送的最大功率 C.负荷阻抗为波阻抗时,该负荷所消耗的功率 D.负荷端电压为额定电压时,该负荷所消耗的功率 7、潮流调整的手段主要有( A.串联电容 B. 并联电容 ) C. 串联电抗 D. 附加串联加压器
8、一台额定功率为 50MW 的发电机带一个 40MW 负荷运转,发电机的调差系数为 4%,负 荷的单位调节 功率为 1.5,那么系统的单位调节功率为( ) 。 A.32.75 B.29.75 C.26.5 D.23.5 9、使发电机组的静态特性曲线平行上移,以保证频率偏差在允许范围内是指电力系统的( ) A.一次调频 B.二次调频 C.三次调频 D.最优分配
(1) 当区域 1 的负荷减少 1000MW 时, 计算系统频率、 各区域发电和负荷功率、 联络线 功率及方向。 (2) 假定每个区域带有旋转备用的发电机工作在辅助控制(ACE)方式,区域 1 的单位 调节功率为 250MW/0.5Hz,区域 2 的单位调整功率为 500MW/0.1Hz。当区域 1 的 发电量失去 2000MW 时(失 去的部分不包括所有备用容量) ,计算系统频率、各区 域发电和负荷功率、联络线功率及方向。 30、系统等值电路图如图所示,QL1=10MVar,QL 2=8MVar ,QL3=5MVar 。各段线 段电阻如图 所示。系统额定电压为 35kV。设无功功率补偿设备总的容量为 12Mvar, 试在不计无功功率网损的前 提下确定这些无功功率电源的最优分布。
10、一个处于稳态运行的系统,如果某一台发电机突然由于故障退出运行,该时刻,系统 的频率将( ) 。 A.升高 B.不变 C. 降低 D.不一定
11、电力系统的无功电源主要包括( ) A.发电机 B.电容器和调相机 C.静止补偿器和静止调相机 D.并联电抗器
12、高峰负荷时升高电压,低估负荷时降低电压的中枢点电压调整方式称为( ) 。 A.不调压 B.顺调压 C.常调压 D.逆调压
(3)电源G对f点的转移阻抗 X Gf , X Gjs (4)如果根据运算曲线查得t=0.2s时的短路电流标幺值为 I
G 0.2''
3.2 ,求t=0.2s时的短路电流有名值。
四 、计算题
28、一个两节点系统共有下列元件构成:平衡节点电压为 1.00 ,负荷为 0.3+j1.0 并 且装有一个无 功补偿器,向负荷节点提供无功功率为 1.1。两个节点之间的输电线路阻抗为j0.4。试求: (1)绘制系统单线图 (2)计算节点导纳矩阵 Y; (3)列写牛顿法直角坐标方程; (4)列写牛顿法极坐标方程; (5)采用极坐标形式进行计算(收敛精度为0.01); (6)计算平衡节点功率。 29、 两个互联系统如图所示, 系统频率 50Hz 时, 区域 1 发电机功率为 19000MW, 旋转备用 1000MW, 负荷为 20000MW,区域 2 发电机功率为 41000MW,旋转备用 1000MW,负荷为 40000MW,联络线 输送功率 1000MW,从区域 2 送向区域 1。 所有机组的调差系数为 5%,每个区域当频率每变化 1% 负荷也相应变化 1%。试计 算:
3、用电设备容许电压偏移一般为( ) A.10%
B.7%
C.5%
D. 2%
4、 发电机运行极限如图所示, 其中圆弧S 表示 (B) , 直线BC 表示( ) A. 原动机功率约束 B. 定子绕组温升约束 C.励磁绕组温升约束 D.定子端部温升约束
5 、一台变压器,额定容量 120MVA ,额定电压 10.5/121kV,空载损耗 132kW,短路电压百分值为 10%,变压器绕组电抗等于( )p.u.(以变压器额 定 参数为基准)。 A.13.280 B.12.201 C.0.100 D.0.092
31、某系统接线如右图所示,各元件的标幺参数( SB =100MVA , UB=Uav )已标于图中。当 f 点发 生 B、C 两相接地短路时,试求发电机送出的各相电流标幺值及有名值。
三 、简答和简单计算题
24、某 3 节点系统如下: (1) 如果变压器支路的变比为 1:1,写出节点导纳矩阵 Y。 (2) 如果变压器支路的变比为 1:1.05(理想变压器在母线 1 侧,变压器电抗参数在母线 2 侧) ,请写 出变压器 型等值支路参数,并写出节点导纳矩阵 Y’。 首节点 1 2 末节点 2 3 R 0 0.04 X 0.04 0.25 B 0 0.5
B.电容两端的电压不能突变 C.电感中的电流可以突变 D.电感中的电流不能突变
二、填空题
16、电力系统总装机容量是指该系统中实际安装的发电机组( )的总和。 17、我国所有交流电力系统的额定频率为( ) 。如果将系统额定频率升高 10Hz,发电 机感应电势将( ) (升高或降低) ( )%。 18、对电力系统的基本要求包括( ) ( ) ( ) 。 19、 ( )主要包括电压质量、频率质量、和( )三个方面。 20、对于高压线路,当线路输送功率大于自然功率时,线路末端电压( )始端。 21、作为潮流调整的手段之一, ( )的作用主要在限流,将其串联在重载线路上 可避免该线路过载。但 由于其对电压质量和系统运行的稳定性有不良影响,这一手段未曾 推广。 22、 ( )备用是指运转中的发电机设备可能发出的最大功率与系统发电负荷之差。 ( ) 备用是指未运转 的发电设备可能发出的最大功率。