(完整版)高中数学必修一函数部分难题汇总,推荐文档
高一上期中数学考试函数经典难题汇编(含解析)必修一(培优)

必修一函数经典难题汇编一、选择题:1.(5分)定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0)(x1≠x2),都有<0.则下列结论正确的是()A.f(0.32)<f(20.3)<f(log25) B.f(log25)<f(20.3)<f(0.32)C.f(log25)<f(0.32)<f(20.3) D.f(0.32)<f(log25)<f(20.3)2.(5分)函数f(x)=2sin(2x+),g(x)=mcos(2x﹣)﹣2m+3(m>0),若对任意x1∈[0,],存在x2∈[0,],使得g(x1)=f(x2)成立,则实数m的取值范围是()A.B.C.D.3.(5分)已知函数f(x)=e x﹣e﹣x+4sin3x+1,x∈(﹣1,1),若f(1﹣a)+f(1﹣a2)>2成立,则实数a的取值范围是()A.(﹣2,1)B.(0,1) C.D.(﹣∞,﹣2)∪(1,+∞)4.(5分)已知函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(﹣,)B.(﹣,)C.(﹣∞,)D.(﹣∞,)5.(5分)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.46.(5分)设函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x2﹣x+1,则f(1)=()A.1 B.2 C.3 D.47.(5分)已知函数f(x)=|log2x|,若0<b<a,且f(a)=f(b),则图象必定经过点(a,2b)的函数为()A.y=B.y=2x C.y=2x D.y=x28.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x 的图象的交点个数为()A.3 B.4 C.5 D.69.(5分)设函数f(x)是定义在R上的函数,满足f(x)=f(4﹣x),且对任意x1,x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,则满足f(2﹣x)=f()的所有x的和为()A.﹣3 B.﹣5 C.﹣8 D.810.(5分)设函数f(x)是定义在R上的函数,满足f(x)=f(4﹣x),且对任意x1,x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,则满足f(2﹣x)=f()的所有x的和为()A.﹣3 B.﹣5 C.﹣8 D.811.(5分)若函数f(x)=且满足对任意的实数x1≠x2都有>0成立,则实数a的取值范围是()A.(1,+∞)B.(1,8) C.(4,8) D.[4,8)12.(5分)已知在(﹣∞,+∞)上满足,则b的取值范围是()A.(﹣∞,0)B.[1,+∞)C.(﹣1,1)D.[0,1)13.(5分)设集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,则实数m的取值范围为.()A.[﹣2,1)B.[﹣2,1]C.[﹣2,﹣1)D.[﹣1,1)14.(5分)定义函数序列:,f2(x)=f(f1(x)),f3(x)=f (f2(x)),…,f n(x)=f(f n﹣1(x)),则函数y=f2017(x)的图象与曲线的交点坐标为()A.B.C.D.15.(3分)关于x的方程(a>0,且a≠1)解的个数是()A.2 B.1 C.0 D.不确定的16.(5分)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=|x﹣1|,若方程f(x)=有4个不相等的实根,则实数a的取值范围是()A.(﹣,1)B.(,1)C.(,1)D.(﹣1,)17.(5分)已知f(x)=ln(1﹣)+1,则f(﹣7)+f(﹣5 )+f(﹣3)+f(﹣1)+f(3 )+f(5)+f(7 )+f(9)=()A.0 B.4 C.8 D.1618.(5分)定义域是一切实数的函数y=f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)实数一个“λ一半随函数”,有下列关于“λ一半随函数”的结论:①若f(x)为“1一半随函数”,则f(0)=f(2);②存在a∈(1,+∞)使得f(x)=a x为一个“λ一半随函数;③“一半随函数”至少有一个零点;④f(x)=x2是一个“λ一班随函数”;其中正确的结论的个数是()A.1个 B.2个 C.3个 D.4个19.(5分)如图,定义在[﹣2,2]的偶函数f(x)的图象如图所示,则方程f(f(x))=0的实根个数为()A.3 B.4 C.5 D.720.(5分)已知函数f(x)=e x+2(x<0)与g(x)=ln(x+a)+2的图象上存在关于y轴对称的点,则实数a的取值范围是()A.(﹣∞,e)B.(0,e) C.(e,+∞)D.(﹣∞,1)21.(5分)已知定义在R上的函数f(x)满足:①f(x)+f(2﹣x)=0;②f(x ﹣2)=f(﹣x),③在[﹣1,1]上表达式为f(x)=,则函数f(x)与函数g(x)=的图象在区间[﹣3,3]上的交点个数为()A.5 B.6 C.7 D.822.(5分)已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是()A.B.C.D.23.(5分)函数f(x)=ln,则f(x)是()A.奇函数,且在(0,+∞)上单调递减B.奇函数,且在(0,+∞)上单凋递增C.偶函数,且在(0,+∞)上单调递减D.偶函数,且在(0,+∞)上单凋递增二、填空题:1.(5分)某投资公司准备在2016年年底将1000万元投资到某“低碳”项目上,据市场调研,该项目的年投资回报率为20%.该投资公司计划长期投资(每一年的利润和本金继续用作投资),若市场预期不变,大约在年的年底总资产(利润+本金)可以翻一番.(参考数据:lg2=0.3010,lg3=0.4771)2.(5分)在函数①y=2x;②y=2﹣2x;③f(x)=x+x﹣1;④f(x)=x﹣x﹣3中,存在零点且为奇函数的序号是.3.(5分)已知函数f(x)=,若存在实数k使得函数f(x)的值域为[0,2],则实数a的取值范围是.4.(4分)已知函数f(x)=|ax﹣1|﹣(a﹣1)x(1)当a=时,满足不等式f(x)>1的x的取值范围为;(2)若函数f(x)的图象与x轴没有交点,则实数a的取值范围为.5.(4分)已知函数若存在x1,x2∈R,x1≠x2,使f (x1)=f(x2)成立,则实数a的取值范围是.6.(5分)下列命题中①若log a3>log b3,则a>b;②函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;④函数既是奇函数又是减函数.其中正确的命题有.7.(5分)已知函数,若方程f(x)﹣a=0有三个不同的实数根,则a的取值范围为.8.(5分)方程=ax+a由两个不相等的实数根,则实数a的取值范围为.9.(5分)已知函数,若函数g(x)=f(x)﹣m有3个零点,则实数m的取值范围是.10.(5分)定义在R上的单调函数f(x)满足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零点,则a的取值范围是.三、简答题:1.(12分)已知函数f(x)=lg(a>0)为奇函数,函数g(x)=+b(b ∈R).(Ⅰ)求a;(Ⅱ)若b>1,讨论方徎g(x)=ln|x|实数根的个数;(Ⅲ)当x∈[,]时,关于x的不等式f(1﹣x)≤lgg(x)有解,求b的取值范围.2.(12分)已知函数f(x)=ax2+bx+c(a,b,c∈R).(1)若a<0,b>0,c=0,且f(x)在[0,2]上的最大值为,最小值为﹣2,试求a,b的值;(2)若c=1,0<a<1,且||≤2对任意x∈[1,2]恒成立,求b的取值范围.(用a来表示)3.(12分)已知a∈R,函数f(x)=log2(+a).(1)若f(1)<2,求实数a的取值范围;(2)设函数g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],讨论函数g(x)的零点个数.4.(12分)已知函数f(x)=.(1)求f(f());(2)若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为f(x)的二阶不动点,求函数f(x)的二阶不动点的个数.5.(12分)已知函数f(x)=ax2+4x﹣1.(1)当a=1时,对任意x1,x2∈R,且x1≠x2,试比较f()与的大小;(2)对于给定的正实数a,有一个最小的负数g(a),使得x∈[g(a),0]时,﹣3≤f(x)≤3都成立,则当a为何值时,g(a)最小,并求出g(a)的最小值.6.(12分)已知函数f(x)=x+﹣1(x≠0),k∈R.(1)当k=3时,试判断f(x)在(﹣∞,0)上的单调性,并用定义证明;(2)若对任意x∈R,不等式f(2x)>0恒成立,求实数k的取值范围;(3)当k∈R时,试讨论f(x)的零点个数.7.(12分)已知函数f(x)=x2+ax(a>0)在[﹣1,2]上的最大值为8,函数g (x)是h(x)=e x的反函数.(1)求函数g(f(x))的单调区间;(2)求证:函数y=f(x)h(x)﹣(x>0)恰有一个零点x0,且g(x0)<x02h (x0)﹣1(参考数据:e=2.71828…,ln2≈0.693).8.(10分)已知函数f(x)=3x,g(x)=|x+a|﹣3,其中a∈R.(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.9.(10分)设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g (x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f (x)为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.10.(10分)已知函数f(x)的定义域为R,若存在常数T≠0,使得f(x)=Tf (x+T)对任意的x∈R成立,则称函数f(x)是Ω函数.(Ⅰ)判断函数f(x)=x,g(x)=sinπx是否是Ω函数;(只需写出结论)(Ⅱ)说明:请在(i)、(ii)问中选择一问解答即可,两问都作答的按选择(i)计分(i)求证:若函数f(x)是Ω函数,且f(x)是偶函数,则f(x)是周期函数;(ii)求证:若函数f(x)是Ω函数,且f(x)是奇函数,则f(x)是周期函数;(Ⅲ)求证:当a>1时,函数f(x)=a x一定是Ω函数.11.(10分)已知函数f(x),定义(Ⅰ)写出函数F(2x﹣1)的解析式;(Ⅱ)若F(|x﹣a|)+F(2x﹣1)=0,求实数a的值;(Ⅲ)当时,求h(x)=cosx•F(x+sinx)的零点个数和值域.12.(12分)已知函数f(x)=x2+2bx+c,且f(1)=f(3)=﹣1.设a>0,将函数f(x)的图象先向右平移a个单位长度,再向下平移a2个单位长度,得到函数g(x)的图象.(Ⅰ)若函数g(x)有两个零点x1,x2,且x1<4<x2,求实数a的取值范围;(Ⅱ)设连续函数在区间[m,n]上的值域为[λ,μ],若有,则称该函数为“陡峭函数”.若函数g(x)在区间[a,2a]上为“陡峭函数”,求实数a的取值范围.13.(12分)已知函数是奇函数,f(x)=lg(10x+1)+bx是偶函数.(1)求a+b的值.(2)若对任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求实数k的取值范围.(3)设,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求实数a的取值范围.14.(12分)已知指数函数y=g(x)满足g(3)=8,又定义域为实数集R的函数f(x)=是奇函数.(1)讨论函数y=f(x)的单调性;(2)若对任意的t∈R,不等式f(2t﹣3t2)+f(t2﹣k)>0恒成立,求实数k的取值范围.15.(12分)已知f(x)=3x+m•3﹣x为奇函数.(1)求函数g(x)=f(x)﹣的零点;(2)若对任意t∈R的都有f(t2+a2﹣a)+f(1+2at)≥0恒成立,求实数a的取值范围.16.(8分)阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;(4)由函数y=可知f(﹣x)=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.17.(10分)函数f(x)=log a(a x+1)+mx是偶函数.(1)求m;(2)当a>1时,若函数f(x)的图象与直线l:y=﹣mx+n无公共点,求n的取值范围.18.(12分)已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=.(1)求a,b的值;(2)不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)方程f(|2x﹣1|)+k(﹣3)有三个不同的实数解,求实数k的取值范围.19.(12分)已知函数f(x)=.(1)判断f(x)的奇偶性;(2)判断f(x)在R上的单调性,并用定义证明;(3)是否存在实数t,使不等式f(x﹣t)+f(x2﹣t2)≥0对一切x∈[1,2]恒成立?若存在,求出t的取值范围;若不存在,请说明理由.20.(12分)已知函数.任取t∈R,若函数f(x)在区间[t,t+1]上的最大值为M(t),最小值为m(t),记g(t)=M(t)﹣m(t).(1)求函数f(x)的最小正周期及对称轴方程;(2)当t∈[﹣2,0]时,求函数g(t)的解析式;(3)设函数h(x)=2|x﹣k|,H(x)=x|x﹣k|+2k﹣8,其中实数k为参数,且满足关于t的不等式有解,若对任意x1∈[4,+∞),存在x2∈(﹣∞,4],使得h(x2)=H(x1)成立,求实数k的取值范围.参考答案与解析一、选择题:1.(5分)定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0)(x1≠x2),都有<0.则下列结论正确的是()A.f(0.32)<f(20.3)<f(log25) B.f(log25)<f(20.3)<f(0.32)C.f(log25)<f(0.32)<f(20.3) D.f(0.32)<f(log25)<f(20.3)【解答】解:∵对任意x1,x2∈(﹣∞,0),且x1≠x2,都有<0,∴f(x)在(﹣∞,0)上是减函数,又∵f(x)是R上的偶函数,∴f(x)在(0,+∞)上是增函数,∵0.32<20.3<log25∴f(0.32)<f(20.3)<f(log25).故选:A.2.(5分)函数f(x)=2sin(2x+),g(x)=mcos(2x﹣)﹣2m+3(m>0),若对任意x1∈[0,],存在x2∈[0,],使得g(x1)=f(x2)成立,则实数m的取值范围是()A.B.C.D.【解答】解:当x∈[0,]时,2x+∈[,],sin(2x+)∈[,1],f(x)=2sin(2x+)∈[1,2],同理可得2x﹣∈[﹣,],cos(2x﹣)∈[,1],g(x)=mcos(2x﹣)﹣2m+3∈[﹣+3,﹣m+3],对任意x1∈[0,],存在x2∈[0,],使得g(x1)=f(x2)成立,∴,求得1≤m≤,故选:D.3.(5分)已知函数f(x)=e x﹣e﹣x+4sin3x+1,x∈(﹣1,1),若f(1﹣a)+f(1﹣a2)>2成立,则实数a的取值范围是()A.(﹣2,1)B.(0,1) C.D.(﹣∞,﹣2)∪(1,+∞)【解答】解:令g(x)=f(x)﹣1=e x﹣e﹣x+4sin3x,则g(﹣x)=﹣g(x),即g(x)为奇函数,若f(1﹣a)+f(1﹣a2)>2成立,即g(1﹣a)+g(1﹣a2)>0成立,即g(1﹣a)>﹣g(1﹣a2)=g(a2﹣1),∵g′(x)=e x+e﹣x+12sin2xcosx≥0在x∈(﹣1,1)时恒成立,故g(x)在(﹣1,1)上为增函数,故﹣1<a2﹣1<1﹣a<1,解得:a∈(0,1),故选:B.4.(5分)已知函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(﹣,)B.(﹣,)C.(﹣∞,)D.(﹣∞,)【解答】解:由题意,存在x<0,使f(x)﹣g(﹣x)=0,即e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解,令m(x)=e x﹣﹣ln(﹣x+a),则m(x)=e x﹣﹣ln(﹣x+a)在其定义域上是增函数,且x→﹣∞时,m(x)<0,若a≤0时,x→a时,m(x)>0,故e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解,若a>0时,则e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解可化为e0﹣﹣ln(a)>0,即lna<,故0<a<.综上所述,a∈(﹣∞,).故选:C5.(5分)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.4【解答】解:由题意①2x2+2log2(x2﹣1)=5 ②所以,x1=log2(5﹣2x1)即2x1=2log2(5﹣2x1)令2x1=7﹣2t,代入上式得7﹣2t=2log2(2t﹣2)=2+2log2(t﹣1)∴5﹣2t=2log2(t﹣1)与②式比较得t=x2于是2x1=7﹣2x2即x1+x2=故选C6.(5分)设函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x2﹣x+1,则f(1)=()A.1 B.2 C.3 D.4【解答】解:根据条件,f(﹣x)=f(x),g(﹣x)=﹣g(x);∴由f(x)﹣g(x)=x2﹣x+1①得,f(﹣x)﹣g(﹣x)=x2+x+1=f(x)+g(x);即f(x)+g(x)=x2+x+1②;①+②得,2f(x)=2(x2+1);∴f(x)=x2+1;∴f(1)=2.7.(5分)已知函数f(x)=|log2x|,若0<b<a,且f(a)=f(b),则图象必定经过点(a,2b)的函数为()A.y=B.y=2x C.y=2x D.y=x2【解答】解:函数f(x)=|log2x|的图象如下图所示:若0<b<a,且f(a)=f(b),则b<1<a,且log2b=﹣log2a,即ab=1,故图象必定经过点(a,2b)的函数为y=,故选:A.8.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x 的图象的交点个数为()A.3 B.4 C.5 D.6【解答】解:∵函数y=f(x)(x∈R)满足f(x+2)=f(x),∴f(x)是周期为2的周期性函数,又x∈[﹣1,1]时,f(x)=x2.根据函数的周期性画出图形,如图,由图可得y=f(x)与y=log5x的图象有4个交点9.(5分)设函数f(x)是定义在R上的函数,满足f(x)=f(4﹣x),且对任意x1,x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,则满足f(2﹣x)=f()的所有x的和为()A.﹣3 B.﹣5 C.﹣8 D.8【解答】解:∵对任意x1,x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,∴f(x)在(2,+∞)上递增,又∵f(x)=f(4﹣x),∴f(2﹣x)=f(2+x),即函数关于x=2对称,∵f(2﹣x)=f(),∴2﹣x=,或2﹣x+=4,∴x2+5x+3=0或x2+3x﹣3=0,∴满足f(2﹣x)=f()的所有x的和为﹣8,故选C.10.(5分)设函数f(x)是定义在R上的函数,满足f(x)=f(4﹣x),且对任意x1,x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,则满足f(2﹣x)=f()的所有x的和为()A.﹣3 B.﹣5 C.﹣8 D.8【解答】解:∵对任意x1,x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,∴f(x)在(2,+∞)上递增,又∵f(x)=f(4﹣x),∴f(2﹣x)=f(2+x),即函数关于x=2对称,∵f(2﹣x)=f(),∴2﹣x=,或2﹣x+=4,∴x2+5x+3=0或x2+3x﹣3=0,∴满足f(2﹣x)=f()的所有x的和为﹣8,故选C.11.(5分)若函数f(x)=且满足对任意的实数x1≠x2都有>0成立,则实数a的取值范围是()A.(1,+∞)B.(1,8) C.(4,8) D.[4,8)【解答】解:∵对任意的实数x1≠x2都有>0成立,∴函数f(x)=在R上单调递增,∴,解得:a∈[4,8),故选:D12.(5分)已知在(﹣∞,+∞)上满足,则b的取值范围是()A.(﹣∞,0)B.[1,+∞)C.(﹣1,1)D.[0,1)【解答】解:由题意,在(﹣∞,+∞)上单调递增,∴,∴2≤a<3,0≤b<1,故选D.13.(5分)设集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,则实数m的取值范围为.()A.[﹣2,1)B.[﹣2,1]C.[﹣2,﹣1)D.[﹣1,1)【解答】解:集合A={x|2x≤8}={x|x≤3},因为A∪B=A,所以B⊆A,所以m2+m+1≤3,解得﹣2≤m≤1,即m∈[﹣2,1].故选:B.14.(5分)定义函数序列:,f2(x)=f(f1(x)),f3(x)=f (f2(x)),…,f n(x)=f(f n﹣1(x)),则函数y=f2017(x)的图象与曲线的交点坐标为()A.B.C.D.【解答】解:由题意f1(x)=f(x)=.f2(x)=f(f1(x))==,f3(x)=f(f2(x))==,…f n(x)=f(f n﹣1(x))=,∴f2017(x)=,由得:,或,由中x≠1得:函数y=f2017(x)的图象与曲线的交点坐标为,故选:A15.(3分)关于x的方程(a>0,且a≠1)解的个数是()A.2 B.1 C.0 D.不确定的【解答】解:由题意a x=﹣x2+2x+a,﹣x2+2x+a>0.令f(x)=a x,g(x)=﹣x2+2x+a,(1)当a>1时,f(x)=a x在(﹣∞,+∞)上单调递增,且f(0)=1,f(1)=a,g(x)=﹣x2+2x+a在[0,1]上单调递增,在[1,+∞)上单调递减,且g(0)=a,g(1)=1+a,在[0,1]上,f(x)<g(x),∵g(x)在x<0及x>1时分别有一个零点,而f(x)恒大于零,∴f(x)与g(x)的图象在x<0及x>1时分别有一个交点,∴方程有两个解;(2)当a<1时,f(x)=a x在(﹣∞,+∞)上单调递减,且f(0)=1,f(1)=a,g(x)=﹣x2+2x+a在[0,1]上单调递增,在[1,+∞)上单调递减,且g(0)=a,g(1)=1+a,f(0)>g(0),f(1)<g(1),∴在(0,1)上f(x)与g(x)有一个交点,又g(x)在x>1时有一个零点,而f(x)恒大于零,∴f(x)与g(x)的图象在x>1时还有一个交点,∴方程有两个解.综上所述,方程有两个解.故选:A.16.(5分)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=|x﹣1|,若方程f(x)=有4个不相等的实根,则实数a的取值范围是()A.(﹣,1)B.(,1)C.(,1)D.(﹣1,)【解答】解:设x<0,则﹣x>0,∵当x≥0时,f(x)=|x﹣1|,∴f(﹣x)=|﹣x﹣1|=|x+1|,∵f(x)是定义在R上的偶函数,∴f(x)=f(﹣x)=|x+1|,则f(x)=,即,由f(x)=得,f2(x)=x+a,画出函数y=x+a与y=f2(x)的图象,如图所示:由图知,当直线y=x+a过点A时有三个交点,且A(1,1),此时a=1,当直线y=x+a相切与点P时有三个交点,由图知,y=f2(x)=(x+1)2=x2+2x+1,则y′=2x+2,令y′=2x+2=1得x=,则y=,此时切点P(,),代入y=x+a得a=,∵方程f(x)=有4个不相等的实根,∴函数y=x+a与y=f2(x)的图象有四个不同的交点,由图可得,实数a的取值范围是(,1),故选B.17.(5分)已知f(x)=ln(1﹣)+1,则f(﹣7)+f(﹣5 )+f(﹣3)+f(﹣1)+f(3 )+f(5)+f(7 )+f(9)=()A.0 B.4 C.8 D.16【解答】解:∵f(x)=ln(1﹣)+1,则f(﹣7)=ln9﹣ln7+1,f(﹣5 )=ln7﹣ln5+1,f(﹣3)=ln5﹣ln3+1,f(﹣1)=ln3+1,f(3 )=﹣ln3+1,f(5)=ln3﹣ln5+1,f(7 )=ln5﹣ln7+1,f(9)=ln7﹣ln9+1,则f(﹣7)+f(﹣5 )+f(﹣3)+f(﹣1)+f(3 )+f(5)+f(7 )+f(9)=8,故选:C.18.(5分)定义域是一切实数的函数y=f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)实数一个“λ一半随函数”,有下列关于“λ一半随函数”的结论:①若f(x)为“1一半随函数”,则f(0)=f(2);②存在a∈(1,+∞)使得f(x)=a x为一个“λ一半随函数;③“一半随函数”至少有一个零点;④f(x)=x2是一个“λ一班随函数”;其中正确的结论的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:①、若f(x)为“1一半随函数”,则f(x+1)+f(x)=0,可得f(x+1)=﹣f(x),可得f(x+2)=﹣f(x+1)=f(x),因此x=0,可得f(0)=f(2);故①正确;②、假设f(x)=a x是一个“λ一半随函数”,则a x+λ+λa x=0对任意实数x成立,则有aλ+λ=0,而此式有解,所以f(x)=a x是“λ一半随函数”,故②正确.③、令x=0,得f()+f(0)=0.所以f()=﹣f(0),若f(0)=0,显然f(x)=0有实数根;若f(0)≠0,f()•f(0)=﹣(f (0))2<0,又因为f(x)的函数图象是连续不断,所以f(x)在(0,)上必有实数根,因此任意的“﹣一半随函数”必有根,即任意“﹣一半随函数”至少有一个零点.故③正确.④、假设f(x)=x2是一个“λ一半随函数”,则(x+λ)2+λx2=0,即(1+λ)x2+2λx+λ2=0对任意实数x成立,所以λ+1=2λ=λ2=0,而此式无解,所以f(x)=x2不是一个“λ﹣同伴函数”.故④错误正确判断:①②③.故选:C.19.(5分)如图,定义在[﹣2,2]的偶函数f(x)的图象如图所示,则方程f(f(x))=0的实根个数为()A.3 B.4 C.5 D.7【解答】解:定义在[﹣2,2]的偶函数f(x)的图象如图:函数是偶函数,函数的值域为:f(x)∈[﹣2,1],函数的零点为:x1,0,x2,x1∈(﹣2,﹣1),x2∈(1,2),令t=f(x),则f(f(x))=0,即f(t)=0可得,t=x1,0,x2,f(x)=x1∈(﹣2,﹣1)时,存在f[f(x1)]=0,此时方程的根有2个.x2∈(1,2)时,不存在f[f(x2)]=0,方根程没有根.f[f(0)]=f(0)=f(x1)=f(x2)=0,有3个.所以方程f(f(x))=0的实根个数为:5个.故选:C.20.(5分)已知函数f(x)=e x+2(x<0)与g(x)=ln(x+a)+2的图象上存在关于y轴对称的点,则实数a的取值范围是()A.(﹣∞,e)B.(0,e) C.(e,+∞)D.(﹣∞,1)【解答】解:由题意知,方程f(﹣x)﹣g(x)=0在(0,+∞)上有解,即e﹣x﹣ln(x+a)=0在(0,+∞)上有解,即函数y=e﹣x与y=ln(x+a)在(0,+∞)上有交点,则lna<1,即0<a<e,则a的取值范围是:(0,e).故选:B.21.(5分)已知定义在R上的函数f(x)满足:①f(x)+f(2﹣x)=0;②f(x ﹣2)=f(﹣x),③在[﹣1,1]上表达式为f(x)=,则函数f(x)与函数g(x)=的图象在区间[﹣3,3]上的交点个数为()A.5 B.6 C.7 D.8【解答】解:由f(x)+f(2﹣x)=0,可得函数f(x)的图象关于点M(1,0)对称.由f(x﹣2)=f(﹣x),可得函数f(x)的图象关于直线x=﹣1对称.又在[﹣1,1]上表达式为f(x)=,可得图象:进而得到在区间[﹣3,3]上的图象.画出函数g(x)=在区间[﹣3,3]上的图象,其交点个数为6个.故选:B.22.(5分)已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是()A. B.C.D.【解答】解:依题意f(x)在(﹣∞,﹣2)和(0,2)上递增,在(﹣2,0)和(2,+∞)上递减,当x=±2时,函数取得极大值;当x=0时,取得极小值0.要使关于x的方程[f(x)]2+af(x)+b=0,a,b∈R 有且只有6个不同实数根,设t=f(x),则则有两种情况符合题意:(1),且,此时﹣a=t1+t2,则;(2)t1∈(0,1],,此时同理可得,综上可得a的范围是.故选答案C.23.(5分)函数f(x)=ln,则f(x)是()A.奇函数,且在(0,+∞)上单调递减B.奇函数,且在(0,+∞)上单凋递增C.偶函数,且在(0,+∞)上单调递减D.偶函数,且在(0,+∞)上单凋递增【解答】解:由x(e x﹣e﹣x)>0,得f(x)的定义域是(﹣∞,0)∪(0,+∞),而f(﹣x)=ln=ln=f(x),∴f(x)是偶函数,x>0时,y=x(e x﹣e﹣x)递增,故f(x)在(0,+∞)递增,故选:D.二、填空题:1.(5分)某投资公司准备在2016年年底将1000万元投资到某“低碳”项目上,据市场调研,该项目的年投资回报率为20%.该投资公司计划长期投资(每一年的利润和本金继续用作投资),若市场预期不变,大约在2020年的年底总资产(利润+本金)可以翻一番.(参考数据:lg2=0.3010,lg3=0.4771)【解答】解:假设n年后总资产可以翻一番,依题意得:a×(1+20%)n=2a,即1.2n=2,两边同时取对数得,n=≈3.8所以大约经过4年,即在2020年底总资产可以翻一番.2.(5分)在函数①y=2x;②y=2﹣2x;③f(x)=x+x﹣1;④f(x)=x﹣x﹣3中,存在零点且为奇函数的序号是④.【解答】解:函数①y=2x不存在零点且为非奇非偶函数,故不满足条件;函数②y=2﹣2x存在零点1,但为非奇非偶函数,故不满足条件;函数③f(x)=x+x﹣1不存在零点,为奇函数,故不满足条件;函数④f(x)=x﹣x﹣3存在零点1且为奇函数,故满足条件;故答案为:④.3.(5分)已知函数f(x)=,若存在实数k使得函数f(x)的值域为[0,2],则实数a的取值范围是[1,2] .【解答】解:当﹣1≤x≤k时,函数f(x)=log2(1﹣x)+1为减函数,且在区间左端点处有f(﹣1)=2,令f(x)=0,解得x=,令f(x)=x|x﹣1|=2,解得x=2,∵f(x)的值域为[0,2],∴k≤,当k≤x≤a时,f(x)=x|x﹣1|=,∴f(x)在[k,],[1,a]上单调递增,在[,1]上单调递减,从而当x=1时,函数有最小值,即为f(1)=0函数在右端点的函数值为f(2)=2,∵f(x)的值域为[0,2],∴1≤a≤2故答案为:[1,2]4.(4分)已知函数f(x)=|ax﹣1|﹣(a﹣1)x(1)当a=时,满足不等式f(x)>1的x的取值范围为(2,+∞);(2)若函数f(x)的图象与x轴没有交点,则实数a的取值范围为[,1).【解答】解:(1)a=时,f(x)=|x﹣1|+x=,∵f(x)>1,∴,解得x>2,故x的取值范围为(2,+∞),(2)函数f(x)的图象与x轴没有交点,①当a≥1时,f(x)=|ax﹣1|与g(x)=(a﹣1)x的图象:两函数的图象恒有交点,②当0<a<1时,f(x)=|ax﹣1|与g(x)=(a﹣1)x的图象:要使两个图象无交点,斜率满足:a﹣1≥﹣a,∴a≥,故≤≤a<1③当a≤0时,f(x)=|ax﹣1|与g(x)=(a﹣1)x的图象:两函数的图象恒有交点,综上①②③知:≤a<1故答案为:(2,+∞),[,1)5.(4分)已知函数若存在x1,x2∈R,x1≠x2,使f (x1)=f(x2)成立,则实数a的取值范围是(﹣∞,).【解答】解:当x≥0时,2x﹣1≥0,当x<0时,若a=0,则f(x)=2恒成立,满足条件;若a>0,则f(x)<2﹣3a,若存在x1,x2∈R,x1≠x2,使f(x1)=f(x2)成立,则2﹣3a>0,即a∈(0,);若a>0,则f(x)<2﹣3a,若存在x1,x2∈R,x1≠x2,使f(x1)=f(x2)成立,则2﹣3a>0,即a∈(0,);若a<0,则f(x)>2﹣3a,满足条件,综上可得:a∈(﹣∞,);故答案为:(﹣∞,)6.(5分)下列命题中①若log a3>log b3,则a>b;②函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;④函数既是奇函数又是减函数.其中正确的命题有②④.【解答】解:若log a3>log b3>0,则a<b,故①错误;函数f(x)=x2﹣2x+3的图象开口朝上,且以直线x=1为对称轴,当x=1时,函数取最小值2,无最大值,故函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);故②正确;g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)可能存在零点;故③错误;数满足h(﹣x)=﹣h(x),故h(x)为奇函数,又由=﹣e x<0恒成立,故h(x)为减函数故④正确;故答案为:②④.7.(5分)已知函数,若方程f(x)﹣a=0有三个不同的实数根,则a的取值范围为0<a<1.【解答】解:∵函数,∴作出函数f(x)的图象如右图所示,∵方程f(x)﹣a=0有三个不同的实数根,则函数y=f(x)的图象与y=a的图象有三个不同的交点,根据图象可知,a的取值范围为0<a<1.故答案为:0<a<1.8.(5分)方程=ax+a由两个不相等的实数根,则实数a的取值范围为[0,).【解答】解:设f(x)=,如图所示,表示以(2,0)为圆心,1为半径的半圆,由圆心(2,0)到y=ax+a的距离=1,可得a=,∵方程=ax+a有两个不相等的实数根,∴实数a的取值范围为[0,).故答案为[0,).9.(5分)已知函数,若函数g(x)=f(x)﹣m有3个零点,则实数m的取值范围是(0,1).【解答】解:令g(x)=f(x)﹣m=0,得m=f(x)作出y=f(x)与y=m的图象,要使函数g(x)=f(x)﹣m有3个零点,则y=f(x)与y=m的图象有3个不同的交点,所以0<m<1,故答案为:(0,1).10.(5分)定义在R上的单调函数f(x)满足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零点,则a的取值范围是[2,+∞).【解答】解:①令x=y=0,则f(0)=2f(0),则f(0)=0;再令y=﹣x,则f(x﹣x)=f(x)+f(﹣x)=0,且f(x)定义域为R,关于原点对称.∴f(x)是奇函数.②F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零点.∴f(asinx)+f(sinx+cos2x﹣3)=0在(0,π)上有解;∴f(asinx)=﹣f(sinx+cos2x﹣3)=f(﹣sinx﹣cos2x+3)在(0,π)上有解;又∵函数f(x)是R上的单调函数,∴asinx=﹣sinx﹣cos2x+3在(0,π)上有解.∵x∈(0,π),∴sinx≠0;∴a==sinx+﹣1;令t=sinx,t∈(0,1];则a=t+﹣1;∵y=t+,<0,因此函数y在(0,1]上单调递减,∴a≥2.故答案为:[2,+∞).三、简答题:1.(12分)已知函数f(x)=lg(a>0)为奇函数,函数g(x)=+b(b ∈R).(Ⅰ)求a;(Ⅱ)若b>1,讨论方徎g(x)=ln|x|实数根的个数;(Ⅲ)当x∈[,]时,关于x的不等式f(1﹣x)≤lgg(x)有解,求b的取值范围.【解答】解:(Ⅰ)由为奇函数得:f(﹣x)+f(x)=0,即,(2分)所以,解得a=1,(4分)(Ⅱ)当b>1时,设,则h(x)是偶函数且在(0,+∞)上递减又所以h(x)在(0,+∞)上有惟一的零点,方徎g(x)=ln|x|有2个实数根.…(8分)(Ⅲ)不等式f(1﹣x)≤lgg(x)等价于,即在有解,故只需,(10分)因为,所以,函数,所以,所以b≥﹣13,所以b的取值范围是[﹣13,+∞).(12分)2.(12分)已知函数f(x)=ax2+bx+c(a,b,c∈R).(1)若a<0,b>0,c=0,且f(x)在[0,2]上的最大值为,最小值为﹣2,试求a,b的值;(2)若c=1,0<a<1,且||≤2对任意x∈[1,2]恒成立,求b的取值范围.(用a来表示)【解答】(1)抛物线的对称轴为,①当时,即b>﹣4a时,当时,,f(x)min=f(2)=4a+2b+c=﹣2,∴,∴a=﹣2,b=3.②当时,即b≥﹣4a时,f(x)在[0,2]上为增函数,f(x)min=f(0)=0与f(x)min=﹣2矛盾,无解,综合得:a=﹣2,b=3.(2)对任意x∈[1,2]恒成立,即对任意x∈[1,2]恒成立,即对任意x∈[1,2]恒成立,令,则,∵0<a<1,∴,(ⅰ)若,即时,g(x)在[1,2]单调递减,此时,即,得,此时,∴∴.(ⅱ)若,即时,g(x)在单调递减,在单调递增,此时,,只要,当时,,当时,,.综上得:①时,;②时,;③时,.3.(12分)已知a∈R,函数f(x)=log2(+a).(1)若f(1)<2,求实数a的取值范围;(2)设函数g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],讨论函数g(x)的零点个数.【解答】解:(1)若f(1)<2,则log2(1+a)<2,即0<1+a<4,解得:a∈(﹣1,3);(2)令函数g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5]=0,则f(x)=log2[(a﹣4)x+2a﹣5],即+a=(a﹣4)x+2a﹣5,即(a﹣4)x2+(a﹣5)x﹣1=0,①当a=4时,方程可化为:﹣x﹣1=0,解得:x=﹣1,此时+a=(a﹣4)x+2a﹣5=3,满足条件,即a=4时函数g(x)有一个零点;②当(a﹣5)2+4(a﹣4)=0时,a=3,方程可化为:﹣x2﹣2x﹣1=0,解得:x=﹣1,此时+a=(a﹣4)x+2a﹣5=2,满足条件,即a=3时函数g(x)有一个零点;③当(a﹣5)2+4(a﹣4)>0时,a≠3,方程有两个根,x=﹣1,或x=,当x=﹣1时,+a=(a﹣4)x+2a﹣5=a﹣1,当a>1时,满足条件,当x=时,+a=(a﹣4)x+2a﹣5=2a﹣4,当a>2时,满足条件,综上可得:1<a≤2时,函数g(x)有一个零点;a>2且a≠3且a≠4时函数g(x)有两个零点;4.(12分)已知函数f(x)=.(1)求f(f());(2)若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为f(x)的二阶不动点,求函数f(x)的二阶不动点的个数.【解答】解:(1)∵f(x)=.∴f())=ln=,∴f(f())=f()=2﹣2×=1;(2)函数f(x)=.x∈[0,),f(x)=2﹣2x∈(1,2],x∈[,1),f(x)=2﹣2x∈(0,1],x∈[1,e],f(x)=lnx∈(0,1),∴f(f(x))=,若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为f(x)的二阶不动点,所以:x0∈[0,),ln(2﹣2x0)=x0,由y=ln(2﹣x0),y=x0,图象可知:存在满足题意的不动点.x0∈[,1),﹣2+4x0=x0,解得x0=,满足f()=.不是f(x)的二阶不动点.x0∈[1,e],2﹣2lnx0=x0,即2﹣x0=2lnx0,由y=2﹣x0,y=2lnx0,图象可知:存在满足题意的不动点.函数f(x)的二阶不动点的个数为:2个.5.(12分)已知函数f(x)=ax2+4x﹣1.(1)当a=1时,对任意x1,x2∈R,且x1≠x2,试比较f()与的大小;(2)对于给定的正实数a,有一个最小的负数g(a),使得x∈[g(a),0]时,﹣3≤f(x)≤3都成立,则当a为何值时,g(a)最小,并求出g(a)的最小值.【解答】解:(1)a=1时,f(x)=x2+4x﹣1,f()=+2(x1+x2)﹣1=++x1x2+2(x1+x2)﹣1,==++2(x1+x2)﹣1;故f()﹣=﹣﹣+x1x2=﹣≤0;(2)∵f(x)=ax2+4x﹣1=a(x+)2﹣1﹣,显然f(0)=﹣1,对称轴x=﹣<0.①当﹣1﹣<﹣3,即0<a<2时,g(a)∈(﹣,0),且f[g(a)]=﹣3.令ax2+4x﹣1=﹣3,解得x=,此时g(a)取较大的根,即g(a)==,∵0<a<2,∴g(a)>﹣1.②当﹣1﹣≥﹣3,即a≥2时,g(a)<﹣,且f[g(a)]=3.令ax2+4x﹣1=3,解得x=,此时g(a)取较小的根,即g(a)==,∵a≥2,∴g(a)=≥﹣3.当且仅当a=2时,取等号.∵﹣3<﹣1∴当a=2时,g(a)取得最小值﹣3.6.(12分)已知函数f(x)=x+﹣1(x≠0),k∈R.(1)当k=3时,试判断f(x)在(﹣∞,0)上的单调性,并用定义证明;(2)若对任意x∈R,不等式f(2x)>0恒成立,求实数k的取值范围;(3)当k∈R时,试讨论f(x)的零点个数.【解答】解:(1)当k=3,x∈(﹣∞,0)时,f(x)=x﹣,>0,∴f(x)在(﹣∞,0)上单调递增.证明:在(﹣∞,0)上任取x1,x2,令x1<x2,f(x1)﹣f(x2)=()﹣()=(x1﹣x2)(1+),∵x1,x2∈(﹣∞,0),x1<x2,∴,∴f(x1)﹣f(x2)<0,∴f(x)在(﹣∞,0)上单调递增.(2)设2x=t,则t>0,f(t)=t+,①当k>0时,f′(t)=1﹣,t=时,f′(t)=0,且f(t)取最小值,f()==2﹣1,当k时,f()=2﹣1>0,当0<k≤时,f()=2﹣1≤0,∴k>时,f(2x)>0成立;0<k≤时,f(2x)>0不成立.②当k=0时,f(t)=t﹣1,∵t∈(0,+∞),不满足f(t)恒大于0,∴舍去.③当k<0时,f恒大于0,∵,且f(x)在(0,+∞)内连续,∴不满足f(t)>0恒成立.综上,k的取值范围是(,+∞).(3)由f(x)=x+﹣1=0,(x≠0),k∈R.得x+﹣1=0,∴k=|x|•(1﹣x),x≠0,当x>0时,k=x(1﹣x),当x<0时,k=﹣x(1﹣x),∴结合图象得:当k>或k≤0时,f(x)有1个零点;当k=时,f(x)有2个零点;当0<k<时,f(x)有3个零点.7.(12分)已知函数f(x)=x2+ax(a>0)在[﹣1,2]上的最大值为8,函数g (x)是h(x)=e x的反函数.(1)求函数g(f(x))的单调区间;(2)求证:函数y=f(x)h(x)﹣(x>0)恰有一个零点x0,且g(x0)<x02h (x0)﹣1(参考数据:e=2.71828…,ln2≈0.693).【解答】解:(1)函数g(x)是h(x)=e x的反函数,可得g(x)=lnx;函数f(x)=x2+ax(a>0)在[﹣1,2]上的最大值为8,只能是f(﹣1)=8或f(2)=8,即有1﹣a=8或4+2a=8,解得a=2(﹣7舍去),函数g(f(x))=ln(x2+2x),由x2+2x>0,可得x>0或x<﹣2.由复合函数的单调性,可得函数g(f(x))的单调增区间为(0,+∞);单调减区间为(﹣∞,﹣2);(2)证明:由(1)得:f(x)=x2+2x,即φ(x)=f(x)h(x)﹣,(x>0),设0<x1<x2,则x1﹣x2<0,x1x2>0,∴<0,∵f(x)在(0,+∞)递增且f(x)>0,∴f(x2)>f(x1)>0,∵>>0,∴f(x1)<f(x2),∴φ(x1)﹣φ(x2)=f(x1)﹣f(x2)+<0,即φ(x1)<φ(x2),∴φ(x)在(0,+∞)递增;∵φ()=﹣2>﹣2=0,φ()=﹣e<﹣e<0,即φ()φ()<0,∴函数y=f(x)h(x)﹣(x>0)恰有1个零点x0,且x0∈(,),∴(+2x0)﹣=0,即=,∴h(x0)﹣g(x0)=﹣lnx0=﹣lnx0,∵y=﹣lnx在(0,)上是减函数,∴﹣lnx0>﹣ln=+ln2>+0.6=1,即g(x0)<h(x0)﹣1,综上,函数y=f(x)h(x)﹣(x>0)恰有一个零点x0,且g(x0)<x02h(x0)﹣1.8.(10分)已知函数f(x)=3x,g(x)=|x+a|﹣3,其中a∈R.(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.【解答】解:(Ⅰ)函数h(x)=f[g(x)]=3|x+a|﹣3的图象关于直线x=2对称,则h(4﹣x)=h(x)⇒|x+a|=|4﹣x+a|恒成立⇒a=﹣2;(Ⅱ)函数y=g[f(x)]=|3x+a|﹣3的零点个数,就是函数G(x)=|3x+a|与y=3的交点,①当0≤a<3时,G(x)=|3x+a|=3x+a与y=3的交点只有一个,即函数y=g[f(x)]的零点个数为1个(如图1);②当a≥3时,G(x)=|3x+a|=3x+a与y=3没有交点,即函数y=g[f(x)]的零点个数为0个(如图1);③﹣3≤a<0时,G(x)=|3x+a|与y=3的交点只有1个(如图2);④当a<﹣3时,G(x)=|3x+a|与y=3的交点有2个(如图2);9.(10分)设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g (x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f (x)为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.【解答】解:(1)函数f(x)=ax2+bx+c的图象经过点(﹣1,0),可得a﹣b+c=0,又a=1,b=2,则f(x)=x2+2x+1,由新定义可得g(x)=x为函数f(x)的一个承托函数;(2)假设存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f(x)为函数的一个承托函数.即有x≤ax2+bx+c≤x2+恒成立,令x=1可得1≤a+b+c≤1,即为a+b+c=1,即1﹣b=a+c,又ax2+(b﹣1)x+c≥0恒成立,可得a>0,且(b﹣1)2﹣4ac≤0,即为(a+c)2﹣4ac≤0,即有a=c;又(a﹣)x2+bx+c﹣≤0恒成立,可得a<,且b2﹣4(a﹣)(c﹣)≤0,即有(1﹣2a)2﹣4(a﹣)2≤0恒成立.故存在常数a,b,c,且0<a=c<,b=1﹣2a,可取a=c=,b=.满足题意.10.(10分)已知函数f(x)的定义域为R,若存在常数T≠0,使得f(x)=Tf (x+T)对任意的x∈R成立,则称函数f(x)是Ω函数.(Ⅰ)判断函数f(x)=x,g(x)=sinπx是否是Ω函数;(只需写出结论)(Ⅱ)说明:请在(i)、(ii)问中选择一问解答即可,两问都作答的按选择(i)计分(i)求证:若函数f(x)是Ω函数,且f(x)是偶函数,则f(x)是周期函数;(ii)求证:若函数f(x)是Ω函数,且f(x)是奇函数,则f(x)是周期函数;(Ⅲ)求证:当a>1时,函数f(x)=a x一定是Ω函数.【解答】解:(I)①对于函数f(x)=x是Ω函数,假设存在非零常数T,Tf(x+T)=f(x),则T(x+T)=x,取x=0时,则T=0,与T≠0矛盾,因此假设不成立,即函数f(x)=x不是Ω函数.②对于g(x)=sinπx是Ω函数,令T=﹣1,则sin(πx﹣π)=﹣sin(π﹣πx)=﹣sinπx.即﹣sin(π(x﹣1))=sinπx.∴Tsin(πx+πT)=sinπx成立,即函数f(x)=sinπx对任意x∈R,有Tf(x+T)=f(x)成立.(II)(i)证明:∵函数f(x)是Ω函数,∴存在非零常数T,Tf(x+T)=f(x),Tf(﹣x+T)=f(﹣x).又f(x)是偶函数,∴f(﹣x)=f(x),∴Tf(﹣x+T)=Tf(x+T),T≠0,化为:f(x+T)=f(﹣x+T),令x﹣T=t,则x=T+t,∴f(2T+t)=f(﹣t)=f(t),可得:f(2T+t)=f(t),因此函数f(x)是周期为2T的周期函数.(ii)证明:∵函数f(x)是Ω函数,∴存在非零常数T,Tf(x+T)=f(x),Tf (﹣x+T)=f(﹣x).又f(x)是奇函数,∴f(﹣x)=﹣f(x),∴﹣Tf(x+T)=Tf(﹣x+T),T≠0,化为:﹣f(x+T)=f(﹣x+T),令x﹣T=t,则x=T+t,∴﹣f(2T+t)=f(﹣t)=﹣f(t),可得:f(2T+t)=f(t),因此函数f(x)是周期为2T的周期函数.(III)证明:当a>1时,假设函数f(x)=a x是Ω函数,则存在非零常数T,Tf (x+T)=f(x),∴Ta x+T=a x,化为:Ta T a x=a x,∵a x>0,∴Ta T=1,即a T=,此方程有非0 的实数根,因此T≠0且存在,∴当a>1时,函数f(x)=a x一定是Ω函数.11.(10分)已知函数f(x),定义(Ⅰ)写出函数F(2x﹣1)的解析式;(Ⅱ)若F(|x﹣a|)+F(2x﹣1)=0,求实数a的值;(Ⅲ)当时,求h(x)=cosx•F(x+sinx)的零点个数和值域.【解答】解:(Ⅰ)定义,当2x﹣1>x,可得x>1,则F(2x﹣1)=1;当2x﹣1=x,可得x=1,则F(2x﹣1)=0;。
(完整word版)高中数学必修一函数难题

高中函数大题专练2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。
① 对任意的[0,1]x ∈,总有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。
已知函数2()g x x =与()21x h x a =⋅-是定义在[0,1]上的函数。
(1)试问函数()g x 是否为G 函数?并说明理由;(2)若函数()h x 是G 函数,求实数a 的值;(3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。
3.已知函数||212)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围.4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x⎧-⎪=⎨⎪⎩0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式.(2)请你作出函数)(x f 的大致图像.(3)当0a b <<时,若()()f a f b =,求ab 的取值范围.(4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件.5.已知函数()(0)||b f x a x x =-≠。
(1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围;(2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围;(3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是[,]m n ,则称()g x 是[,]m n 上的闭函数。
若函数()f x 是某区间上的闭函数,试探求,a b 应满足的条件。
必修一函数知识点整理和例题讲解(含答案)

如
1.已知 f (x) 2 f (x) 3x 2 ,求 f (x) 的解析式
2.已知 f (x) 是奇函数, g(x) 是偶函数,且 f (x) + g(x) = 1 ,则 f (x) =
x 1
3。已知 f (x) 满足 2 f (x) f (1) 3x ,求 f (x) 。
x
(四)、分段函数 分段函数是在其定义域的不同子集上,分别用几个不同的式子来表
的最值;二是求区间定(动),对称轴动(定)的最值问题。求二次函数的最值问题,
勿忘数形结合,注意“两看”:一看开口方向;二看对称轴与所给区间的相对位置关
系),
4
必修一函数知识点整理和例题讲解(含答案)(word 版可编辑修改)
如 1。函数 y 3x2 x 2 的值域为 2.求函数 y x2 2x 5, x [1, 2] 的值域 3。求函数 y x2 4x 2 ( x [1,1] ) 4.当 x (0,2] 时,函数 f (x) ax2 4(a 1)x 3在 x 2 时取得最大值,则 a 的取值范围是 ___ 5.已知函数 f (x) ax2 2ax 3 b(a 0) 在[1,3] 有最大值 5 和最小值 2 ,求 a 、 b 的值。
必修一函数知识点整理和例题讲解(含答案)(word 版可编辑修改)
必修一函数知识点整理和例题讲解(含答案)(word 版可编辑修改) 编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(必修一函数知识点整理和例题 讲解(含答案)(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚的希望 收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为必修一函数知识点整理和例题讲解(含答案)(word 版可编辑修改)的全部内容。
(完整)高一数学必修一经典高难度测试题含答案,推荐文档

高中数学必修1复习测试题(难题版)1.设,,,则有( )5log 31=a 513=b 3.051⎪⎭⎫ ⎝⎛=c A . B . C . D .a b c <<c b a <<c a b <<b c a <<2.已知定义域为R 的函数在上为减函数,且函数的对称轴为,则( )(x f ),4(∞+()y f x =4x =)A .B .C .D .)3()2(f f >)5()2(f f >)5()3(f f >)6()3(f f >3.函数 的图象是( )lg y x =4.下列等式能够成立的是( )A .B .CD .ππ-=-3)3(66==34()x y =+5.若偶函数在上是增函数,则下列关系式中成立的是( ))(x f (]1,-∞-A . B .)2()1(23(f f f <-<-)1(23()2(-<-<f f f C . D .)23()1()2(-<-<f f f )2()23()1(f f f <-<-6.已知函数是定义在R 上的奇函数,且当时,,则在R 上的解析式为()f x 0x ≥2()2f x x x =-()y f x = A . B . C . D. ()(2)f x x x =-+()||(2)f x x x =-()(||2)f x x x =-()||(||2)f x x x =-7.已知函数在区间上是的减函数,则的取值范围是()log (2)a y ax =-[0,1]x a A . B . C . D .(0,1)(1,2)(0,2)(2,)+∞解析: 本题的关键是要注意到真数与底数中两个参量a 是一样的,可知a >0且a≠1,然后根据复合函数的单调性即可解决.解: 先求函数定义域:由2-ax >0,得ax <2,又a 是对数的底数,∴a >0且a≠1.∴x <.由递减区间[0,1]应在定义域内,可得>1,∴a <2.又2-ax 在x ∈[0,1]上是减函数, ∴在区间[0,1]上也是减函数.由复合函数单调性可知a >1,∴1<a <2.8.已知是上的减函数,那么的取值范围是()(31)4,1()log ,1a a x a x f x x x -+<=>⎧⎨⎩(,)-∞+∞a A B C D (0,1)1(0,)311[,)731[,1)79.定义在R 上的偶函数满足,且当时,()f x (1)()f x f x +=-x ∈[1,0]-()12xf x ⎛⎫= ⎪⎝⎭则等于 ( )2(log 8)f A . B . C . D . 3182-210.函数与在同一直角坐标系下的图象大致是( )2()1log f x x =+1()2x g x -+=11.已知f(x)= 若,则 .⎩⎨⎧>≤+)0(2)0(12x xx x ()10f x =x =12.,则的取值范围是____________ 1x ≤x 13. 设函数在上是增函数,函数是偶函数,则、、的大小关系是()x f )2,0(()2+x f ()1f ⎪⎭⎫⎝⎛25f ⎪⎭⎫ ⎝⎛27f .___________14.若f(x)=(a-2)x2+(a-1)x+3是偶函数,则函数f(x)的增区间是.∵函数f(x)=(a-2)x2+(a-1)x+3是偶函数,∴a-1=0∴f(x)=-x2+3,其图象是开口方向朝下,以y轴为对称轴的抛物线故f(x)的增区间(-∞,0]故答案为:(-∞,0]15.已知函数f(x)=2|x+1|+ax(x∈R).(1)证明:当a>2时,f(x)在R上是增函数.(2)若函数f(x)存在两个零点,求a的取值范围.15.(1)证明:化简f (x )= 因为a >2,所以,y 1=(a +2)x +2 (x ≥-1)是增函数,且⎩⎨⎧1221 ≥22<-,-)-(-,+)+(x x a x x a y 1≥f (-1)=-a ;另外,y 2=(a -2)x -2 (x <-1)也是增函数,且y 2<f (-1)=-a .所以,当a >2时,函数f (x )在R 上是增函数.(2)若函数f (x )存在两个零点,则函数f (x )在R 上不单调,且点(-1,-a )在x 轴下方,所以a 的取值应满足 解得a 的取值范围是(0,2).⎩⎨⎧0022<-)<-)(+(a a a16.试用定义讨论并证明函数在上的单调性11()()22ax f x a x +=≠+(),2-∞-17.已知定义域为的函数是奇函数。
必修一函数知识点整理和例题讲解含答案

2.若二次函数 y ax2 bx c 的图象与 x 轴交于 A(2, 0), B(4, 0) ,且函数的最大值为 9 ,
则这个二次函数的表达式是
.
(2)代换(配凑)法――已知形如 f (g(x)) 的表达式,求 f (x) 的表达式。
1.若函数 f (2x 1) x2 2x ,则 f (3) =
必修一函数知识点整理和例题讲解含答案(word 版可编辑修改)
必修一函数知识点整理和例题讲解含答案(word 版可编辑修改)
编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(必修一函数知识点整理和例题 讲解含答案(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚的希望收 到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为必修一函数知识点整理和例题讲解含答案(word 版可编辑修改)的全部内容。
6.函数 f(x)= 3x2 +lg(3x+1)的定义域是 ( ) 1 x
A.(-∞,- 1 ) 3
B。(- 1 , 1 ) 33
C。(- 1 ,1) 3
(二).求函数值域(最值)的方法:
D。(— 1 ,+∞) 3
(1)基本函数的值域
常见函数的值域:
一次函数 y kx bk 0 的值域为 R.
3.求函数 y x2 4x 2 ( x [1,1] ) 4.当 x (0,2] 时,函数 f (x) ax2 4(a 1)x 3在 x 2 时取得最大值,则 a 的取值范围是 ___ 5。已知函数 f (x) ax2 2ax 3 b(a 0) 在[1,3] 有最大值 5 和最小值 2 ,求 a 、 b 的值。
(完整word)高中数学函数必修一习题含答案,推荐文档

第2卷(选择题 、选择题(本大题共12个小题,每小题四个选项中,只有一项是符合题目要求的)函数 尸log a (x + 2)+ 1的图象过定点(若 2lg(x - 2y)= lg x + lg y(x>0, y>0)则x 的值为()114 B . 1 或4 C . 1 或 4 D.4log 3x ,x>0, 已知函数f(x)= 2x ,x w o.A.1 B . 4 C . 2 D.17. 函数y = ax 2 + bx 与y = log b x (ab ^0,|a|M |b|)在同一直角坐标系中的图象 a (1,2)B .(2,1)C . (-2,1)D .(-1,1) 共60分)5分,共60分,在每小题给出的 2. 3. C .下列函数中与函数y = x 相等的函数是( y = (:'x )2y = 2log 2xB .D .) y = x 2 y = Iog 22x 4.2 函数y = lg 1+x -1的图象关于(A .原点对称B .C . x 轴对称D .y 轴对称 直线y = x 对称 5. F 列关系中正确的是()1log 76<In 2<log 3 n B . 1log 3 n <ln2<log 76C . 1In 2<log 76<log 3 nD .1In 2<log 3n vlogS6.的值为()可能是(8.若函数y = (m 2 + 2m — 2)x m 为幕函数且在第一象限为增函数, 则m 的值为()A . 1B . — 3C .— 1D . 39. 若函数y =f(x)是函数y = a x (a>0且a ^ 1)的反函数,其图象经过点(a , a),则 f(x) =()1 2A . log 2xB . log 1 x C.2x D . x2110 .函数f(x)= log2(x 2— 3x + 2)的递减区间为()B ・(1,2)11.函数f(x)= lg(kx 2 + 4kx + 3)的定义域为R ,则k 的取值范围是()A. 0, 3B.0, 33D . ( — X, 0] u 4,+x12. 设a>0且a ^ 1,函数f(x) = log a |ax 2— x|在[3,4]上是增函数,则a 的取值范围是()1 A. 6, 14 U (1,+X )B.1 1 1, 1 U (1, + X )1 11c. 8, 6 U (1,+X )D. 0, 4 u (1,+ X )第u 卷 (非选择题共90分)、填空题(本大题共4个小题,请把正确答案填在题中横线上)+•7C. 0, 4.1-313.计算27+ lg 0.01 —In v e+ 3log32= ________14. ________________________________________ 函数f(x) = lg(x—1) + p5 —x的定义域为 _____________________________________ .15. 已知函数f(x) = Iog3(x2+ ax+ a+ 5), f(x)在区间(―®, 1)上是递减函数,则实数a的取值范围为_________ .16. 已知下列四个命题:①函数f(x) = 2x满足:对任意X1, *€ R且刃工x2X i —L x2 1 __ 2都有f —2 <2【f(x i) + f(X2)];②函数f(x)= Iog2(x+ 1 + x2), g(x) = 1 + ?x_〔不都是奇函数;③若函数f(x)满足f(x- 1)= —f(x+ 1),且f(1) = 2,则f(7)= —2;④设x i,x2是关于x的方程|log a x|= k(a>0且a^ 1)的两根,贝U X1X2= 1.其中正确命题的序且日序号疋________ .三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17. (本小题满分10分)1 1(1) 计算lg25+ lg 2X Ig 500 —qlg 亦—Iog29X Iog32;(2) 已知Ig 2= a,lg 3 = b,试用a,b表示log125.18. (本小题满分12分)已知函数f(x)= lg(3x—3).(1) 求函数f(x)的定义域和值域;(2) 设函数h(x) = f(x) —lg(3x+ 3),若不等式h(x)>t无解,求实数t的取值范围.19. (本小题满分12分)—2 m2+ m+ 3已知函数f(x) = x (m€ Z)为偶函数,且f(3)<f(5).(1)求m的值,并确定f(x)的解析式;⑵若g(x)= log a[f(x) —2x](a>0 且a^ 1),求g(x)在(2,3]上的值域.20. (本小题满分12分)kx _ 1已知函数f(x)= Ig (k€ R).x—1(1) 若y=f(x)是奇函数,求k的值,并求该函数的定义域;(2) 若函数y= f(x)在[10,+x)上是增函数,求k的取值范围.21. (本小题满分12分)1 一x已知函数f(x)= Iog3〔一mx(m H 1)是奇函数.(1)求函数y= f(x)的解析式;1 一x⑵设g(x)= —,,用函数单调性的定义证明:函数y= g(x)在区间(—1,1)1 —mx上单调递减;(3) 解不等式f(t+ 3)<0.22. (本小题满分12分)已知函数f(x)= log4(4x+ 1) + kx(k€ R)是偶函数.(1) 求实数k的值;(2) 设g(x)= log4(a 2x+ a),若f(x)= g(x)有且只有一个实数解,求实数a的取值范围.1. D解析:定点(—1,1).2. B解析:详解答案由对数函数恒过定点(1,0)知,函数y= log a(x+ 2)+ 1的图象过由对数的性质及运算知,2lg(x—2y) = lg x+ lg y化简为lg(x—2y)2= lg xy,即(x—2y)2= xy,解得x=y或x=4y.所以f的值为1或寸.故选B.3. D 解析:函数y=x的定义域为R.A中,y= ( ,x)2定义域为[0, + );B 中,y= ,x2= |x|;C 中,y = 2log2x=x,定义域为(0, +^);D 中,y= Iog22x=x, 定义域为R.所以与函数y=x相等的函数为y= log22x.24. A 解析:函数y= lg 弟—1的定义域为(—1,1).2 1 一x又设f(x)二尸lg苗-仁lg帀,1 + x 1 —x所以f( —X)二lg 1—x二一lg 二一f(x),所以函数为奇函数,故关于原点对称.15. C 解析:由对数函数图象和性质,得0<log76<1, ln ?<0, Iog3n >1所以1ln 2<log76v log3 n故选C.111 16. A 解析:••• 27>0-f 27 = log3^7= —3,v —3<0, f(—3) = 2—3=8.故选A.b7. D 解析:A 中,由y= ax2+ bx 的图象知,a>0, -<0,由y= log b x 知,a 一ab>0,所以A错;b bB 中,由y= ax2+ bx 的图象知,a<0, -<0,由y= log b x 知,->0,所以B a— aa错;C 中,由y= ax2+ bx 的图象知,a<0,—-<-1,A ->1,由y= log b x 知0<— aa — aa<1,所以C错.故选D.8. A 解析:因为函数y= (m2+ 2m—2)x m为幕函数且在第一象限为增函数,m2+ 2m—2= 1,所以解得m= 1.故选A.m>0,9. B 解析:因为函数y=f(x)图象经过点(.a,a),所以函数y= a x(a>0且a^ 1)1 1 过点(a, .a),所以a = a a即a = Q,故f(x)= log^x.10. D 解析:令t = x2—3x+ 2,则当t= x2—3x+ 2>0 时,解得x€ (— ^, 1)U (2,+x).且t = x2—3x+ 2在区间(一x, 1)上单调递减,在区间(2,+x) 上单调递增;又y= log丄t在其定义域上为单调递减的,所以由复合函数的单调性知,f(x) 2=log】程一3x+ 2)单调递减区间是(2,+ x).211. B 解析:因为函数f(x) = lg(&+ 4kx+ 3)的定义域为R,所以kx2+ 4kxk>0,+ 3>0,x€ R恒成立.①当k= 0时,3>0恒成立,所以k= 0适合题意.②&0,3 3即0<k<4・由①②得0W k<4.故选B.解题技巧:本题实际上考查了恒成立问题,解决本题的关键是让真数kx2+ 4kx+ 3>0, x € R 恒成立.12. A 解析:令u(x)=|ax2—x|,贝U y= log a u,所以u(x)的图象如图所示.当a>1时,由复合函数的单调性可知,区间[3,4]落在 1 1所以4W 石或g<3,故有a>1;1 1 1解得6<a<4.综上所述,a 的取值范围是6,1 1 113. —1 解析:原式=^— 2—2+ 2=14. (1,5] 解析:要使函数f(x) = lg(x — 1) + 5-x 有意义,只需满足;"Jo 即可•解得1<x < 5,所以函数f(x)= lg(x — 1)+ 5 — x 的定义域为(1,5].a15. [ — 3,— 2] 解析:令 g(x) = x 2 + ax + a + 5, g(x)在 x € —8,—-是减 a函数,x € — 2,+ 是增函数.而f(x) = log 3t ,t € (0,+8)是增函数.由复合 函数的单调性,得—2> 1,解得—3< a <— 2.g 1 > 0,解题技巧:本题主要考查了复合函数的单调性, 解决本题的关键是在保证真 数g(x)>0的条件下,求出g(x)的单调增区间.16. ①③④ 解析:①•••指数函数的图象为凹函数,.••①正确; ②函数 f(x) = Iog 2(x + . 1 + x 2)定义域为 R ,且 f(x) + f(—x)= Iog 2(x + .1 + x 2) + log 2(— x + 1 + x 2) = log 21 = 0,二 f(x) = — f( — x),.°. f(x)为奇函数.22x + 1g(x)的定义域为(—8,0)u (0,+8),且 g(x)= 1+ 2—1=2x —1,g(—x)=2—x+ 1 1 + 2x2^+1 二1—x = — g(x),A g(x)是奇函数.②错误;1 、10 -- 或— + 8 上0,2a 或 a ,+ 丄,当0<a<1时,由复合函数的单调性可知,[3,4]? 1 2a ,1 1 11,所以习三3 且a>4,14 u (1, 1 6.③••• f(x —1)=—f(x + 1),二f(7) = f(6+ 1)= —f(6 —1) = —f(5), f(5)= f(4+ 1)二—f(4—1)= —f(3), f(3)二—f(1),••• f(7)= —f(1),③正确;④|log a x|= k(a>0且a^ 1)的两根,贝U log a x i = —Iog a x2,:log a x i + log a X2 = 0, X1 x2= 1..・.④正确.17. 解:(1)原式二lg25 + lg 5 lg 2+ 2lg 2+ lg 5 —log39=lg 5(lg 5 + lg 2) + 2lg 2+ lg 5 — 2二2(lg 5+ lg 2) — 2=0.10__ lg T _ lg 10—lg 2_ 1 —lg 2 (2)log125=lg 12_lg 3X4_ lg3 + lg4 _ lg 3+ 2lg 2'—_ 1 —lg 2 1 —alg 2_a, lg 3_ b, Iog125_ _ .lg 3+ 2lg 2 b + 2a18. 解:(1 )由3x—3>0解得x>1,所以函数f(x)的定义域为(1,+x). 因为(3x—3)€(0,+x),所以函数f(x)的值域为R.3x_ 3(2)因为h(x) _ lg(3x—3) —lg(3x+ 3)_ lg 3+3_lg 1 —3+3的定义域为(1,+x),且在(1,+x)上是增函数,所以函数的值域为(一X, 0).所以若不等式h(x)>t无解,则t的取值范围为[0, +X).19. 解:(1)因为f(3)<f(5),所以由幕函数的性质得,—2m2+ m+ 3>0,解得彳3—1<m<2.因为m€ Z ,所以m_ 0或m_ 1. 当m_ 0时,f(x)_x3它不是偶函数. 当m_ 1时,f(x)_x2是偶函数.所以m_ 1, f(x) _x2.(2)由(1)知g(x)_ log a(x2—2x),设t_x2—2x, x€ (2,3],则t € (0,3],此时g(x)在(2,3]上的值域就是函数y_log a t在t€ (0,3]上的值域.当a>1时,y = log a t 在区间(0,3]上是增函数,所以y € (-^, log a 3]; 当0<a<1时,y = log a t 在区间(0,3]上是减函数,所以y € [log a 3,+^ ). 所以当a>1时,函数g(x)的值域为(一X, iog a 3];当0<a<1时,g(x)的值域 为[log a 3, + x ).20. 解:(1)因为f(x)是奇函数,—kx - 1 kx -1-f(—X )二一f(x),即 lg — x —1 二一lg_x —1—kx -1 _ x — 1 —x — 1 _ kx — 1,二 k 2 _ 1, k _ ±, 而k _ 1不合题意舍去, k _ — 1. —x — 1由 >0,得函数y _f(x)的定义域为(一1,1).x — I又 f(x)_ lg kX —1_ lg k + ・ ,x —1 x —1 '即 lg k+ ■ <lg k +『,X 1— 1 X 2- 1 '1 1 > , X 1 — 1 X2 — 1 1综上可知k € 10, 1 .解题技巧:本题主要考查了对数型函数的性质, 解决本题的关键是充分利用 好奇偶性和单调性.21. (1)解:由题意得f( — x) + f(x)_0对定义域中的x 都成立,1 + X .1 — X1 + X 1 — X “(2)v f(x)在[10,+^)上是增函数,•10k — 1 1--------- >0 • k>= 10 — 1 , 10'故对任意的X 1,X 2,当10< X 1VX 2时,恒有f(X )<f(X ), k — 1 k —1X 1 — 1 X 2 — 1,• (k — 1)1 1X 1— 1— X 2— 1 <0,--k — 1<0, • k<1.所以log s + log3 _ 0,即•_ 1,1 + mx 1 —mx 1 + mx 1 —mx 所以1 —x2_ 1 —m2x2对定义域中的x都成立,所以m 2 3= 1又m ^ 1,所以m =— 1,1 一 x所以 f(x) = Iog 3^—.1 + x1 一 x⑵证明:由(1)知,g(x)=-,I 十x设 X 1, X 2€ (— 1,1),且 X 1<X 2,贝U X 1— 1>0 , X 2— 1>0 , X 2— X 1>0.2 x 2 __ x 1因为 g(X 1)_ g(X 2)= 1 — x1 1 — x2 >0,所以 g(X 1)> g(X 2),所以函数y = g(x)在区间(一 1,1)上单调递减.⑶解:函数y = f(x)的定义域为(—1,1),设 X 1, X 2€ (— 1,1),且 X 1<X 2,由 ⑵得 g(x 1)>g(x 2),所以 Iog 3g(x 1)>log 3g(x 2),即 f(x”>f(X 2),所以y = f(x)在区间(—1,1)上单调递减.—1< t 十 3<1 , 因为f(t 十3)<0 = f(0),所以 t 十 3>0 ,解得—3<t<— 2.故不等式的解集为(—3, — 2).22.解:(1)由函数f(x)是偶函数可知f(x) = f(— x),/. Iog 4(4X — 1)— kx = log 4(4 x — 1) — kx ,4X — 1化简得 Iog4.—x 十 1 = — 2kx ,4 十11 即x = — 2kx 对一切x € R 恒成立,二k = — ^.⑵函数f(x)与g(x)的图象有且只有一个公共点, 1 即方程Iog 4(4X 十1) — ?x = Iog 4(a 2X + a)有且只有一个实根,0,此时有a = — 2+ 2 2或a = — 2 — 2 2(舍去);③当a>1时,又g(0) = — 1,方程恒有一个正根与一个负根,符合题意.综 上可2化简得方程2X + 2X = a-2X + a 有且只有一个实根,且 a 2X + a>0成立,则a>0.令t = 2X >0 ,则(a — 1)t 2 + at — 1= 0有且只有一个正根.设 g(t) = (a — 1)t 2 + at — 1,注意到 g(0) = — 1<0,所以①当a = 1时,有t = 1,符合题意;②当0<a<1时,g(t)图象开口向下,且g(0) = — 1<0,则需满足t 对称轴= a 2 a — 1 >0,知,a的取值范围是{ — 2 + 2 2} U [1 ,+x).。
高一函数经典难题讲解

高一函数经典难题讲解 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1.已知函数f(x)=(x+1-a)/(a-x),x∈R且x≠a,当f(x)的定义域为[a-1,a-1/2]时,求f(x)值解:由题知,已知函数f(x)=(x+1-a)/(a-x),所以,f(x)= -1+1/(a-x),当f(x)的定义域为[a-1,a-1/2]时x∈[a-1,a-1/2](a-x)∈[1/2,1]1/(a-x)∈[1,2]f(x)=-1+1/(a-x)∈[0,1]2.设a为非负数,函数f(x)=x|x-a|-a. (1)当a=2时,求函数的单调区间(2)讨论函数y=f(x)的零点个数解析:(1)∵函数f(x)=x|x-2|-2当x<2时,f(x)=-x^2+2x-2,为开口向下抛物线,对称轴为x=1当x>=2时,f(x)=x^2-2x-2,为开口向上抛物线,对称轴为x=1∴当x∈(-∞,1)时,f(x)单调增;当x∈[1,2]时,f(x)单调减;当x∈(2,+∞)时,f(x)单调增;(2).f(x)=x|x-a|-a=0,x|x-a|=a,①a=0时x=0,零点个数为1;a>0时x>0,由①,x>=a,x^2-ax-a=0,x1=[a+√(a^2+4a)]/2;0<x<a<4时,x^2-ax+a=0②,x2,3=[a土√(a^2-4a)]/2,零点个数为3;a=4时,x2,3=a/2,零点个数为2;a>4时,②无实根,零点个数为1。
a<0时,x<0,由①,x>=a>-4,x^2-ax-a=0③,x1,2=[a土√(a^2+4a)]/2;x<a时x^2-ax+a=0,x3=[a-√(a^2-4a)]/2,零点个数为3;a=-4时x1,2=a/2,零点个数为2;a<-4时③无实根,零点个数为1.综上,a<-4,或a=0,或a>4时零点个数为1;a=土4时,零点个数为2;-4<a<0,或0<a<4时,零点个数为3.3.已知函数f(x)=log3为底 1-m(x+2)/x-3的图像关于原点对称(1)求常数m的值(2)当x∈(3,4)时,求f(x)的值域;(3)判断f(x)的单调性并证明。
高一函数经典难题讲解

高一函数经典难题讲解2、已知函数f(x)=log3为底1-m(x+2)/x-3的图像关于原点对称,可得:f(-x)=log3[1-m(-x+2)/(-x-3)]=log3[1+m(x+2)/(x+3)]因为f(-x)=-f(x),所以有:log3[1-m(x+2)/(x-3)]=-log3[1+m(x+2)/(x+3)]即:log3[(1-m(x+2)/(x-3))(1+m(x+2)/(x+3))]=-1化简得到:m=23、当x∈(3,4)时,有:f(x)=log3[1-m(x+2)/(x-3)]=log3[(x-3-m(x+2))/(x-3)]因为m=2,所以有:f(x)=log3[(x-7)/(x-3)]因此,f(x)的值域为(-∞,log3(4/3))4、对于f(x)=log3[(x-7)/(x-3)],求导可得:f'(x)=1/(x-7)-1/(x-3)当x>7时,f'(x)<0,即f(x)单调递减;当30,即f(x)单调递增;因此,f(x)在定义域内为单调函数。
1.给定方程u(t) = (a-1)t^2 - 4/3at - 1 = 0,要求找出唯一的正根。
因为两个函数图像只有一个公共点,所以问题转化为寻找这个正根。
当a=1时,方程没有正根;当△=0时,a=3/4或a=-3,其中a=3/4时,t=-1/2,a=-3时,t=1/2.如果方程有一个正根和一个负根,那么(a-1)×u(0)。
1.综上所述,a=-3或a>1.2.给定方程f²(x) + bf(x) + c = 0,要求确定它有五个根的充要条件。
首先,我们分析函数f(x)的图像,发现当f(x)=1时,有三个对称的x值,除了x=2之外还有两个。
当f(x)≠1时,有两个对称的x值。
因此,满足f²(x) + bf(x) + c = 0的f(x)有两个,一个对应三个x值,另一个对应两个x值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 B.沿 x 轴向右平移 个单位
2 D.沿 x 轴向左平移 1 个单位
2
3.设
f
(x)
x
f
2, (x 10) [ f (x 6)],(x
10)
则
f
(5)
的值为(
)
A.10 B.11 C.12 D.13
4.已知函数 y f (x 1) 定义域是[2,3] ,则 y f (2x 1) 的定义域是( )
20.已知函数 f (x) 的定义域是 (0,) ,且满足 f (xy) f (x) f ( y) , f (1) 1, 2
如果对于 0 x y ,都有 f (x) f ( y) , (1)求 f (1) ; (2)解不等式 f (x) f (3 x) 2 。
21.当 x [0,1] 时,求函数 f (x) x 2 (2 6a)x 3a 2 的最小值。
D. f (2) f ( 3) f (1) 2
7.如果奇函数 f (x) 在区间[3, 7] 上是增函数且最大值为 5 ,
那么 f (x) 在区间 7,3上是( )
A.增函数且最小值是 5
B.增函数且最大值是 5
C.减函数且最大值是 5
D.减函数且最小值是 5
8.已知 f (x) ax3 bx 4 其中 a,b 为常数,若 f (2) 2 ,则 f (2) 的
A.[0, 5] 2
C. [5,5]
B. [1,4] D. [3,7]
x 5.函数 y x 的图象是( )
x
6.若偶函数 f (x) 在 ,1上是增函数,则下列关系式中成立的是( )
A. f ( 3) f (1) f (2) 2
B.
f (1)
f
(
3 )
f
(2)
2
C. f (2) f (1) f ( 3) 2
(2) f (x) 在定义域上单调递减;(3) f (1 a) f (1 a2 ) 0, 求 a 的取值范围。
19.已知函数 f (x) x2 2ax 2, x 5,5.
① 当 a 1 时,求函数的最大值和最小值;
② 求实数 a 的取值范围,使 y f (x) 在区间 5,5上是单调函数。
f (x) 的递减区间是
.
16.已知函数 f (x) ax2 2ax 3 b(a 0) 在[1,3] 有最大值 5 和最小值 2 ,求 a 、 b 的值
17.对于任意实数 x ,函数 f (x) (5 a)x2 6x a 5 恒为正值,求 a 的取值范围
18.已知函数 f (x) 的定义域为 1,1,且同时满足下列条件:(1) f (x) 是奇函数;
值等于( )
A. 2 B. 4 C. 6
D. 10
9.若函数 f(x)满足
A -1 B 0 C 1
f
(x)
log
2
f (x
(1 1)
x), x 0 f (x 2),
x
,则f 0
(2009)的值为
D2
lg x ,0 x 10
10.已知函数 y
f
(
x)
1 2
x
6,
x
10
若
a,b,c
24
24.若函数
f(x)在其定义域
R
内是增函数且满足
f
(log a
x)
a
a 2
1
x
1 x
,其中
a﹥0
且
a 1
(1)求函数 f(x)的解析式并判断其奇偶性
(2)当 x (,2) 时,f(x)-4 的值恒为负数,求 a 的取值范围.
1 3x
13.设函数 y ax 2a 1,当 1 x 1时, y 的值有正有负,则实数 a 的范围
。
14.设奇函数 f (x) 的定义域为5,5,若当 x [0,5] 时,
f (x) 的图象如右图,则不等式 f (x) 0 的解是
15.若函数 f (x) (k 2)x2 (k 1)x 3 是偶函数,则
互不相等,且
f (a)
f (b)
f (c) ,则
abc 的取值范围是( )
A. (1,10) B.(5,6) C. (10,12) D. (20,24)
11.函数 y (x 1)0 的定义域是_____________________。 x x
1 3x
12.方程
3 的解是_____________。
函数部分难题汇总
1.函数 y f (x) 的图象与直线 x 1 的公共点数目是( )
A.1 B. 0
C. 0 或1
D.1或 2
2.为了得到函数 y f (2x) 的图象,可以把函数 y f (1 2x) 的图象适当平移,
这个平移是( )
A.沿 x 轴向右平移1个单位 C.沿 x 轴向左平移1个单位
22.已知
f
x
x
1 2x 1
1 2
x
0,
⑴判断 f x的奇偶性; ⑵证明 f x 0 .
23.设
f(x)是定义
R
上的增函数,其图像关于直线
x=1
对称,对任意的
x1 ,
x2
0,
1 2
,
都有 f (x1 x2 ) f (x1 ) f (x2 ), 且有 f (1) a 0 (1)求 f ( 1 )及f ( 1 ) (2)证明 f (x) 是周期函数;